/*--------------------------------------------------------------------*/ /*--- Platform-specific syscalls stuff. syswrap-s390x-linux.c ---*/ /*--------------------------------------------------------------------*/ /* This file is part of Valgrind, a dynamic binary instrumentation framework. Copyright IBM Corp. 2010-2012 This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. The GNU General Public License is contained in the file COPYING. */ /* Contributed by Christian Borntraeger */ #if defined(VGP_s390x_linux) #include "pub_core_basics.h" #include "pub_core_vki.h" #include "pub_core_vkiscnums.h" #include "pub_core_libcsetjmp.h" // to keep _threadstate.h happy #include "pub_core_threadstate.h" #include "pub_core_aspacemgr.h" #include "pub_core_debuglog.h" #include "pub_core_libcbase.h" #include "pub_core_libcassert.h" #include "pub_core_libcprint.h" #include "pub_core_libcproc.h" #include "pub_core_libcsignal.h" #include "pub_core_mallocfree.h" #include "pub_core_options.h" #include "pub_core_scheduler.h" #include "pub_core_sigframe.h" // For VG_(sigframe_destroy)() #include "pub_core_signals.h" #include "pub_core_syscall.h" #include "pub_core_syswrap.h" #include "pub_core_tooliface.h" #include "pub_core_stacks.h" // VG_(register_stack) #include "priv_types_n_macros.h" #include "priv_syswrap-generic.h" /* for decls of generic wrappers */ #include "priv_syswrap-linux.h" /* for decls of linux-ish wrappers */ #include "priv_syswrap-linux-variants.h" /* decls of linux variant wrappers */ #include "priv_syswrap-main.h" /* --------------------------------------------------------------------- clone() handling ------------------------------------------------------------------ */ /* Call f(arg1), but first switch stacks, using 'stack' as the new stack, and use 'retaddr' as f's return-to address. Also, clear all the integer registers before entering f. Thought: Why are we clearing the GPRs ? The callee pointed to by f is a regular C function which will play by the ABI rules. So there is no need to zero out the GPRs. If we assumed that f accesses registers at will, then it would make sense to create a defined register state. But then, why only for the GPRs and not the FPRs ? */ __attribute__((noreturn)) void ML_(call_on_new_stack_0_1) ( Addr stack, Addr retaddr, void (*f)(Word), Word arg1 ); /* Upon entering this function we have the following setup: r2 = stack r3 = retaddr r4 = f_desc r5 = arg1 */ asm( ".text\n" ".align 4\n" ".globl vgModuleLocal_call_on_new_stack_0_1\n" ".type vgModuleLocal_call_on_new_stack_0_1, @function\n" "vgModuleLocal_call_on_new_stack_0_1:\n" " lgr %r15,%r2\n" // stack to r15 " lgr %r14,%r3\n" // retaddr to r14 " lgr %r2,%r5\n" // arg1 to r2 // zero all gprs to get a defined state " lghi %r0,0\n" " lghi %r1,0\n" // r2 holds the argument for the callee " lghi %r3,0\n" // r4 holds the callee address " lghi %r5,0\n" " lghi %r6,0\n" " lghi %r7,0\n" " lghi %r8,0\n" " lghi %r9,0\n" " lghi %r10,0\n" " lghi %r11,0\n" " lghi %r12,0\n" " lghi %r13,0\n" // r14 holds the return address for the callee // r15 is the stack pointer " br %r4\n" // jump to f ".previous\n" ); /* Perform a clone system call. clone is strange because it has fork()-like return-twice semantics, so it needs special handling here. Upon entry, we have: void* child_stack in r2 long flags in r3 int* parent_tid in r4 int* child_tid in r5 int* child_tid in r6 Word (*fn)(void *) 160(r15) void *arg 168(r15) System call requires: void* child_stack in r2 (sc arg1) long flags in r3 (sc arg2) int* parent_tid in r4 (sc arg3) int* child_tid in r5 (sc arg4) void* tlsaddr in r6 (sc arg5) Returns a ULong encoded as: top half is %cr following syscall, low half is syscall return value (r3). */ #define __NR_CLONE VG_STRINGIFY(__NR_clone) #define __NR_EXIT VG_STRINGIFY(__NR_exit) extern ULong do_syscall_clone_s390x_linux ( void *stack, ULong flags, Int *child_tid, Int *parent_tid, Addr tlsaddr, Word (*fn)(void *), void *arg); asm( " .text\n" " .align 4\n" ".globl do_syscall_clone_s390x_linux\n" "do_syscall_clone_s390x_linux:\n" " lg %r1, 160(%r15)\n" // save fn from parent stack into r1 " lg %r0, 168(%r15)\n" // save arg from parent stack into r0 " aghi %r2, -160\n" // create stack frame for child // all syscall parameters are already in place (r2-r6) " svc " __NR_CLONE"\n" // clone() " ltgr %r2,%r2\n" // child if retval == 0 " jne 1f\n" // CHILD - call thread function " lgr %r2, %r0\n" // get arg from r0 " basr %r14,%r1\n" // call fn // exit. The result is already in r2 " svc " __NR_EXIT"\n" // Exit returned?! " j +2\n" "1:\n" // PARENT or ERROR " br %r14\n" ".previous\n" ); #undef __NR_CLONE #undef __NR_EXIT void VG_(cleanup_thread) ( ThreadArchState* arch ) { /* only used on x86 for descriptor tables */ } static void setup_child ( /*OUT*/ ThreadArchState *child, /*IN*/ ThreadArchState *parent ) { /* We inherit our parent's guest state. */ child->vex = parent->vex; child->vex_shadow1 = parent->vex_shadow1; child->vex_shadow2 = parent->vex_shadow2; } /* When a client clones, we need to keep track of the new thread. This means: 1. allocate a ThreadId+ThreadState+stack for the the thread 2. initialize the thread's new VCPU state 3. create the thread using the same args as the client requested, but using the scheduler entrypoint for IP, and a separate stack for SP. */ static SysRes do_clone ( ThreadId ptid, Addr sp, ULong flags, Int *parent_tidptr, Int *child_tidptr, Addr tlsaddr) { static const Bool debug = False; ThreadId ctid = VG_(alloc_ThreadState)(); ThreadState* ptst = VG_(get_ThreadState)(ptid); ThreadState* ctst = VG_(get_ThreadState)(ctid); UWord* stack; NSegment const* seg; SysRes res; ULong r2; vki_sigset_t blockall, savedmask; VG_(sigfillset)(&blockall); vg_assert(VG_(is_running_thread)(ptid)); vg_assert(VG_(is_valid_tid)(ctid)); stack = (UWord*)ML_(allocstack)(ctid); if (stack == NULL) { res = VG_(mk_SysRes_Error)( VKI_ENOMEM ); goto out; } /* Copy register state Both parent and child return to the same place, and the code following the clone syscall works out which is which, so we don't need to worry about it. The parent gets the child's new tid returned from clone, but the child gets 0. If the clone call specifies a NULL sp for the new thread, then it actually gets a copy of the parent's sp. */ setup_child( &ctst->arch, &ptst->arch ); /* Make sys_clone appear to have returned Success(0) in the child. */ ctst->arch.vex.guest_r2 = 0; if (sp != 0) ctst->arch.vex.guest_r15 = sp; ctst->os_state.parent = ptid; /* inherit signal mask */ ctst->sig_mask = ptst->sig_mask; ctst->tmp_sig_mask = ptst->sig_mask; /* have the parents thread group */ ctst->os_state.threadgroup = ptst->os_state.threadgroup; /* We don't really know where the client stack is, because its allocated by the client. The best we can do is look at the memory mappings and try to derive some useful information. We assume that esp starts near its highest possible value, and can only go down to the start of the mmaped segment. */ seg = VG_(am_find_nsegment)((Addr)sp); if (seg && seg->kind != SkResvn) { ctst->client_stack_highest_word = (Addr)VG_PGROUNDUP(sp); ctst->client_stack_szB = ctst->client_stack_highest_word - seg->start; VG_(register_stack)(seg->start, ctst->client_stack_highest_word); if (debug) VG_(printf)("tid %d: guessed client stack range %#lx-%#lx\n", ctid, seg->start, VG_PGROUNDUP(sp)); } else { VG_(message)(Vg_UserMsg, "!? New thread %d starts with SP(%#lx) unmapped\n", ctid, sp); ctst->client_stack_szB = 0; } /* Assume the clone will succeed, and tell any tool that wants to know that this thread has come into existence. If the clone fails, we'll send out a ll_exit notification for it at the out: label below, to clean up. */ vg_assert(VG_(owns_BigLock_LL)(ptid)); VG_TRACK ( pre_thread_ll_create, ptid, ctid ); if (flags & VKI_CLONE_SETTLS) { if (debug) VG_(printf)("clone child has SETTLS: tls at %#lx\n", tlsaddr); ctst->arch.vex.guest_a0 = (UInt) (tlsaddr >> 32); ctst->arch.vex.guest_a1 = (UInt) tlsaddr; } flags &= ~VKI_CLONE_SETTLS; /* start the thread with everything blocked */ VG_(sigprocmask)(VKI_SIG_SETMASK, &blockall, &savedmask); /* Create the new thread */ r2 = do_syscall_clone_s390x_linux( stack, flags, child_tidptr, parent_tidptr, tlsaddr, ML_(start_thread_NORETURN), &VG_(threads)[ctid]); res = VG_(mk_SysRes_s390x_linux)( r2 ); VG_(sigprocmask)(VKI_SIG_SETMASK, &savedmask, NULL); out: if (sr_isError(res)) { /* clone failed */ ctst->status = VgTs_Empty; /* oops. Better tell the tool the thread exited in a hurry :-) */ VG_TRACK( pre_thread_ll_exit, ctid ); } return res; } /* --------------------------------------------------------------------- PRE/POST wrappers for s390x/Linux-specific syscalls ------------------------------------------------------------------ */ #define PRE(name) DEFN_PRE_TEMPLATE(s390x_linux, name) #define POST(name) DEFN_POST_TEMPLATE(s390x_linux, name) /* Add prototypes for the wrappers declared here, so that gcc doesn't harass us for not having prototypes. Really this is a kludge -- the right thing to do is to make these wrappers 'static' since they aren't visible outside this file, but that requires even more macro magic. */ DECL_TEMPLATE(s390x_linux, sys_ptrace); DECL_TEMPLATE(s390x_linux, sys_socketcall); DECL_TEMPLATE(s390x_linux, sys_mmap); DECL_TEMPLATE(s390x_linux, sys_ipc); DECL_TEMPLATE(s390x_linux, sys_clone); DECL_TEMPLATE(s390x_linux, sys_sigreturn); DECL_TEMPLATE(s390x_linux, sys_rt_sigreturn); DECL_TEMPLATE(s390x_linux, sys_fadvise64); // PEEK TEXT,DATA and USER are common to all architectures // PEEKUSR_AREA and POKEUSR_AREA are special, having a memory area // containing the real addr, data, and len field pointed to by ARG3 // instead of ARG4 PRE(sys_ptrace) { PRINT("sys_ptrace ( %ld, %ld, %#lx, %#lx )", ARG1,ARG2,ARG3,ARG4); PRE_REG_READ4(int, "ptrace", long, request, long, pid, long, addr, long, data); switch (ARG1) { case VKI_PTRACE_PEEKTEXT: case VKI_PTRACE_PEEKDATA: case VKI_PTRACE_PEEKUSR: PRE_MEM_WRITE( "ptrace(peek)", ARG4, sizeof (long)); break; case VKI_PTRACE_GETEVENTMSG: PRE_MEM_WRITE( "ptrace(geteventmsg)", ARG4, sizeof(unsigned long)); break; case VKI_PTRACE_GETSIGINFO: PRE_MEM_WRITE( "ptrace(getsiginfo)", ARG4, sizeof(vki_siginfo_t)); break; case VKI_PTRACE_SETSIGINFO: PRE_MEM_READ( "ptrace(setsiginfo)", ARG4, sizeof(vki_siginfo_t)); break; case VKI_PTRACE_PEEKUSR_AREA: { vki_ptrace_area *pa; /* Reads a part of the user area into memory at pa->process_addr */ pa = (vki_ptrace_area *) ARG3; PRE_MEM_READ("ptrace(peekusrarea ptrace_area->len)", (unsigned long) &pa->vki_len, sizeof(pa->vki_len)); PRE_MEM_READ("ptrace(peekusrarea ptrace_area->kernel_addr)", (unsigned long) &pa->vki_kernel_addr, sizeof(pa->vki_kernel_addr)); PRE_MEM_READ("ptrace(peekusrarea ptrace_area->process_addr)", (unsigned long) &pa->vki_process_addr, sizeof(pa->vki_process_addr)); PRE_MEM_WRITE("ptrace(peekusrarea *(ptrace_area->process_addr))", pa->vki_process_addr, pa->vki_len); break; } case VKI_PTRACE_POKEUSR_AREA: { vki_ptrace_area *pa; /* Updates a part of the user area from memory at pa->process_addr */ pa = (vki_ptrace_area *) ARG3; PRE_MEM_READ("ptrace(pokeusrarea ptrace_area->len)", (unsigned long) &pa->vki_len, sizeof(pa->vki_len)); PRE_MEM_READ("ptrace(pokeusrarea ptrace_area->kernel_addr)", (unsigned long) &pa->vki_kernel_addr, sizeof(pa->vki_kernel_addr)); PRE_MEM_READ("ptrace(pokeusrarea ptrace_area->process_addr)", (unsigned long) &pa->vki_process_addr, sizeof(pa->vki_process_addr)); PRE_MEM_READ("ptrace(pokeusrarea *(ptrace_area->process_addr))", pa->vki_process_addr, pa->vki_len); break; } default: break; } } POST(sys_ptrace) { switch (ARG1) { case VKI_PTRACE_PEEKTEXT: case