/* This file is part of drd, a thread error detector. Copyright (C) 2006-2012 Bart Van Assche <bvanassche@acm.org>. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. The GNU General Public License is contained in the file COPYING. */ #include "drd_error.h" #include "drd_barrier.h" #include "drd_clientobj.h" #include "drd_cond.h" #include "drd_mutex.h" #include "drd_segment.h" #include "drd_semaphore.h" #include "drd_suppression.h" #include "drd_thread.h" #include "pub_tool_vki.h" #include "pub_tool_basics.h" // Addr, SizeT #include "pub_tool_libcassert.h" // tl_assert() #include "pub_tool_libcbase.h" // VG_(strlen)() #include "pub_tool_libcprint.h" // VG_(printf)() #include "pub_tool_libcproc.h" // VG_(getenv)() #include "pub_tool_machine.h" #include "pub_tool_mallocfree.h" // VG_(malloc)(), VG_(free)() #include "pub_tool_options.h" // VG_(clo_backtrace_size) #include "pub_tool_threadstate.h" // VG_(get_pthread_id)() /* Local functions. */ static void thread_append_segment(const DrdThreadId tid, Segment* const sg); static void thread_discard_segment(const DrdThreadId tid, Segment* const sg); static void thread_compute_conflict_set(struct bitmap** conflict_set, const DrdThreadId tid); static Bool thread_conflict_set_up_to_date(const DrdThreadId tid); /* Local variables. */ static ULong s_context_switch_count; static ULong s_discard_ordered_segments_count; static ULong s_compute_conflict_set_count; static ULong s_update_conflict_set_count; static ULong s_update_conflict_set_new_sg_count; static ULong s_update_conflict_set_sync_count; static ULong s_update_conflict_set_join_count; static ULong s_conflict_set_bitmap_creation_count; static ULong s_conflict_set_bitmap2_creation_count; static ThreadId s_vg_running_tid = VG_INVALID_THREADID; DrdThreadId DRD_(g_drd_running_tid) = DRD_INVALID_THREADID; ThreadInfo DRD_(g_threadinfo)[DRD_N_THREADS]; struct bitmap* DRD_(g_conflict_set); static Bool s_trace_context_switches = False; static Bool s_trace_conflict_set = False; static Bool s_trace_conflict_set_bm = False; static Bool s_trace_fork_join = False; static Bool s_segment_merging = True; static Bool s_new_segments_since_last_merge; static int s_segment_merge_interval = 10; static unsigned s_join_list_vol = 10; static unsigned s_deletion_head; static unsigned s_deletion_tail; /* Function definitions. */ /** Enables/disables context switch tracing. */ void DRD_(thread_trace_context_switches)(const Bool t) { tl_assert(t == False || t == True); s_trace_context_switches = t; } /** Enables/disables conflict set tracing. */ void DRD_(thread_trace_conflict_set)(const Bool t) { tl_assert(t == False || t == True); s_trace_conflict_set = t; } /** Enables/disables conflict set bitmap tracing. */ void DRD_(thread_trace_conflict_set_bm)(const Bool t) { tl_assert(t == False || t == True); s_trace_conflict_set_bm = t; } /** Report whether fork/join tracing is enabled. */ Bool DRD_(thread_get_trace_fork_join)(void) { return s_trace_fork_join; } /** Enables/disables fork/join tracing. */ void DRD_(thread_set_trace_fork_join)(const Bool t) { tl_assert(t == False || t == True); s_trace_fork_join = t; } /** Enables/disables segment merging. */ void DRD_(thread_set_segment_merging)(const Bool m) { tl_assert(m == False || m == True); s_segment_merging = m; } /** Get the segment merging interval. */ int DRD_(thread_get_segment_merge_interval)(void) { return s_segment_merge_interval; } /** Set the segment merging interval. */ void DRD_(thread_set_segment_merge_interval)(const int i) { s_segment_merge_interval = i; } void DRD_(thread_set_join_list_vol)(const int jlv) { s_join_list_vol = jlv; } void DRD_(thread_init)(void) { } /** * Convert Valgrind's ThreadId into a DrdThreadId. * * @return DRD thread ID upon success and DRD_INVALID_THREADID if the passed * Valgrind ThreadId does not yet exist. */ DrdThreadId DRD_(VgThreadIdToDrdThreadId)(const ThreadId tid) { int i; if (tid == VG_INVALID_THREADID) return DRD_INVALID_THREADID; for (i = 1; i < DRD_N_THREADS; i++) { if (DRD_(g_threadinfo)[i].vg_thread_exists == True && DRD_(g_threadinfo)[i].vg_threadid == tid) { return i; } } return DRD_INVALID_THREADID; } /** Allocate a new DRD thread ID for the specified Valgrind thread ID. */ static DrdThreadId DRD_(VgThreadIdToNewDrdThreadId)(const ThreadId tid) { int i; tl_assert(DRD_(VgThreadIdToDrdThreadId)(tid) == DRD_INVALID_THREADID); for (i = 1; i < DRD_N_THREADS; i++) { if (!DRD_(g_threadinfo)[i].valid) { tl_assert(! DRD_(IsValidDrdThreadId)(i)); DRD_(g_threadinfo)[i].valid = True; DRD_(g_threadinfo)[i].vg_thread_exists = True; DRD_(g_threadinfo)[i].vg_threadid = tid; DRD_(g_threadinfo)[i].pt_threadid = INVALID_POSIX_THREADID; DRD_(g_threadinfo)[i].stack_min = 0; DRD_(g_threadinfo)[i].stack_min_min = 0; DRD_(g_threadinfo)[i].stack_startup = 0; DRD_(g_threadinfo)[i].stack_max = 0; DRD_(thread_set_name)(i, ""); DRD_(g_threadinfo)[i].on_alt_stack = False; DRD_(g_threadinfo)[i].is_recording_loads = True; DRD_(g_threadinfo)[i].is_recording_stores = True; DRD_(g_threadinfo)[i].pthread_create_nesting_level = 0; DRD_(g_threadinfo)[i].synchr_nesting = 0; DRD_(g_threadinfo)[i].deletion_seq = s_deletion_tail - 1; tl_assert(DRD_(g_threadinfo)[i].sg_first == NULL); tl_assert(DRD_(g_threadinfo)[i].sg_last == NULL); tl_assert(DRD_(IsValidDrdThreadId)(i)); return i; } } VG_(printf)( "\nSorry, but the maximum number of threads supported by DRD has been exceeded." "Aborting.