VKI_PTRACE_PEEKDATA: case VKI_PTRACE_PEEKUSR: POST_MEM_WRITE( ARG4, sizeof (long)); break; case VKI_PTRACE_GETEVENTMSG: POST_MEM_WRITE( ARG4, sizeof(unsigned long)); break; case VKI_PTRACE_GETSIGINFO: /* XXX: This is a simplification. Different parts of the * siginfo_t are valid depending on the type of signal. */ POST_MEM_WRITE( ARG4, sizeof(vki_siginfo_t)); break; case VKI_PTRACE_PEEKUSR_AREA: { vki_ptrace_area *pa; pa = (vki_ptrace_area *) ARG3; POST_MEM_WRITE(pa->vki_process_addr, pa->vki_len); } default: break; } } PRE(sys_socketcall) { # define ARG2_0 (((UWord*)ARG2)[0]) # define ARG2_1 (((UWord*)ARG2)[1]) # define ARG2_2 (((UWord*)ARG2)[2]) # define ARG2_3 (((UWord*)ARG2)[3]) # define ARG2_4 (((UWord*)ARG2)[4]) # define ARG2_5 (((UWord*)ARG2)[5]) *flags |= SfMayBlock; PRINT("sys_socketcall ( %ld, %#lx )",ARG1,ARG2); PRE_REG_READ2(long, "socketcall", int, call, unsigned long *, args); switch (ARG1 /* request */) { case VKI_SYS_SOCKETPAIR: /* int socketpair(int d, int type, int protocol, int sv[2]); */ PRE_MEM_READ( "socketcall.socketpair(args)", ARG2, 4*sizeof(Addr) ); if (!ML_(valid_client_addr)(ARG2, 4*sizeof(Addr), tid, NULL)) { SET_STATUS_Failure( VKI_EFAULT ); break; } ML_(generic_PRE_sys_socketpair)( tid, ARG2_0, ARG2_1, ARG2_2, ARG2_3 ); break; case VKI_SYS_SOCKET: /* int socket(int domain, int type, int protocol); */ PRE_MEM_READ( "socketcall.socket(args)", ARG2, 3*sizeof(Addr) ); if (!ML_(valid_client_addr)(ARG2, 3*sizeof(Addr), tid, NULL)) { SET_STATUS_Failure( VKI_EFAULT ); break; } break; case VKI_SYS_BIND: /* int bind(int sockfd, struct sockaddr *my_addr, int addrlen); */ PRE_MEM_READ( "socketcall.bind(args)", ARG2, 3*sizeof(Addr) ); if (!ML_(valid_client_addr)(ARG2, 3*sizeof(Addr), tid, NULL)) { SET_STATUS_Failure( VKI_EFAULT ); break; } ML_(generic_PRE_sys_bind)( tid, ARG2_0, ARG2_1, ARG2_2 ); break; case VKI_SYS_LISTEN: /* int listen(int s, int backlog); */ PRE_MEM_READ( "socketcall.listen(args)", ARG2, 2*sizeof(Addr) ); if (!ML_(valid_client_addr)(ARG2, 2*sizeof(Addr), tid, NULL)) { SET_STATUS_Failure( VKI_EFAULT ); break; } break; case VKI_SYS_ACCEPT: { /* int accept(int s, struct sockaddr *addr, int *addrlen); */ PRE_MEM_READ( "socketcall.accept(args)", ARG2, 3*sizeof(Addr) ); if (!ML_(valid_client_addr)(ARG2, 3*sizeof(Addr), tid, NULL)) { SET_STATUS_Failure( VKI_EFAULT ); break; } ML_(generic_PRE_sys_accept)( tid, ARG2_0, ARG2_1, ARG2_2 ); break; } case VKI_SYS_SENDTO: /* int sendto(int s, const void *msg, int len, unsigned int flags, const struct sockaddr *to, int tolen); */ PRE_MEM_READ( "socketcall.sendto(args)", ARG2, 6*sizeof(Addr) ); if (!ML_(valid_client_addr)(ARG2, 6*sizeof(Addr), tid, NULL)) { SET_STATUS_Failure( VKI_EFAULT ); break; } ML_(generic_PRE_sys_sendto)( tid, ARG2_0, ARG2_1, ARG2_2, ARG2_3, ARG2_4, ARG2_5 ); break; case VKI_SYS_SEND: /* int send(int s, const void *msg, size_t len, int flags); */ PRE_MEM_READ( "socketcall.send(args)", ARG2, 4*sizeof(Addr) ); if (!ML_(valid_client_addr)(ARG2, 4*sizeof(Addr), tid, NULL)) { SET_STATUS_Failure( VKI_EFAULT ); break; } ML_(generic_PRE_sys_send)( tid, ARG2_0, ARG2_1, ARG2_2 ); break; case VKI_SYS_RECVFROM: /* int recvfrom(int s, void *buf, int len, unsigned int flags, struct sockaddr *from, int *fromlen); */ PRE_MEM_READ( "socketcall.recvfrom(args)", ARG2, 6*sizeof(Addr) ); if (!ML_(valid_client_addr)(ARG2, 6*sizeof(Addr), tid, NULL)) { SET_STATUS_Failure( VKI_EFAULT ); break; } ML_(generic_PRE_sys_recvfrom)( tid, ARG2_0, ARG2_1, ARG2_2, ARG2_3, ARG2_4, ARG2_5 ); break; case VKI_SYS_RECV: /* int recv(int s, void *buf, int len, unsigned int flags); */ /* man 2 recv says: The recv call is normally used only on a connected socket (see connect(2)) and is identical to recvfrom with a NULL from parameter. */ PRE_MEM_READ( "socketcall.recv(args)", ARG2, 4*sizeof(Addr) ); if (!ML_(valid_client_addr)(ARG2, 4*sizeof(Addr), tid, NULL)) { SET_STATUS_Failure( VKI_EFAULT ); break; } ML_(generic_PRE_sys_recv)( tid, ARG2_0, ARG2_1, ARG2_2 ); break; case VKI_SYS_CONNECT: /* int connect(int sockfd, struct sockaddr *serv_addr, int addrlen ); */ PRE_MEM_READ( "socketcall.connect(args)", ARG2, 3*sizeof(Addr) ); if (!ML_(valid_client_addr)(ARG2, 3*sizeof(Addr), tid, NULL)) { SET_STATUS_Failure( VKI_EFAULT ); break; } ML_(generic_PRE_sys_connect)( tid, ARG2_0, ARG2_1, ARG2_2 ); break; case VKI_SYS_SETSOCKOPT: /* int setsockopt(int s, int level, int optname, const void *optval, int optlen); */ PRE_MEM_READ( "socketcall.setsockopt(args)", ARG2, 5*sizeof(Addr) ); if (!ML_(valid_client_addr)(ARG2, 5*sizeof(Addr), tid, NULL)) { SET_STATUS_Failure( VKI_EFAULT ); break; } ML_(generic_PRE_sys_setsockopt)( tid, ARG2_0, ARG2_1, ARG2_2, ARG2_3, ARG2_4 ); break; case VKI_SYS_GETSOCKOPT: /* int getsockopt(int s, int level, int optname, void *optval, socklen_t *optlen); */ PRE_MEM_READ( "socketcall.getsockopt(args)", ARG2, 5*sizeof(Addr) ); if (!ML_(valid_client_addr)(ARG2, 5*sizeof(Addr), tid, NULL)) { SET_STATUS_Failure( VKI_EFAULT ); break; } ML_(linux_PRE_sys_getsockopt)( tid, ARG2_0, ARG2_1, ARG2_2, ARG2_3, ARG2_4 ); break; case VKI_SYS_GETSOCKNAME: /* int getsockname(int s, struct sockaddr* name, int* namelen) */ PRE_MEM_READ( "socketcall.getsockname(args)", ARG2, 3*sizeof(Addr) ); if (!ML_(valid_client_addr)(ARG2, 3*sizeof(Addr), tid, NULL)) { SET_STATUS_Failure( VKI_EFAULT ); break; } ML_(generic_PRE_sys_getsockname)( tid, ARG2_0, ARG2_1, ARG2_2 ); break; case VKI_SYS_GETPEERNAME: /* int getpeername(int s, struct sockaddr* name, int* namelen) */ PRE_MEM_READ( "socketcall.getpeername(args)", ARG2, 3*sizeof(Addr) ); if (!ML_(valid_client_addr)(ARG2, 3*sizeof(Addr), tid, NULL)) { SET_STATUS_Failure( VKI_EFAULT ); break; } ML_(generic_PRE_sys_getpeername)( tid, ARG2_0, ARG2_1, ARG2_2 ); break; case VKI_SYS_SHUTDOWN: /* int shutdown(int s, int how); */ PRE_MEM_READ( "socketcall.shutdown(args)", ARG2, 2*sizeof(Addr) ); if (!ML_(valid_client_addr)(ARG2, 2*sizeof(Addr), tid, NULL)) { SET_STATUS_Failure( VKI_EFAULT ); break; } break; case VKI_SYS_SENDMSG: { /* int sendmsg(int s, const struct msghdr *msg, int flags); */ PRE_MEM_READ( "socketcall.sendmsg(args)", ARG2, 3*sizeof(Addr) ); if (!ML_(valid_client_addr)(ARG2, 3*sizeof(Addr), tid, NULL)) { SET_STATUS_Failure( VKI_EFAULT ); break; } ML_(generic_PRE_sys_sendmsg)( tid, "msg", (struct vki_msghdr *)ARG2_1 ); break; } case VKI_SYS_RECVMSG: { /* int recvmsg(int s, struct msghdr *msg, int flags); */ PRE_MEM_READ("socketcall.recvmsg(args)", ARG2, 3*sizeof(Addr) ); if (!ML_(valid_client_addr)(ARG2, 3*sizeof(Addr), tid, NULL)) { SET_STATUS_Failure( VKI_EFAULT ); break; } ML_(generic_PRE_sys_recvmsg)( tid, "msg2", (struct vki_msghdr *)ARG2_1 ); break; } default: VG_(message)(Vg_DebugMsg,"Warning: unhandled socketcall 0x%lx\n",ARG1); SET_STATUS_Failure( VKI_EINVAL ); break; } # undef ARG2_0 # undef ARG2_1 # undef ARG2_2 # undef ARG2_3 # undef ARG2_4 # undef ARG2_5 } POST(sys_socketcall) { # define ARG2_0 (((UWord*)ARG2)[0]) # define ARG2_1 (((UWord*)ARG2)[1]) # define ARG2_2 (((UWord*)ARG2)[2]) # define ARG2_3 (((UWord*)ARG2)[3]) # define ARG2_4 (((UWord*)ARG2)[4]) # define ARG2_5 (((UWord*)ARG2)[5]) SysRes r; vg_assert(SUCCESS); switch (ARG1 /* request */) { case VKI_SYS_SOCKETPAIR: r = ML_(generic_POST_sys_socketpair)( tid, VG_(mk_SysRes_Success)(RES), ARG2_0, ARG2_1, ARG2_2, ARG2_3 ); SET_STATUS_from_SysRes(r); break; case VKI_SYS_SOCKET: r = ML_(generic_POST_sys_socket)( tid, VG_(mk_SysRes_Success)(RES) ); SET_STATUS_from_SysRes(r); break; case VKI_SYS_BIND: /* int bind(int sockfd, struct sockaddr *my_addr, int addrlen); */ break; case VKI_SYS_LISTEN: /* int listen(int s, int backlog); */ break; case VKI_SYS_ACCEPT: /* int accept(int s, struct sockaddr *addr, int *addrlen); */ r = ML_(generic_POST_sys_accept)( tid, VG_(mk_SysRes_Success)(RES), ARG2_0, ARG2_1, ARG2_2 ); SET_STATUS_from_SysRes(r); break; case VKI_SYS_SENDTO: break; case VKI_SYS_SEND: break; case VKI_SYS_RECVFROM: ML_(generic_POST_sys_recvfrom)( tid, VG_(mk_SysRes_Success)(RES), ARG2_0, ARG2_1, ARG2_2, ARG2_3, ARG2_4, ARG2_5 ); break; case VKI_SYS_RECV: ML_(generic_POST_sys_recv)( tid, RES, ARG2_0, ARG2_1, ARG2_2 ); break; case VKI_SYS_CONNECT: break; case VKI_SYS_SETSOCKOPT: break; case VKI_SYS_GETSOCKOPT: ML_(linux_POST_sys_getsockopt)( tid, VG_(mk_SysRes_Success)(RES), ARG2_0, ARG2_1, ARG2_2, ARG2_3, ARG2_4 ); break; case VKI_SYS_GETSOCKNAME: ML_(generic_POST_sys_getsockname)( tid, VG_(mk_SysRes_Success)(RES), ARG2_0, ARG2_1, ARG2_2 ); break; case VKI_SYS_GETPEERNAME: ML_(generic_POST_sys_getpeername)( tid, VG_(mk_SysRes_Success)(RES), ARG2_0, ARG2_1, ARG2_2 ); break; case VKI_SYS_SHUTDOWN: break; case VKI_SYS_SENDMSG: break; case VKI_SYS_RECVMSG: ML_(generic_POST_sys_recvmsg)( tid, "msg", (struct vki_msghdr *)ARG2_1, RES ); break; default: VG_(message)(Vg_DebugMsg,"FATAL: unhandled socketcall 0x%lx\n",ARG1); VG_(core_panic)("... bye!\n"); break; /*NOTREACHED*/ } # undef ARG2_0 # undef ARG2_1 # undef ARG2_2 # undef ARG2_3 # undef ARG2_4 # undef ARG2_5 } PRE(sys_mmap) { UWord a0, a1, a2, a3, a4, a5; SysRes r; UWord* args = (UWord*)ARG1; PRE_REG_READ1(long, "sys_mmap", struct mmap_arg_struct *, args); PRE_MEM_READ( "sys_mmap(args)", (Addr) args, 6*sizeof(UWord) ); a0 = args[0]; a1 = args[1]; a2 = args[2]; a3 = args[3]; a4 = args[4]; a5 = args[5]; PRINT("sys_mmap ( %#lx, %llu, %ld, %ld, %ld, %ld )", a0, (ULong)a1, a2, a3, a4, a5 ); r = ML_(generic_PRE_sys_mmap)( tid, a0, a1, a2, a3, a4, (Off64T)a5 ); SET_STATUS_from_SysRes(r); } static Addr deref_Addr ( ThreadId tid, Addr a, Char* s ) { Addr* a_p = (Addr*)a; PRE_MEM_READ( s, (Addr)a_p, sizeof(Addr) ); return *a_p; } PRE(sys_ipc) { PRINT("sys_ipc ( %ld, %ld, %ld, %ld, %#lx, %ld )", ARG1,ARG2,ARG3,ARG4,ARG5,ARG6); // XXX: this is simplistic -- some args are not used in all circumstances. PRE_REG_READ6(int, "ipc", vki_uint, call, int, first, int, second, int, third, void *, ptr, long, fifth) switch (ARG1 /* call */) { case VKI_SEMOP: ML_(generic_PRE_sys_semop)( tid, ARG2, ARG5, ARG3 ); *flags |= SfMayBlock; break; case VKI_SEMGET: break; case VKI_SEMCTL: { UWord arg = deref_Addr( tid, ARG5, "semctl(arg)" ); ML_(generic_PRE_sys_semctl)( tid, ARG2, ARG3, ARG4, arg ); break; } case VKI_SEMTIMEDOP: ML_(generic_PRE_sys_semtimedop)( tid, ARG2, ARG5, ARG3, ARG6 ); *flags |= SfMayBlock; break; case VKI_MSGSND: ML_(linux_PRE_sys_msgsnd)( tid, ARG2, ARG5, ARG3, ARG4 ); if ((ARG4 & VKI_IPC_NOWAIT) == 0) *flags |= SfMayBlock; break; case VKI_MSGRCV: { Addr msgp; Word msgtyp; msgp = deref_Addr( tid, (Addr) (&((struct vki_ipc_kludge *)ARG5)->msgp), "msgrcv(msgp)" ); msgtyp = deref_Addr( tid, (Addr) (&((struct vki_ipc_kludge *)ARG5)->msgtyp), "msgrcv(msgp)" ); ML_(linux_PRE_sys_msgrcv)( tid, ARG2, msgp, ARG3, msgtyp, ARG4 ); if ((ARG4 & VKI_IPC_NOWAIT) == 0) *flags |= SfMayBlock; break; } case VKI_MSGGET: break; case VKI_MSGCTL: ML_(linux_PRE_sys_msgctl)( tid, ARG2, ARG3, ARG5 ); break; case VKI_SHMAT: { UWord w; PRE_MEM_WRITE( "shmat(raddr)", ARG4, sizeof(Addr) ); w = ML_(generic_PRE_sys_shmat)( tid, ARG2, ARG5, ARG3 ); if (w == 0) SET_STATUS_Failure( VKI_EINVAL ); else ARG5 = w; break; } case VKI_SHMDT: if (!ML_(generic_PRE_sys_shmdt)(tid, ARG5)) SET_STATUS_Failure( VKI_EINVAL ); break; case VKI_SHMGET: break; case VKI_SHMCTL: /* IPCOP_shmctl */ ML_(generic_PRE_sys_shmctl)( tid, ARG2, ARG3, ARG5 ); break; default: VG_(message)(Vg_DebugMsg, "FATAL: unhandled syscall(ipc) %ld", ARG1 ); VG_(core_panic)("... bye!