\n"); tl_assert(False); return DRD_INVALID_THREADID; } /** Convert a POSIX thread ID into a DRD thread ID. */ DrdThreadId DRD_(PtThreadIdToDrdThreadId)(const PThreadId tid) { int i; if (tid != INVALID_POSIX_THREADID) { for (i = 1; i < DRD_N_THREADS; i++) { if (DRD_(g_threadinfo)[i].posix_thread_exists && DRD_(g_threadinfo)[i].pt_threadid == tid) { return i; } } } return DRD_INVALID_THREADID; } /** Convert a DRD thread ID into a Valgrind thread ID. */ ThreadId DRD_(DrdThreadIdToVgThreadId)(const DrdThreadId tid) { tl_assert(0 <= (int)tid && tid < DRD_N_THREADS && tid != DRD_INVALID_THREADID); return (DRD_(g_threadinfo)[tid].vg_thread_exists ? DRD_(g_threadinfo)[tid].vg_threadid : VG_INVALID_THREADID); } #ifdef ENABLE_DRD_CONSISTENCY_CHECKS /** * Sanity check of the doubly linked list of segments referenced by a * ThreadInfo struct. * @return True if sane, False if not. */ static Bool DRD_(sane_ThreadInfo)(const ThreadInfo* const ti) { Segment* p; for (p = ti->first; p; p = p->next) { if (p->next && p->next->prev != p) return False; if (p->next == 0 && p != ti->last) return False; } for (p = ti->last; p; p = p->prev) { if (p->prev && p->prev->next != p) return False; if (p->prev == 0 && p != ti->first) return False; } return True; } #endif /** * Create the first segment for a newly started thread. * * This function is called from the handler installed via * VG_(track_pre_thread_ll_create)(). The Valgrind core invokes this handler * from the context of the creator thread, before the new thread has been * created. * * @param[in] creator DRD thread ID of the creator thread. * @param[in] vg_created Valgrind thread ID of the created thread. * * @return DRD thread ID of the created thread. */ DrdThreadId DRD_(thread_pre_create)(const DrdThreadId creator, const ThreadId vg_created) { DrdThreadId created; tl_assert(DRD_(VgThreadIdToDrdThreadId)(vg_created) == DRD_INVALID_THREADID); created = DRD_(VgThreadIdToNewDrdThreadId)(vg_created); tl_assert(0 <= (int)created && created < DRD_N_THREADS && created != DRD_INVALID_THREADID); tl_assert(DRD_(g_threadinfo)[created].sg_first == NULL); tl_assert(DRD_(g_threadinfo)[created].sg_last == NULL); /* Create an initial segment for the newly created thread. */ thread_append_segment(created, DRD_(sg_new)(creator, created)); return created; } /** * Initialize DRD_(g_threadinfo)[] for a newly created thread. Must be called * after the thread has been created and before any client instructions are run * on the newly created thread, e.g. from the handler installed via * VG_(track_pre_thread_first_insn)(). * * @param[in] vg_created Valgrind thread ID of the newly created thread. * * @return DRD thread ID for the new thread. */ DrdThreadId DRD_(thread_post_create)(const ThreadId vg_created) { const DrdThreadId created = DRD_(VgThreadIdToDrdThreadId)(vg_created); tl_assert(0 <= (int)created && created < DRD_N_THREADS && created != DRD_INVALID_THREADID); DRD_(g_threadinfo)[created].stack_max = VG_(thread_get_stack_max)(vg_created); DRD_(g_threadinfo)[created].stack_startup = DRD_(g_threadinfo)[created].stack_max; DRD_(g_threadinfo)[created].stack_min = DRD_(g_threadinfo)[created].stack_max; DRD_(g_threadinfo)[created].stack_min_min = DRD_(g_threadinfo)[created].stack_max; DRD_(g_threadinfo)[created].stack_size = VG_(thread_get_stack_size)(vg_created); tl_assert(DRD_(g_threadinfo)[created].stack_max != 0); return created; } static void DRD_(thread_delayed_delete)(const DrdThreadId tid) { int j; DRD_(g_threadinfo)[tid].vg_thread_exists = False; DRD_(g_threadinfo)[tid].posix_thread_exists = False; DRD_(g_threadinfo)[tid].deletion_seq = s_deletion_head++; #if 0 VG_(message)(Vg_DebugMsg, "Adding thread %d to the deletion list\n", tid); #endif if (s_deletion_head - s_deletion_tail >= s_join_list_vol) { for (j = 0; j < DRD_N_THREADS; ++j) { if (DRD_(IsValidDrdThreadId)(j) && DRD_(g_threadinfo)[j].deletion_seq == s_deletion_tail) { s_deletion_tail++; #if 0 VG_(message)(Vg_DebugMsg, "Delayed delete of thread %d\n", j); #endif DRD_(thread_delete)(j, False); break; } } } } /** * Process VG_USERREQ__POST_THREAD_JOIN. This client