\n"); break; /*NOTREACHED*/ } } POST(sys_ipc) { vg_assert(SUCCESS); switch (ARG1 /* call */) { case VKI_SEMOP: case VKI_SEMGET: break; case VKI_SEMCTL: { UWord arg = deref_Addr( tid, ARG5, "semctl(arg)" ); ML_(generic_PRE_sys_semctl)( tid, ARG2, ARG3, ARG4, arg ); break; } case VKI_SEMTIMEDOP: case VKI_MSGSND: break; case VKI_MSGRCV: { Addr msgp; Word msgtyp; msgp = deref_Addr( tid, (Addr) (&((struct vki_ipc_kludge *)ARG5)->msgp), "msgrcv(msgp)" ); msgtyp = deref_Addr( tid, (Addr) (&((struct vki_ipc_kludge *)ARG5)->msgtyp), "msgrcv(msgp)" ); ML_(linux_POST_sys_msgrcv)( tid, RES, ARG2, msgp, ARG3, msgtyp, ARG4 ); break; } case VKI_MSGGET: break; case VKI_MSGCTL: ML_(linux_POST_sys_msgctl)( tid, RES, ARG2, ARG3, ARG5 ); break; case VKI_SHMAT: { Addr addr; /* force readability. before the syscall it is * indeed uninitialized, as can be seen in * glibc/sysdeps/unix/sysv/linux/shmat.c */ POST_MEM_WRITE( ARG4, sizeof( Addr ) ); addr = deref_Addr ( tid, ARG4, "shmat(addr)" ); ML_(generic_POST_sys_shmat)( tid, addr, ARG2, ARG5, ARG3 ); break; } case VKI_SHMDT: ML_(generic_POST_sys_shmdt)( tid, RES, ARG5 ); break; case VKI_SHMGET: break; case VKI_SHMCTL: ML_(generic_POST_sys_shmctl)( tid, RES, ARG2, ARG3, ARG5 ); break; default: VG_(message)(Vg_DebugMsg, "FATAL: unhandled syscall(ipc) %ld", ARG1 ); VG_(core_panic)("... bye!\n"); break; /*NOTREACHED*/ } } PRE(sys_clone) { UInt cloneflags; PRINT("sys_clone ( %lx, %#lx, %#lx, %#lx, %#lx )",ARG1,ARG2,ARG3,ARG4, ARG5); PRE_REG_READ2(int, "clone", void *, child_stack, unsigned long, flags); if (ARG2 & VKI_CLONE_PARENT_SETTID) { if (VG_(tdict).track_pre_reg_read) PRA3("clone(parent_tidptr)", int *, parent_tidptr); PRE_MEM_WRITE("clone(parent_tidptr)", ARG3, sizeof(Int)); if (!VG_(am_is_valid_for_client)(ARG3, sizeof(Int), VKI_PROT_WRITE)) { SET_STATUS_Failure( VKI_EFAULT ); return; } } if (ARG2 & (VKI_CLONE_CHILD_SETTID | VKI_CLONE_CHILD_CLEARTID)) { if (VG_(tdict).track_pre_reg_read) PRA4("clone(child_tidptr)", int *, child_tidptr); PRE_MEM_WRITE("clone(child_tidptr)", ARG4, sizeof(Int)); if (!VG_(am_is_valid_for_client)(ARG4, sizeof(Int), VKI_PROT_WRITE)) { SET_STATUS_Failure( VKI_EFAULT ); return; } } /* The kernel simply copies reg6 (ARG5) into AR0 and AR1, no checks */ if (ARG2 & VKI_CLONE_SETTLS) { if (VG_(tdict).track_pre_reg_read) { PRA5("clone", Addr, tlsinfo); } } cloneflags = ARG2; if (!ML_(client_signal_OK)(ARG2 & VKI_CSIGNAL)) { SET_STATUS_Failure( VKI_EINVAL ); return; } /* Only look at the flags we really care about */ switch (cloneflags & (VKI_CLONE_VM | VKI_CLONE_FS | VKI_CLONE_FILES | VKI_CLONE_VFORK)) { case VKI_CLONE_VM | VKI_CLONE_FS | VKI_CLONE_FILES: /* thread creation */ SET_STATUS_from_SysRes( do_clone(tid, (Addr)ARG1, /* child SP */ ARG2, /* flags */ (Int *)ARG3, /* parent_tidptr */ (Int *)ARG4, /* child_tidptr */ (Addr)ARG5)); /* tlsaddr */ break; case VKI_CLONE_VFORK | VKI_CLONE_VM: /* vfork */ /* FALLTHROUGH - assume vfork == fork */ cloneflags &= ~(VKI_CLONE_VFORK | VKI_CLONE_VM); case 0: /* plain fork */ SET_STATUS_from_SysRes( ML_(do_fork_clone)(tid, cloneflags, /* flags */ (Int *)ARG3, /* parent_tidptr */ (Int *)ARG4)); /* child_tidptr */ break; default: /* should we just ENOSYS? */ VG_(message)(Vg_UserMsg, "Unsupported clone() flags: 0x%lx", ARG2); VG_(message)(Vg_UserMsg, ""); VG_(message)(Vg_UserMsg, "The only supported clone() uses are:"); VG_(message)(Vg_UserMsg, " - via a threads library (NPTL)"); VG_(message)(Vg_UserMsg, " - via the implementation of fork or vfork"); VG_(unimplemented) ("Valgrind does not support general clone()."); } if (SUCCESS) { if (ARG2 & VKI_CLONE_PARENT_SETTID) POST_MEM_WRITE(ARG3, sizeof(Int)); if (ARG2 & (VKI_CLONE_CHILD_SETTID | VKI_CLONE_CHILD_CLEARTID)) POST_MEM_WRITE(ARG4, sizeof(Int)); /* Thread creation was successful; let the child have the chance to run */ *flags |= SfYieldAfter; } } PRE(sys_sigreturn) { ThreadState* tst; PRINT("sys_sigreturn ( )"); vg_assert(VG_(is_valid_tid)(tid)); vg_assert(tid >= 1 && tid < VG_N_THREADS); vg_assert(VG_(is_running_thread)(tid)); tst = VG_(get_ThreadState)(tid); /* This is only so that the IA is (might be) useful to report if something goes wrong in the sigreturn */ ML_(fixup_guest_state_to_restart_syscall)(&tst->arch); /* Restore register state from frame and remove it */ VG_(sigframe_destroy)(tid, False); /* Tell the driver not to update the guest state with the "result", and set a bogus result to keep it happy. */ *flags |= SfNoWriteResult; SET_STATUS_Success(0); /* Check to see if any signals arose as a result of this. */ *flags |= SfPollAfter; } PRE(sys_rt_sigreturn) { /* See comments on PRE(sys_rt_sigreturn) in syswrap-amd64-linux.c for an explanation of what follows. */ ThreadState* tst; PRINT("sys_rt_sigreturn ( )"); vg_assert(VG_(is_valid_tid)(tid)); vg_assert(tid >= 1 && tid < VG_N_THREADS); vg_assert(VG_(is_running_thread)(tid)); tst = VG_(get_ThreadState)(tid); /* This is only so that the IA is (might be) useful to report if something goes wrong in the sigreturn */ ML_(fixup_guest_state_to_restart_syscall)(&tst->arch); /* Restore register state from frame and remove it */ VG_(sigframe_destroy)(tid, True); /* Tell the driver not to update the guest state with the "result", and set a bogus result to keep it happy. */ *flags |= SfNoWriteResult; SET_STATUS_Success(0); /* Check to see if any signals arose as a result of this. */ *flags |= SfPollAfter; } /* we cant use the LINX_ version for 64 bit */ PRE(sys_fadvise64) { PRINT("sys_fadvise64 ( %ld, %ld, %ld, %ld )", ARG1,ARG2,ARG3,ARG4); PRE_REG_READ4(long, "fadvise64", int, fd, vki_loff_t, offset, vki_loff_t, len, int, advice); } #undef PRE #undef POST /* --------------------------------------------------------------------- The s390x/Linux syscall table ------------------------------------------------------------------ */ /* Add an s390x-linux specific wrapper to a syscall table. */ #define PLAX_(sysno, name) WRAPPER_ENTRY_X_(s390x_linux, sysno, name) #define PLAXY(sysno, name) WRAPPER_ENTRY_XY(s390x_linux, sysno, name) // This table maps from __NR_xxx syscall numbers from // linux/arch/s390/kernel/syscalls.S to the appropriate PRE/POST sys_foo() // wrappers on s390x. There are several unused numbers, which are only // defined on s390 (31bit mode) but no longer available on s390x (64 bit). // For those syscalls not handled by Valgrind, the annotation indicate its // arch/OS combination, eg. */* (generic), */Linux (Linux only), ?