request is invoked just * after thread drd_joiner joined thread drd_joinee. */ void DRD_(thread_post_join)(DrdThreadId drd_joiner, DrdThreadId drd_joinee) { tl_assert(DRD_(IsValidDrdThreadId)(drd_joiner)); tl_assert(DRD_(IsValidDrdThreadId)(drd_joinee)); DRD_(thread_new_segment)(drd_joiner); DRD_(thread_combine_vc_join)(drd_joiner, drd_joinee); DRD_(thread_new_segment)(drd_joinee); if (s_trace_fork_join) { const ThreadId joiner = DRD_(DrdThreadIdToVgThreadId)(drd_joiner); const unsigned msg_size = 256; char* msg; msg = VG_(malloc)("drd.main.dptj.1", msg_size); tl_assert(msg); VG_(snprintf)(msg, msg_size, "drd_post_thread_join joiner = %d, joinee = %d", drd_joiner, drd_joinee); if (joiner) { char* vc; vc = DRD_(vc_aprint)(DRD_(thread_get_vc)(drd_joiner)); VG_(snprintf)(msg + VG_(strlen)(msg), msg_size - VG_(strlen)(msg), ", new vc: %s", vc); VG_(free)(vc); } DRD_(trace_msg)("%pS", msg); VG_(free)(msg); } if (! DRD_(get_check_stack_accesses)()) { DRD_(finish_suppression)(DRD_(thread_get_stack_max)(drd_joinee) - DRD_(thread_get_stack_size)(drd_joinee), DRD_(thread_get_stack_max)(drd_joinee)); } DRD_(clientobj_delete_thread)(drd_joinee); DRD_(thread_delayed_delete)(drd_joinee); } /** * NPTL hack: NPTL allocates the 'struct pthread' on top of the stack, * and accesses this data structure from multiple threads without locking. * Any conflicting accesses in the range stack_startup..stack_max will be * ignored. */ void DRD_(thread_set_stack_startup)(const DrdThreadId tid, const Addr stack_startup) { tl_assert(0 <= (int)tid && tid < DRD_N_THREADS && tid != DRD_INVALID_THREADID); tl_assert(DRD_(g_threadinfo)[tid].stack_min <= stack_startup); tl_assert(stack_startup <= DRD_(g_threadinfo)[tid].stack_max); DRD_(g_threadinfo)[tid].stack_startup = stack_startup; } /** Return the stack pointer for the specified thread. */ Addr DRD_(thread_get_stack_min)(const DrdThreadId tid) { tl_assert(0 <= (int)tid && tid < DRD_N_THREADS && tid != DRD_INVALID_THREADID); return DRD_(g_threadinfo)[tid].stack_min; } /** * Return the lowest value that was ever assigned to the stack pointer * for the specified thread. */ Addr DRD_(thread_get_stack_min_min)(const DrdThreadId tid) { tl_assert(0 <= (int)tid && tid < DRD_N_THREADS && tid != DRD_INVALID_THREADID); return DRD_(g_threadinfo)[tid].stack_min_min; } /** Return the top address for the stack of the specified thread. */ Addr DRD_(thread_get_stack_max)(const DrdThreadId tid) { tl_assert(0 <= (int)tid && tid < DRD_N_THREADS && tid != DRD_INVALID_THREADID); return DRD_(g_threadinfo)[tid].stack_max; } /** Return the maximum stack size for the specified thread. */ SizeT DRD_(thread_get_stack_size)(const DrdThreadId tid) { tl_assert(0 <= (int)tid && tid < DRD_N_THREADS && tid != DRD_INVALID_THREADID); return DRD_(g_threadinfo)[tid].stack_size; } Bool DRD_(thread_get_on_alt_stack)(const DrdThreadId tid) { tl_assert(0 <= (int)tid && tid < DRD_N_THREADS && tid != DRD_INVALID_THREADID); return DRD_(g_threadinfo)[tid].on_alt_stack; } void DRD_(thread_set_on_alt_stack)(const DrdThreadId tid, const Bool on_alt_stack) { tl_assert(0 <= (int)tid && tid < DRD_N_THREADS && tid != DRD_INVALID_THREADID); tl_assert(on_alt_stack == !!on_alt_stack); DRD_(g_threadinfo)[tid].on_alt_stack = on_alt_stack; } Int DRD_(thread_get_threads_on_alt_stack)(void) { int i, n = 0; for (i = 1; i < DRD_N_THREADS; i++) n += DRD_(g_threadinfo)[i].on_alt_stack; return n; } /** * Clean up thread-specific data structures. */ void DRD_(thread_delete)(const DrdThreadId tid, const Bool detached) { Segment* sg; Segment* sg_prev; tl_assert(DRD_(IsValidDrdThreadId)(tid)); tl_assert(DRD_(g_threadinfo)[tid].synchr_nesting >= 0); for (sg = DRD_(g_threadinfo)[tid].sg_last; sg; sg = sg_prev) { sg_prev = sg->thr_prev; sg->thr_next = NULL; sg->thr_prev = NULL; DRD_(sg_put)(sg); } DRD_(g_threadinfo)[tid].valid = False; DRD_(g_threadinfo)[tid].vg_thread_exists = False; DRD_(g_threadinfo)[tid].posix_thread_exists = False; if (detached) DRD_(g_threadinfo)[tid].detached_posix_thread = False; else tl_assert(!DRD_(g_threadinfo)[tid].detached_posix_thread); DRD_(g_threadinfo)[tid].sg_first = NULL; DRD_(g_threadinfo)[tid].sg_last = NULL; tl_assert(!DRD_(IsValidDrdThreadId)(tid)); } /** * Called after a thread performed its last memory access and before * thread_delete() is called. Note: thread_delete() is only called for * joinable threads, not for detached threads. */ void DRD_(thread_finished)(const DrdThreadId tid) { tl_assert(0 <= (int)tid && tid < DRD_N_THREADS && tid != DRD_INVALID_THREADID); DRD_(g_threadinfo)[tid].vg_thread_exists = False; if (DRD_(g_threadinfo)[tid].detached_posix_thread) { /* * Once a detached thread has finished, its stack is deallocated and * should no longer be taken into account when computing the