/? // (unknown). static SyscallTableEntry syscall_table[] = { GENX_(0, sys_ni_syscall), /* unimplemented (by the kernel) */ // 0 GENX_(__NR_exit, sys_exit), // 1 GENX_(__NR_fork, sys_fork), // 2 GENXY(__NR_read, sys_read), // 3 GENX_(__NR_write, sys_write), // 4 GENXY(__NR_open, sys_open), // 5 GENXY(__NR_close, sys_close), // 6 // ?????(__NR_restart_syscall, ), // 7 GENXY(__NR_creat, sys_creat), // 8 GENX_(__NR_link, sys_link), // 9 GENX_(__NR_unlink, sys_unlink), // 10 GENX_(__NR_execve, sys_execve), // 11 GENX_(__NR_chdir, sys_chdir), // 12 GENX_(13, sys_ni_syscall), /* unimplemented (by the kernel) */ // 13 GENX_(__NR_mknod, sys_mknod), // 14 GENX_(__NR_chmod, sys_chmod), // 15 GENX_(16, sys_ni_syscall), /* unimplemented (by the kernel) */ // 16 GENX_(17, sys_ni_syscall), /* unimplemented (by the kernel) */ // 17 GENX_(18, sys_ni_syscall), /* unimplemented (by the kernel) */ // 18 LINX_(__NR_lseek, sys_lseek), // 19 GENX_(__NR_getpid, sys_getpid), // 20 LINX_(__NR_mount, sys_mount), // 21 LINX_(__NR_umount, sys_oldumount), // 22 GENX_(23, sys_ni_syscall), /* unimplemented (by the kernel) */ // 23 GENX_(24, sys_ni_syscall), /* unimplemented (by the kernel) */ // 24 GENX_(25, sys_ni_syscall), /* unimplemented (by the kernel) */ // 25 PLAXY(__NR_ptrace, sys_ptrace), // 26 GENX_(__NR_alarm, sys_alarm), // 27 GENX_(28, sys_ni_syscall), /* unimplemented (by the kernel) */ // 28 GENX_(__NR_pause, sys_pause), // 29 LINX_(__NR_utime, sys_utime), // 30 GENX_(31, sys_ni_syscall), /* unimplemented (by the kernel) */ // 31 GENX_(32, sys_ni_syscall), /* unimplemented (by the kernel) */ // 32 GENX_(__NR_access, sys_access), // 33 GENX_(__NR_nice, sys_nice), // 34 GENX_(35, sys_ni_syscall), /* unimplemented (by the kernel) */ // 35 GENX_(__NR_sync, sys_sync), // 36 GENX_(__NR_kill, sys_kill), // 37 GENX_(__NR_rename, sys_rename), // 38 GENX_(__NR_mkdir, sys_mkdir), // 39 GENX_(__NR_rmdir, sys_rmdir), // 40 GENXY(__NR_dup, sys_dup), // 41 LINXY(__NR_pipe, sys_pipe), // 42 GENXY(__NR_times, sys_times), // 43 GENX_(44, sys_ni_syscall), /* unimplemented (by the kernel) */ // 44 GENX_(__NR_brk, sys_brk), // 45 GENX_(46, sys_ni_syscall), /* unimplemented (by the kernel) */ // 46 GENX_(47, sys_ni_syscall), /* unimplemented (by the kernel) */ // 47 // ?????(__NR_signal, ), // 48 GENX_(49, sys_ni_syscall), /* unimplemented (by the kernel) */ // 49 GENX_(50, sys_ni_syscall), /* unimplemented (by the kernel) */ // 50 GENX_(__NR_acct, sys_acct), // 51 LINX_(__NR_umount2, sys_umount), // 52 GENX_(53, sys_ni_syscall), /* unimplemented (by the kernel) */ // 53 LINXY(__NR_ioctl, sys_ioctl), // 54 LINXY(__NR_fcntl, sys_fcntl), // 55 GENX_(56, sys_ni_syscall), /* unimplemented (by the kernel) */ // 56 GENX_(__NR_setpgid, sys_setpgid), // 57 GENX_(58, sys_ni_syscall), /* unimplemented (by the kernel) */ // 58 GENX_(59, sys_ni_syscall), /* unimplemented (by the kernel) */ // 59 GENX_(__NR_umask, sys_umask), // 60 GENX_(__NR_chroot, sys_chroot), // 61 // ?????(__NR_ustat, sys_ustat), /* deprecated in favor of statfs */ // 62 GENXY(__NR_dup2, sys_dup2), // 63 GENX_(__NR_getppid, sys_getppid), // 64 GENX_(__NR_getpgrp, sys_getpgrp), // 65 GENX_(__NR_setsid, sys_setsid), // 66 // ?????(__NR_sigaction, ), /* userspace uses rt_sigaction */ // 67 GENX_(68, sys_ni_syscall), /* unimplemented (by the kernel) */ // 68 GENX_(69, sys_ni_syscall), /* unimplemented (by the kernel) */ // 69 GENX_(70, sys_ni_syscall), /* unimplemented (by the kernel) */ // 70 GENX_(71, sys_ni_syscall), /* unimplemented (by the kernel) */ // 71 // ?????(__NR_sigsuspend, ), // 72 // ?????(__NR_sigpending, ), // 73 // ?????(__NR_sethostname, ), // 74 GENX_(__NR_setrlimit, sys_setrlimit), // 75 GENXY(76, sys_getrlimit), /* see also 191 */ // 76 GENXY(__NR_getrusage, sys_getrusage), // 77 GENXY(__NR_gettimeofday, sys_gettimeofday), // 78 GENX_(__NR_settimeofday, sys_settimeofday), // 79 GENX_(80, sys_ni_syscall), /* unimplemented (by the kernel) */ // 80 GENX_(81, sys_ni_syscall), /* unimplemented (by the kernel) */ // 81 GENX_(82, sys_ni_syscall), /* unimplemented (by the kernel) */ // 82 GENX_(__NR_symlink, sys_symlink), // 83 GENX_(84, sys_ni_syscall), /* unimplemented (by the kernel) */ // 84 GENX_(__NR_readlink, sys_readlink), // 85 // ?????(__NR_uselib, ), // 86 // ?????(__NR_swapon, ), // 87 // ?????(__NR_reboot, ), // 88 GENX_(89, sys_ni_syscall), /* unimplemented (by the kernel) */ // 89 PLAX_(__NR_mmap, sys_mmap ), // 90 GENXY(__NR_munmap, sys_munmap), // 91 GENX_(__NR_truncate, sys_truncate), // 92 GENX_(__NR_ftruncate, sys_ftruncate), // 93 GENX_(__NR_fchmod, sys_fchmod), // 94 GENX_(95, sys_ni_syscall), /* unimplemented (by the kernel) */ // 95 GENX_(__NR_getpriority, sys_getpriority), // 96 GENX_(__NR_setpriority, sys_setpriority), // 97 GENX_(98, sys_ni_syscall), /* unimplemented (by the kernel) */ // 98 GENXY(__NR_statfs, sys_statfs), // 99 GENXY(__NR_fstatfs, sys_fstatfs), // 100 GENX_(101, sys_ni_syscall), /* unimplemented (by the kernel) */ // 101 PLAXY(__NR_socketcall, sys_socketcall), // 102 LINXY(__NR_syslog, sys_syslog), // 103 GENXY(__NR_setitimer, sys_setitimer), // 104 GENXY(__NR_getitimer, sys_getitimer), // 105 GENXY(__NR_stat, sys_newstat), // 106 GENXY(__NR_lstat, sys_newlstat), // 107 GENXY(__NR_fstat, sys_newfstat), // 108 GENX_(109, sys_ni_syscall), /* unimplemented (by the kernel) */ // 109 LINXY(__NR_lookup_dcookie, sys_lookup_dcookie), // 110 LINX_(__NR_vhangup, sys_vhangup), // 111 GENX_(112, sys_ni_syscall), /* unimplemented (by the kernel) */ // 112 GENX_(113, sys_ni_syscall), /* unimplemented (by the kernel) */ // 113 GENXY(__NR_wait4, sys_wait4), // 114 // ?????