conflict set. */ DRD_(g_threadinfo)[tid].stack_min = DRD_(g_threadinfo)[tid].stack_max; /* * For a detached thread, calling pthread_exit() invalidates the * POSIX thread ID associated with the detached thread. For joinable * POSIX threads however, the POSIX thread ID remains live after the * pthread_exit() call until pthread_join() is called. */ DRD_(g_threadinfo)[tid].posix_thread_exists = False; } } /** Called just after fork() in the child process. */ void DRD_(drd_thread_atfork_child)(const DrdThreadId tid) { unsigned i; for (i = 1; i < DRD_N_THREADS; i++) { if (i == tid) continue; if (DRD_(IsValidDrdThreadId(i))) DRD_(thread_delete)(i, True); tl_assert(!DRD_(IsValidDrdThreadId(i))); } } /** Called just before pthread_cancel(). */ void DRD_(thread_pre_cancel)(const DrdThreadId tid) { tl_assert(0 <= (int)tid && tid < DRD_N_THREADS && tid != DRD_INVALID_THREADID); tl_assert(DRD_(g_threadinfo)[tid].pt_threadid != INVALID_POSIX_THREADID); if (DRD_(thread_get_trace_fork_join)()) DRD_(trace_msg)("[%d] drd_thread_pre_cancel %d", DRD_(g_drd_running_tid), tid); } /** * Store the POSIX thread ID for the specified thread. * * @note This function can be called two times for the same thread -- see also * the comment block preceding the pthread_create() wrapper in * drd_pthread_intercepts.c. */ void DRD_(thread_set_pthreadid)(const DrdThreadId tid, const PThreadId ptid) { tl_assert(0 <= (int)tid && tid < DRD_N_THREADS && tid != DRD_INVALID_THREADID); tl_assert(DRD_(g_threadinfo)[tid].pt_threadid == INVALID_POSIX_THREADID || DRD_(g_threadinfo)[tid].pt_threadid == ptid); tl_assert(ptid != INVALID_POSIX_THREADID); DRD_(g_threadinfo)[tid].posix_thread_exists = True; DRD_(g_threadinfo)[tid].pt_threadid = ptid; } /** Returns true for joinable threads and false for detached threads. */ Bool DRD_(thread_get_joinable)(const DrdThreadId tid) { tl_assert(0 <= (int)tid && tid < DRD_N_THREADS && tid != DRD_INVALID_THREADID); return ! DRD_(g_threadinfo)[tid].detached_posix_thread; } /** Store the thread mode: joinable or detached. */ #if defined(VGP_mips32_linux) /* There is a cse related issue in gcc for MIPS. Optimization level has to be lowered, so cse related optimizations are not included.*/ __attribute__((optimize("O1"))) #endif void DRD_(thread_set_joinable)(const DrdThreadId tid, const Bool joinable) { tl_assert(0 <= (int)tid && tid < DRD_N_THREADS && tid != DRD_INVALID_THREADID); tl_assert(!! joinable == joinable); tl_assert(DRD_(g_threadinfo)[tid].pt_threadid != INVALID_POSIX_THREADID); DRD_(g_threadinfo)[tid].detached_posix_thread = ! joinable; } /** Tells DRD that the calling thread is about to enter pthread_create(). */ void DRD_(thread_entering_pthread_create)(const DrdThreadId tid) { tl_assert(0 <= (int)tid && tid < DRD_N_THREADS && tid != DRD_INVALID_THREADID); tl_assert(DRD_(g_threadinfo)[tid].pt_threadid != INVALID_POSIX_THREADID); tl_assert(DRD_(g_threadinfo)[tid].pthread_create_nesting_level >= 0); DRD_(g_threadinfo)[tid].pthread_create_nesting_level++; } /** Tells DRD that the calling thread has left pthread_create(). */ void DRD_(thread_left_pthread_create)(const DrdThreadId tid) { tl_assert(0 <= (int)tid && tid < DRD_N_THREADS && tid != DRD_INVALID_THREADID); tl_assert(DRD_(g_threadinfo)[tid].pt_threadid != INVALID_POSIX_THREADID); tl_assert(DRD_(g_threadinfo)[tid].pthread_create_nesting_level > 0); DRD_(g_threadinfo)[tid].pthread_create_nesting_level--; } /** Obtain the thread number and the user-assigned thread name. */ const char* DRD_(thread_get_name)(const DrdThreadId tid) { tl_assert(0 <= (int)tid && tid < DRD_N_THREADS && tid != DRD_INVALID_THREADID); return DRD_(g_threadinfo)[tid].name; } /** Set the name of the specified thread. */ void DRD_(thread_set_name)(const DrdThreadId tid, const char* const name) { tl_assert(0 <= (int)tid && tid < DRD_N_THREADS && tid != DRD_INVALID_THREADID); if (name == NULL || name[0] == 0) VG_(snprintf)(DRD_(g_threadinfo)[tid].name, sizeof(DRD_(g_threadinfo)[tid].name), "Thread %d", tid); else VG_(snprintf)(DRD_(g_threadinfo)[tid].name, sizeof(DRD_(g_threadinfo)[tid].name), "Thread %d (%s)", tid, name); DRD_(g_threadinfo)[tid].name[sizeof(DRD_(g_threadinfo)[tid].name) - 1] = 0; } /** * Update s_vg_running_tid, DRD_(g_drd_running_tid) and recalculate the * conflict set. */ void DRD_(thread_set_vg_running_tid)(const ThreadId vg_tid) { tl_assert(vg_tid != VG_INVALID_THREADID); if (vg_tid != s_vg_running_tid) { DRD_(thread_set_running_tid)(vg_tid, DRD_(VgThreadIdToDrdThreadId)(vg_tid)); } tl_assert(s_vg_running_tid != VG_INVALID_THREADID); tl_assert(DRD_(g_drd_running_tid) != DRD_INVALID_THREADID); } /** * Update s_vg_running_tid, DRD_(g_drd_running_tid) and recalculate the * conflict set. */ void DRD_(thread_set_running_tid)(const ThreadId vg_tid, const