(__NR_swapoff, ), // 115 LINXY(__NR_sysinfo, sys_sysinfo), // 116 PLAXY(__NR_ipc, sys_ipc), // 117 GENX_(__NR_fsync, sys_fsync), // 118 PLAX_(__NR_sigreturn, sys_sigreturn), // 119 PLAX_(__NR_clone, sys_clone), // 120 // ?????(__NR_setdomainname, ), // 121 GENXY(__NR_uname, sys_newuname), // 122 GENX_(123, sys_ni_syscall), /* unimplemented (by the kernel) */ // 123 // ?????(__NR_adjtimex, ), // 124 GENXY(__NR_mprotect, sys_mprotect), // 125 // LINXY(__NR_sigprocmask, sys_sigprocmask), // 126 GENX_(127, sys_ni_syscall), /* unimplemented (by the kernel) */ // 127 LINX_(__NR_init_module, sys_init_module), // 128 LINX_(__NR_delete_module, sys_delete_module), // 129 GENX_(130, sys_ni_syscall), /* unimplemented (by the kernel) */ // 130 LINX_(__NR_quotactl, sys_quotactl), // 131 GENX_(__NR_getpgid, sys_getpgid), // 132 GENX_(__NR_fchdir, sys_fchdir), // 133 // ?????(__NR_bdflush, ), // 134 // ?????(__NR_sysfs, ), // 135 LINX_(__NR_personality, sys_personality), // 136 GENX_(137, sys_ni_syscall), /* unimplemented (by the kernel) */ // 137 GENX_(138, sys_ni_syscall), /* unimplemented (by the kernel) */ // 138 GENX_(139, sys_ni_syscall), /* unimplemented (by the kernel) */ // 139 // LINXY(__NR__llseek, sys_llseek), /* 64 bit --> lseek */ // 140 GENXY(__NR_getdents, sys_getdents), // 141 GENX_(__NR_select, sys_select), // 142 GENX_(__NR_flock, sys_flock), // 143 GENX_(__NR_msync, sys_msync), // 144 GENXY(__NR_readv, sys_readv), // 145 GENX_(__NR_writev, sys_writev), // 146 GENX_(__NR_getsid, sys_getsid), // 147 GENX_(__NR_fdatasync, sys_fdatasync), // 148 LINXY(__NR__sysctl, sys_sysctl), // 149 GENX_(__NR_mlock, sys_mlock), // 150 GENX_(__NR_munlock, sys_munlock), // 151 GENX_(__NR_mlockall, sys_mlockall), // 152 LINX_(__NR_munlockall, sys_munlockall), // 153 LINXY(__NR_sched_setparam, sys_sched_setparam), // 154 LINXY(__NR_sched_getparam, sys_sched_getparam), // 155 LINX_(__NR_sched_setscheduler, sys_sched_setscheduler), // 156 LINX_(__NR_sched_getscheduler, sys_sched_getscheduler), // 157 LINX_(__NR_sched_yield, sys_sched_yield), // 158 LINX_(__NR_sched_get_priority_max, sys_sched_get_priority_max), // 159 LINX_(__NR_sched_get_priority_min, sys_sched_get_priority_min), // 160 // ?????(__NR_sched_rr_get_interval, ), // 161 GENXY(__NR_nanosleep, sys_nanosleep), // 162 GENX_(__NR_mremap, sys_mremap), // 163 GENX_(164, sys_ni_syscall), /* unimplemented (by the kernel) */ // 164 GENX_(165, sys_ni_syscall), /* unimplemented (by the kernel) */ // 165 GENX_(166, sys_ni_syscall), /* unimplemented (by the kernel) */ // 166 GENX_(167, sys_ni_syscall), /* unimplemented (by the kernel) */ // 167 GENXY(__NR_poll, sys_poll), // 168 // ?????(__NR_nfsservctl, ), // 169 GENX_(170, sys_ni_syscall), /* unimplemented (by the kernel) */ // 170 GENX_(171, sys_ni_syscall), /* unimplemented (by the kernel) */ // 171 LINXY(__NR_prctl, sys_prctl), // 172 PLAX_(__NR_rt_sigreturn, sys_rt_sigreturn), // 173 LINXY(__NR_rt_sigaction, sys_rt_sigaction), // 174 LINXY(__NR_rt_sigprocmask, sys_rt_sigprocmask), // 175 LINXY(__NR_rt_sigpending, sys_rt_sigpending), // 176 LINXY(__NR_rt_sigtimedwait, sys_rt_sigtimedwait), // 177 LINXY(__NR_rt_sigqueueinfo, sys_rt_sigqueueinfo), // 178 LINX_(__NR_rt_sigsuspend, sys_rt_sigsuspend), // 179 GENXY(__NR_pread64, sys_pread64), // 180 GENX_(__NR_pwrite64, sys_pwrite64), // 181 GENX_(182, sys_ni_syscall), /* unimplemented (by the kernel) */ // 182 GENXY(__NR_getcwd, sys_getcwd), // 183 LINXY(__NR_capget, sys_capget), // 184 LINX_(__NR_capset, sys_capset), // 185 GENXY(__NR_sigaltstack, sys_sigaltstack), // 186 LINXY(__NR_sendfile, sys_sendfile), // 187 GENX_(188, sys_ni_syscall), /* unimplemented (by the kernel) */ // 188 GENX_(189, sys_ni_syscall), /* unimplemented (by the kernel) */ // 189 GENX_(__NR_vfork, sys_fork), // 190 GENXY(__NR_getrlimit, sys_getrlimit), // 191 GENX_(192, sys_ni_syscall), /* not exported on 64bit*/ // 192 GENX_(193, sys_ni_syscall), /* unimplemented (by the kernel) */ // 193 GENX_(194, sys_ni_syscall), /* unimplemented (by the kernel) */ // 194 GENX_(195, sys_ni_syscall), /* unimplemented (by the kernel) */ // 195 GENX_(196, sys_ni_syscall), /* unimplemented (by the kernel) */ // 196 GENX_(197, sys_ni_syscall), /* unimplemented (by the kernel) */ // 197 GENX_(__NR_lchown, sys_lchown), // 198 GENX_(__NR_getuid, sys_getuid), // 199 GENX_(__NR_getgid, sys_getgid), // 200 GENX_(__NR_geteuid, sys_geteuid), // 201 GENX_(__NR_getegid, sys_getegid), // 202 GENX_(__NR_setreuid, sys_setreuid), // 203 GENX_(__NR_setregid, sys_setregid), // 204 GENXY(__NR_getgroups, sys_getgroups), // 205 GENX_(__NR_setgroups, sys_setgroups), // 206 GENX_(__NR_fchown, sys_fchown), // 207 LINX_(__NR_setresuid, sys_setresuid), // 208 LINXY(__NR_getresuid, sys_getresuid), // 209 LINX_(__NR_setresgid, sys_setresgid), // 210 LINXY(__NR_getresgid, sys_getresgid), // 211 GENX_(__NR_chown, sys_chown), // 212 GENX_(__NR_setuid, sys_setuid), // 213 GENX_(__NR_setgid, sys_setgid), // 214 LINX_(__NR_setfsuid, sys_setfsuid), // 215 LINX_(__NR_setfsgid, sys_setfsgid), // 216 // ?????