DrdThreadId drd_tid) { tl_assert(vg_tid != VG_INVALID_THREADID); tl_assert(drd_tid != DRD_INVALID_THREADID); if (vg_tid != s_vg_running_tid) { if (s_trace_context_switches && DRD_(g_drd_running_tid) != DRD_INVALID_THREADID) { VG_(message)(Vg_DebugMsg, "Context switch from thread %d to thread %d;" " segments: %llu\n", DRD_(g_drd_running_tid), drd_tid, DRD_(sg_get_segments_alive_count)()); } s_vg_running_tid = vg_tid; DRD_(g_drd_running_tid) = drd_tid; thread_compute_conflict_set(&DRD_(g_conflict_set), drd_tid); s_context_switch_count++; } tl_assert(s_vg_running_tid != VG_INVALID_THREADID); tl_assert(DRD_(g_drd_running_tid) != DRD_INVALID_THREADID); } /** * Increase the synchronization nesting counter. Must be called before the * client calls a synchronization function. */ int DRD_(thread_enter_synchr)(const DrdThreadId tid) { tl_assert(DRD_(IsValidDrdThreadId)(tid)); return DRD_(g_threadinfo)[tid].synchr_nesting++; } /** * Decrease the synchronization nesting counter. Must be called after the * client left a synchronization function. */ int DRD_(thread_leave_synchr)(const DrdThreadId tid) { tl_assert(DRD_(IsValidDrdThreadId)(tid)); tl_assert(DRD_(g_threadinfo)[tid].synchr_nesting >= 1); return --DRD_(g_threadinfo)[tid].synchr_nesting; } /** Returns the synchronization nesting counter. */ int DRD_(thread_get_synchr_nesting_count)(const DrdThreadId tid) { tl_assert(DRD_(IsValidDrdThreadId)(tid)); return DRD_(g_threadinfo)[tid].synchr_nesting; } /** Append a new segment at the end of the segment list. */ static void thread_append_segment(const DrdThreadId tid, Segment* const sg) { tl_assert(0 <= (int)tid && tid < DRD_N_THREADS && tid != DRD_INVALID_THREADID); #ifdef ENABLE_DRD_CONSISTENCY_CHECKS tl_assert(DRD_(sane_ThreadInfo)(&DRD_(g_threadinfo)[tid])); #endif // add at tail sg->thr_prev = DRD_(g_threadinfo)[tid].sg_last; sg->thr_next = NULL; if (DRD_(g_threadinfo)[tid].sg_last) DRD_(g_threadinfo)[tid].sg_last->thr_next = sg; DRD_(g_threadinfo)[tid].sg_last = sg; if (DRD_(g_threadinfo)[tid].sg_first == NULL) DRD_(g_threadinfo)[tid].sg_first = sg; #ifdef ENABLE_DRD_CONSISTENCY_CHECKS tl_assert(DRD_(sane_ThreadInfo)(&DRD_(g_threadinfo)[tid])); #endif } /** * Remove a segment from the segment list of thread threadid, and free the * associated memory. */ static void thread_discard_segment(const DrdThreadId tid, Segment* const sg) { tl_assert(0 <= (int)tid && tid < DRD_N_THREADS && tid != DRD_INVALID_THREADID); #ifdef ENABLE_DRD_CONSISTENCY_CHECKS tl_assert(DRD_(sane_ThreadInfo)(&DRD_(g_threadinfo)[tid])); #endif if (sg->thr_prev) sg->thr_prev->thr_next = sg->thr_next; if (sg->thr_next) sg->thr_next->thr_prev = sg->thr_prev; if (sg == DRD_(g_threadinfo)[tid].sg_first) DRD_(g_threadinfo)[tid].sg_first = sg->thr_next; if (sg == DRD_(g_threadinfo)[tid].sg_last) DRD_(g_threadinfo)[tid].sg_last = sg->thr_prev; DRD_(sg_put)(sg); #ifdef ENABLE_DRD_CONSISTENCY_CHECKS tl_assert(DRD_(sane_ThreadInfo)(&DRD_(g_threadinfo)[tid])); #endif } /** * Returns a pointer to the vector clock of the most recent segment associated * with thread 'tid'. */ VectorClock* DRD_(thread_get_vc)(const DrdThreadId tid) { Segment* latest_sg; tl_assert(0 <= (int)tid && tid < DRD_N_THREADS && tid != DRD_INVALID_THREADID); latest_sg = DRD_(g_threadinfo)[tid].sg_last; tl_assert(latest_sg); return &latest_sg->vc; } /** * Return the latest segment of thread 'tid' and increment its reference count. */ void DRD_(thread_get_latest_segment)(Segment** sg, const DrdThreadId tid) { Segment* latest_sg; tl_assert(sg); tl_assert(0 <= (int)tid && tid < DRD_N_THREADS && tid != DRD_INVALID_THREADID); latest_sg = DRD_(g_threadinfo)[tid].sg_last; tl_assert(latest_sg); DRD_(sg_put)(*sg); *sg = DRD_(sg_get)(latest_sg); } /** * Compute the minimum of all latest vector clocks of all threads * (Michiel Ronsse calls this "clock snooping" in his papers about DIOTA). * * @param vc pointer to a vectorclock, holds result upon return. */ static void DRD_(thread_compute_minimum_vc)(VectorClock* vc) { unsigned i; Bool first; Segment* latest_sg; first = True; for (i = 0; i < DRD_N_THREADS; i++) { latest_sg = DRD_(g_threadinfo)[i].sg_last; if (latest_sg) { if (first) DRD_(vc_assign)(vc, &latest_sg->vc); else DRD_(vc_min)(vc, &latest_sg->vc); first = False; } } } /** * Compute the maximum of all latest vector clocks of all threads. * * @param vc pointer to a vectorclock, holds result upon return. */ static void DRD_(thread_compute_maximum_vc)(VectorClock* vc) { unsigned i; Bool first; Segment* latest_sg; first = True; for (i = 0; i < DRD_N_THREADS; i++) { latest_sg = DRD_(g_threadinfo)[i].sg_last; if (latest_sg) { if (first) DRD_(vc_assign)(vc, &latest_sg->vc); else DRD_(vc_combine)(vc, &latest_sg->vc); first = False; } } } /** * Discard all segments that