(__NR_pivot_root, ), GENXY(__NR_mincore, sys_mincore), // 218 GENX_(__NR_madvise, sys_madvise), // 219 GENXY(__NR_getdents64, sys_getdents64), // 220 GENX_(221, sys_ni_syscall), /* unimplemented (by the kernel) */ // 221 LINX_(__NR_readahead, sys_readahead), // 222 GENX_(223, sys_ni_syscall), /* unimplemented (by the kernel) */ // 223 LINX_(__NR_setxattr, sys_setxattr), // 224 LINX_(__NR_lsetxattr, sys_lsetxattr), // 225 LINX_(__NR_fsetxattr, sys_fsetxattr), // 226 LINXY(__NR_getxattr, sys_getxattr), // 227 LINXY(__NR_lgetxattr, sys_lgetxattr), // 228 LINXY(__NR_fgetxattr, sys_fgetxattr), // 229 LINXY(__NR_listxattr, sys_listxattr), // 230 LINXY(__NR_llistxattr, sys_llistxattr), // 231 LINXY(__NR_flistxattr, sys_flistxattr), // 232 LINX_(__NR_removexattr, sys_removexattr), // 233 LINX_(__NR_lremovexattr, sys_lremovexattr), // 234 LINX_(__NR_fremovexattr, sys_fremovexattr), // 235 LINX_(__NR_gettid, sys_gettid), // 236 LINXY(__NR_tkill, sys_tkill), // 237 LINXY(__NR_futex, sys_futex), // 238 LINX_(__NR_sched_setaffinity, sys_sched_setaffinity), // 239 LINXY(__NR_sched_getaffinity, sys_sched_getaffinity), // 240 LINXY(__NR_tgkill, sys_tgkill), // 241 GENX_(242, sys_ni_syscall), /* unimplemented (by the kernel) */ // 242 LINXY(__NR_io_setup, sys_io_setup), // 243 LINX_(__NR_io_destroy, sys_io_destroy), // 244 LINXY(__NR_io_getevents, sys_io_getevents), // 245 LINX_(__NR_io_submit, sys_io_submit), // 246 LINXY(__NR_io_cancel, sys_io_cancel), // 247 LINX_(__NR_exit_group, sys_exit_group), // 248 LINXY(__NR_epoll_create, sys_epoll_create), // 249 LINX_(__NR_epoll_ctl, sys_epoll_ctl), // 250 LINXY(__NR_epoll_wait, sys_epoll_wait), // 251 LINX_(__NR_set_tid_address, sys_set_tid_address), // 252 PLAX_(__NR_fadvise64, sys_fadvise64), // 253 LINXY(__NR_timer_create, sys_timer_create), // 254 LINXY(__NR_timer_settime, sys_timer_settime), // 255 LINXY(__NR_timer_gettime, sys_timer_gettime), // 256 LINX_(__NR_timer_getoverrun, sys_timer_getoverrun), // 257 LINX_(__NR_timer_delete, sys_timer_delete), // 258 LINX_(__NR_clock_settime, sys_clock_settime), // 259 LINXY(__NR_clock_gettime, sys_clock_gettime), // 260 LINXY(__NR_clock_getres, sys_clock_getres), // 261 LINXY(__NR_clock_nanosleep, sys_clock_nanosleep), // 262 GENX_(263, sys_ni_syscall), /* unimplemented (by the kernel) */ // 263 GENX_(264, sys_ni_syscall), /* unimplemented (by the kernel) */ // 264 GENXY(__NR_statfs64, sys_statfs64), // 265 GENXY(__NR_fstatfs64, sys_fstatfs64), // 266 // ?????(__NR_remap_file_pages, ), GENX_(268, sys_ni_syscall), /* unimplemented (by the kernel) */ // 268 GENX_(269, sys_ni_syscall), /* unimplemented (by the kernel) */ // 269 GENX_(270, sys_ni_syscall), /* unimplemented (by the kernel) */ // 270 LINXY(__NR_mq_open, sys_mq_open), // 271 LINX_(__NR_mq_unlink, sys_mq_unlink), // 272 LINX_(__NR_mq_timedsend, sys_mq_timedsend), // 273 LINXY(__NR_mq_timedreceive, sys_mq_timedreceive), // 274 LINX_(__NR_mq_notify, sys_mq_notify), // 275 LINXY(__NR_mq_getsetattr, sys_mq_getsetattr), // 276 // ?????(__NR_kexec_load, ), LINX_(__NR_add_key, sys_add_key), // 278 LINX_(__NR_request_key, sys_request_key), // 279 LINXY(__NR_keyctl, sys_keyctl), // 280 LINXY(__NR_waitid, sys_waitid), // 281 LINX_(__NR_ioprio_set, sys_ioprio_set), // 282 LINX_(__NR_ioprio_get, sys_ioprio_get), // 283 LINX_(__NR_inotify_init, sys_inotify_init), // 284 LINX_(__NR_inotify_add_watch, sys_inotify_add_watch), // 285 LINX_(__NR_inotify_rm_watch, sys_inotify_rm_watch), // 286 GENX_(287, sys_ni_syscall), /* unimplemented (by the kernel) */ // 287 LINXY(__NR_openat, sys_openat), // 288 LINX_(__NR_mkdirat, sys_mkdirat), // 289 LINX_(__NR_mknodat, sys_mknodat), // 290 LINX_(__NR_fchownat, sys_fchownat), // 291 LINX_(__NR_futimesat, sys_futimesat), // 292 LINXY(__NR_newfstatat, sys_newfstatat), // 293 LINX_(__NR_unlinkat, sys_unlinkat), // 294 LINX_(__NR_renameat, sys_renameat), // 295 LINX_(__NR_linkat, sys_linkat), // 296 LINX_(__NR_symlinkat, sys_symlinkat), // 297 LINX_(__NR_readlinkat, sys_readlinkat), // 298 LINX_(__NR_fchmodat, sys_fchmodat), // 299 LINX_(__NR_faccessat, sys_faccessat), // 300 LINX_(__NR_pselect6, sys_pselect6), // 301 LINXY(__NR_ppoll, sys_ppoll), // 302 // ?????(__NR_unshare, ), LINX_(__NR_set_robust_list, sys_set_robust_list), // 304 LINXY(__NR_get_robust_list, sys_get_robust_list), // 305 // ?????(__NR_splice, ), LINX_(__NR_sync_file_range, sys_sync_file_range), // 307 // ?????(__NR_tee, ), // ?????(__NR_vmsplice, ), GENX_(310, sys_ni_syscall), /* unimplemented (by the kernel) */ // 310 // ?????(__NR_getcpu, ), LINXY(__NR_epoll_pwait, sys_epoll_pwait), // 312 GENX_(__NR_utimes, sys_utimes), // 313 LINX_(__NR_fallocate, sys_fallocate), // 314 LINX_(__NR_utimensat, sys_utimensat), // 315 LINXY(__NR_signalfd, sys_signalfd), // 316 GENX_(317, sys_ni_syscall), /* unimplemented (by the kernel) */ // 317 LINX_(__NR_eventfd, sys_eventfd), // 318 LINXY(__NR_timerfd_create, sys_timerfd_create), // 319 LINXY(__NR_timerfd_settime, sys_timerfd_settime), // 320 LINXY(__NR_timerfd_gettime, sys_timerfd_gettime), // 321 LINXY(__NR_signalfd4, sys_signalfd4), // 322 LINX_(__NR_eventfd2, sys_eventfd2), // 323 LINXY(__NR_inotify_init1, sys_inotify_init1), // 324 LINXY(__NR_pipe2, sys_pipe2), // 325 // (__NR_dup3, ), LINXY(__NR_epoll_create1, sys_epoll_create1), // 327 LINXY(__NR_preadv, sys_preadv), // 328 LINX_(__NR_pwritev, sys_pwritev), // 329 // ?????(__NR_rt_tgsigqueueinfo, ), LINXY(__NR_perf_event_open, sys_perf_event_open), // 331 // ?????(__NR_fanotify_init, ), // 332 // ?????(__NR_fanotify_mark, ), // 333 LINXY(__NR_prlimit64, sys_prlimit64), // 334 // ?????(__NR_name_to_handle_at, ), // 335 // ?????(__NR_open_by_handle_at, ), // 336 // ?????(__NR_clock_adjtime, ), // 337 // ?????(__NR_syncfs, ), // 338 // ?????(__NR_setns, ), // 339 LINXY(__NR_process_vm_readv, sys_process_vm_readv), // 340 LINX_(__NR_process_vm_writev, sys_process_vm_writev), // 341 }; SyscallTableEntry* ML_(get_linux_syscall_entry) ( UInt sysno ) { const UInt syscall_table_size = sizeof(syscall_table) / sizeof(syscall_table[0]); /* Is it in the contiguous initial section of the table? */ if (sysno < syscall_table_size) { SyscallTableEntry* sys = &syscall_table[sysno]; if (sys->before == NULL) return NULL; /* no entry */ else return sys; } /* Can't find a wrapper */ return NULL; } #endif /*--------------------------------------------------------------------*/ /*--- end ---*/ /*--------------------------------------------------------------------*/