have a defined order against the latest vector * clock of all threads -- these segments can no longer be involved in a * data race. */ static void thread_discard_ordered_segments(void) { unsigned i; VectorClock thread_vc_min; s_discard_ordered_segments_count++; DRD_(vc_init)(&thread_vc_min, 0, 0); DRD_(thread_compute_minimum_vc)(&thread_vc_min); if (DRD_(sg_get_trace)()) { char *vc_min, *vc_max; VectorClock thread_vc_max; DRD_(vc_init)(&thread_vc_max, 0, 0); DRD_(thread_compute_maximum_vc)(&thread_vc_max); vc_min = DRD_(vc_aprint)(&thread_vc_min); vc_max = DRD_(vc_aprint)(&thread_vc_max); VG_(message)(Vg_DebugMsg, "Discarding ordered segments -- min vc is %s, max vc is %s\n", vc_min, vc_max); VG_(free)(vc_min); VG_(free)(vc_max); DRD_(vc_cleanup)(&thread_vc_max); } for (i = 0; i < DRD_N_THREADS; i++) { Segment* sg; Segment* sg_next; for (sg = DRD_(g_threadinfo)[i].sg_first; sg && (sg_next = sg->thr_next) && DRD_(vc_lte)(&sg->vc, &thread_vc_min); sg = sg_next) { thread_discard_segment(i, sg); } } DRD_(vc_cleanup)(&thread_vc_min); } /** * An implementation of the property 'equiv(sg1, sg2)' as defined in the paper * by Mark Christiaens e.a. The property equiv(sg1, sg2) holds if and only if * all segments in the set CS are ordered consistently against both sg1 and * sg2. The set CS is defined as the set of segments that can immediately * precede future segments via inter-thread synchronization operations. In * DRD the set CS consists of the latest segment of each thread combined with * all segments for which the reference count is strictly greater than one. * The code below is an optimized version of the following: * * for (i = 0; i < DRD_N_THREADS; i++) * { * Segment* sg; * * for (sg = DRD_(g_threadinfo)[i].first; sg; sg = sg->next) * { * if (sg == DRD_(g_threadinfo)[i].last || DRD_(sg_get_refcnt)(sg) > 1) * { * if ( DRD_(vc_lte)(&sg1->vc, &sg->vc) * != DRD_(vc_lte)(&sg2->vc, &sg->vc) * || DRD_(vc_lte)(&sg->vc, &sg1->vc) * != DRD_(vc_lte)(&sg->vc, &sg2->vc)) * { * return False; * } * } * } * } */ static Bool thread_consistent_segment_ordering(const DrdThreadId tid, Segment* const sg1, Segment* const sg2) { unsigned i; tl_assert(sg1->thr_next); tl_assert(sg2->thr_next); tl_assert(sg1->thr_next == sg2); tl_assert(DRD_(vc_lte)(&sg1->vc, &sg2->vc)); for (i = 0; i < DRD_N_THREADS; i++) { Segment* sg; for (sg = DRD_(g_threadinfo)[i].sg_first; sg; sg = sg->thr_next) { if (!sg->thr_next || DRD_(sg_get_refcnt)(sg) > 1) { if (DRD_(vc_lte)(&sg2->vc, &sg->vc)) break; if (DRD_(vc_lte)(&sg1->vc, &sg->vc)) return False; } } for (sg = DRD_(g_threadinfo)[i].sg_last; sg; sg = sg->thr_prev) { if (!sg->thr_next || DRD_(sg_get_refcnt)(sg) > 1) { if (DRD_(vc_lte)(&sg->vc, &sg1->vc)) break; if (DRD_(vc_lte)(&sg->vc, &sg2->vc)) return False; } } } return True; } /** * Merge all segments that may be merged without triggering false positives * or discarding real data races. For the theoretical background of segment * merging, see also the following paper: Mark Christiaens, Michiel Ronsse * and Koen De Bosschere. Bounding the number of segment histories during * data race detection. Parallel Computing archive, Volume 28, Issue 9, * pp 1221-1238, September 2002. This paper contains a proof that merging * consecutive segments for which the property equiv(s1,s2) holds can be * merged without reducing the accuracy of datarace detection. Furthermore * it is also proven that the total number of all segments will never grow * unbounded if all segments s1, s2 for which equiv(s1, s2) holds are merged * every time a new segment is created. The property equiv(s1, s2) is defined * as follows: equiv(s1, s2) <=> for all segments in the set CS, the vector * clocks of segments s and s1 are ordered in the same way as those of segments * s and s2. The set CS is defined as the set of existing segments s that have * the potential to conflict with not yet created segments, either because the * segment s is the latest segment of a thread or because it can become the * immediate predecessor of a new segment due to a synchronization operation. */ static void thread_merge_segments(void) { unsigned i; s_new_segments_since_last_merge = 0; for (i = 0; i < DRD_N_THREADS; i++) { Segment* sg; #ifdef ENABLE_DRD_CONSISTENCY_CHECKS tl_assert(DRD_(sane_ThreadInfo)(&DRD_(g_threadinfo)[i])); #endif for (sg = DRD_(g_threadinfo)[i].sg_first; sg; sg = sg->thr_next) { if (DRD_(sg_get_refcnt)(sg) == 1 && sg->thr_next) { Segment* const sg_next = sg->thr_next; if (DRD_(sg_get_refcnt)(sg_next) == 1 && sg_next->thr_next && thread_consistent_segment_ordering(i, sg, sg_next)) { /* Merge sg and sg_next into sg. */ DRD_(sg_merge)(sg, sg_next); thread_discard_segment(i, sg_next); } } } #ifdef ENABLE_DRD_CONSISTENCY_CHECKS tl_assert(DRD_(sane_ThreadInfo)(&DRD_(g_threadinfo)[i])); #endif } } /** * Create a new segment for the specified thread, and discard any segments * that cannot cause races anymore. */ void DRD_(thread_new_segment)(const DrdThreadId tid) { Segment* last_sg; Segment* new_sg; tl_assert(0 <= (int)tid && tid < DRD_N_THREADS && tid != DRD_INVALID_THREADID); tl_assert(thread_conflict_set_up_to_date(DRD_(g_drd_running_tid))); last_sg = DRD_(g_threadinfo)[tid].sg_last; new_sg = DRD_(sg_new)(tid, tid); thread_append_segment(tid, new_sg); if (tid == DRD_(g_drd_running_tid) && last_sg) { DRD_(thread_update_conflict_set)(tid, &last_sg->vc); s_update_conflict_set_new_sg_count++; } tl_assert(thread_conflict_set_up_to_date(DRD_(g_drd_running_tid))); if (s_segment_merging && ++s_new_segments_since_last_merge >= s_segment_merge_interval) { thread_discard_ordered_segments(); thread_merge_segments(); } } /** Call this function after thread 'joiner' joined thread 'joinee'. */ void DRD_(thread_combine_vc_join)(DrdThreadId joiner, DrdThreadId joinee) { tl_assert(joiner != joinee); tl_assert(0 <= (int)joiner && joiner < DRD_N_THREADS && joiner != DRD_INVALID_THREADID); tl_assert(0 <= (int)joinee && joinee < DRD_N_THREADS && joinee != DRD_INVALID_THREADID); tl_assert(DRD_(g_threadinfo)[joiner].sg_first); tl_assert(DRD_(g_threadinfo)[joiner].sg_last); tl_assert(DRD_(g_threadinfo)[joinee].sg_first); tl_assert(DRD_(g_threadinfo)[joinee].sg_last); if (DRD_(sg_get_trace)()) { char *str1, *str2; str1 = DRD_(vc_aprint)(DRD_(thread_get_vc)(joiner)); str2 = DRD_(vc_aprint)(DRD_(thread_get_vc)(joinee)); VG_(message)(Vg_DebugMsg, "Before join: joiner %s, joinee %s\n", str1, str2); VG_(free)(str1); VG_(free)(str2); } if (joiner == DRD_(g_drd_running_tid)) { VectorClock old_vc; DRD_(vc_copy)(&old_vc, DRD_(thread_get_vc)(joiner)); DRD_(vc_combine)(DRD_(thread_get_vc)(joiner), DRD_(thread_get_vc)(joinee)); DRD_(thread_update_conflict_set)(joiner, &old_vc); s_update_conflict_set_join_count++; DRD_(vc_cleanup)(&old_vc); } else { DRD_(vc_combine)(DRD_(thread_get_vc)(joiner), DRD_(thread_get_vc)(joinee)); } thread_discard_ordered_segments(); if (DRD_(sg_get_trace)()) { char* str; str = DRD_(vc_aprint)(DRD_(thread_get_vc)(joiner)); VG_(message)(Vg_DebugMsg, "After join: %s\n", str); VG_(free)(str); } } /** * Update the vector clock of the last segment of thread tid with the * the vector clock of segment sg. */ static void thread_combine_vc_sync(DrdThreadId tid, const Segment* sg) { const VectorClock* const vc = &sg->vc; tl_assert(0 <= (int)tid && tid < DRD_N_THREADS && tid != DRD_INVALID_THREADID); tl_assert(DRD_(g_threadinfo)[tid].sg_first); tl_assert(DRD_(g_threadinfo)[tid].sg_last); tl_assert(sg); tl_assert(vc); if (tid != sg->tid) { VectorClock old_vc; DRD_(vc_copy)(&old_vc, DRD_(thread_get_vc)(tid)); DRD_(vc_combine)(DRD_(thread_get_vc)(tid), vc); if (DRD_(sg_get_trace)()) { char *str1, *str2; str1 = DRD_(vc_aprint)(&old_vc); str2 = DRD_(vc_aprint)(DRD_(thread_get_vc)(tid)); VG_(message)(Vg_DebugMsg, "thread %d: vc %s -> %s\n", tid, str1, str2); VG_(free)(str1); VG_(free)(str2); } thread_discard_ordered_segments(); DRD_(thread_update_conflict_set)(tid, &old_vc); s_update_conflict_set_sync_count++; DRD_(vc_cleanup)(&old_vc); } else { tl_assert(DRD_(vc_lte)(vc, DRD_(thread_get_vc)(tid))); } } /** * Create a new segment for thread tid and update the vector clock of the last * segment of this thread with the the vector clock of segment sg. Call this * function after thread tid had to wait because of thread synchronization * until the memory accesses in the segment sg finished. */ void DRD_(thread_new_segment_and_combine_vc)(DrdThreadId tid, const Segment* sg) { tl_assert(0 <= (int)tid && tid < DRD_N_THREADS && tid != DRD_INVALID_THREADID); tl_assert(thread_conflict_set_up_to_date(DRD_(g_drd_running_tid))); tl_assert(sg); thread_append_segment(tid, DRD_(sg_new)(tid, tid)); thread_combine_vc_sync(tid, sg); if (s_segment_merging && ++s_new_segments_since_last_merge >= s_segment_merge_interval) { thread_discard_ordered_segments(); thread_merge_segments(); } } /** * Call this function whenever a thread is no longer using the memory * [ a1, a2 [, e.g. because of a call to free() or a stack pointer * increase. */ void DRD_(thread_stop_using_mem)(const Addr a1, const Addr a2) { Segment* p; for (p = DRD_(g_sg_list); p; p = p->g_next) DRD_(bm_clear)(DRD_(sg_bm)(p), a1, a2); DRD_(bm_clear)(DRD_(g_conflict_set), a1, a2); } /** Specify whether memory loads should be recorded. */ void DRD_(thread_set_record_loads)(const DrdThreadId tid, const Bool enabled) { tl_assert(0 <= (int)tid && tid < DRD_N_THREADS && tid != DRD_INVALID_THREADID); tl_assert(enabled == !! enabled); DRD_(g_threadinfo)[tid].is_recording_loads = enabled; } /** Specify whether memory stores should be recorded. */ void DRD_(thread_set_record_stores)(const DrdThreadId tid, const Bool enabled) { tl_assert(0 <= (int)tid && tid < DRD_N_THREADS && tid != DRD_INVALID_THREADID); tl_assert(enabled == !! enabled); DRD_(g_threadinfo)[tid].is_recording_stores = enabled; } /** * Print the segment information for all threads. * * This function is only used for debugging purposes. */ void DRD_(thread_print_all)(void) { unsigned i; Segment* p; for (i = 0; i < DRD_N_THREADS; i++) { p = DRD_(g_threadinfo)[i].sg_first; if (p) { VG_(printf)("**************\n" "* thread %3d (%d/%d/%d/%d/0x%lx/%d) *\n" "**************\n", i, DRD_(g_threadinfo)[i].valid, DRD_(g_threadinfo)[i].vg_thread_exists, DRD_(g_threadinfo)[i].vg_threadid, DRD_(g_threadinfo)[i].posix_thread_exists, DRD_(g_threadinfo)[i].pt_threadid, DRD_(g_threadinfo)[i].detached_posix_thread); for ( ; p; p = p->thr_next) DRD_(sg_print)(p); } } } /** Show a call stack involved in a data race. */ static void show_call_stack(const DrdThreadId tid, ExeContext* const callstack) { const ThreadId vg_tid = DRD_(DrdThreadIdToVgThreadId)(tid); if (vg_tid != VG_INVALID_THREADID) { if (callstack) VG_(pp_ExeContext)(callstack); else VG_(get_and_pp_StackTrace)(vg_tid, VG_(clo_backtrace_size)); } else { if (!VG_(clo_xml)) VG_(message)(Vg_UserMsg, " (thread finished, call stack no longer available)\n"); } } /** Print information about the segments involved in a data race. */ static void thread_report_conflicting_segments_segment(const DrdThreadId tid, const Addr addr, const SizeT size, const BmAccessTypeT access_type, const Segment* const p) { unsigned i; tl_assert(0 <= (int)tid && tid < DRD_N_THREADS && tid != DRD_INVALID_THREADID); tl_assert(p); for (i = 0; i < DRD_N_THREADS; i++) { if (i != tid) { Segment* q; for (q = DRD_(g_threadinfo)[i].sg_last; q; q = q->thr_prev) { /* * Since q iterates over the segments of thread i in order of * decreasing vector clocks, if q->vc <= p->vc, then * q->next->vc <= p->vc will also hold. Hence, break out of the * loop once this condition is met. */ if (DRD_(vc_lte)(&q->vc, &p->vc)) break; if (!DRD_(vc_lte)(&p->vc, &q->vc)) { if (DRD_(bm_has_conflict_with)(DRD_(sg_bm)(q), addr, addr + size, access_type)) { Segment* q_next; tl_assert(q->stacktrace); if (VG_(clo_xml)) VG_(printf_xml)(" <other_segment_start>\n"); else VG_(message)(Vg_UserMsg, "Other segment start (thread %d)\n", i); show_call_stack(i, q->stacktrace); if (VG_(clo_xml)) VG_(printf_xml)(" </other_segment_start>\n" " <other_segment_end>\n"); else VG_(message)(Vg_UserMsg, "Other segment end (thread %d)\n", i); q_next = q->thr_next; show_call_stack(i, q_next ? q_next->stacktrace : 0); if (VG_(clo_xml)) VG_(printf_xml)(" </other_segment_end>\n"); } } } } } } /** Print information about all segments involved in a data race. */ void DRD_(thread_report_conflicting_segments)(const DrdThreadId tid, const Addr addr, const SizeT size, const BmAccessTypeT access_type) { Segment* p; tl_assert(0 <= (int)tid && tid < DRD_N_THREADS && tid != DRD_INVALID_THREADID); for (p = DRD_(g_threadinfo)[tid].sg_first; p; p = p->thr_next) { if (DRD_(bm_has)(DRD_(sg_bm)(p), addr, addr + size, access_type)) thread_report_conflicting_segments_segment(tid, addr, size, access_type, p); } } /** * Verify whether the conflict set for thread tid is up to date. Only perform * the check if the environment variable DRD_VERIFY_CONFLICT_SET has been set. */ static Bool thread_conflict_set_up_to_date(const DrdThreadId tid) { static int do_verify_conflict_set = -1; Bool result; struct bitmap* computed_conflict_set = 0; if (do_verify_conflict_set < 0) do_verify_conflict_set = VG_(getenv)("DRD_VERIFY_CONFLICT_SET") != 0; if (do_verify_conflict_set == 0) return True; thread_compute_conflict_set(&computed_conflict_set, tid); result = DRD_(bm_equal)(DRD_(g_conflict_set), computed_conflict_set); if (! result) { VG_(printf)("actual conflict set:\n"); DRD_(bm_print)(DRD_(g_conflict_set)); VG_(printf)("\n"); VG_(printf)("computed conflict set:\n"); DRD_(bm_print)(computed_conflict_set); VG_(printf)("\n"); } DRD_(bm_delete)(computed_conflict_set); return result; } /** * Compute the conflict set: a bitmap that represents the union of all memory * accesses of all segments that are unordered to the current segment of the * thread tid. */ static void thread_compute_conflict_set(struct bitmap** conflict_set, const DrdThreadId tid) { Segment* p; tl_assert(0 <= (int)tid && tid < DRD_N_THREADS && tid != DRD_INVALID_THREADID); tl_assert(tid == DRD_(g_drd_running_tid)); s_compute_conflict_set_count++; s_conflict_set_bitmap_creation_count -= DRD_(bm_get_bitmap_creation_count)(); s_conflict_set_bitmap2_creation_count -= DRD_(bm_get_bitmap2_creation_count)(); if (*conflict_set) { DRD_(bm_cleanup)(*conflict_set); DRD_(bm_init)(*conflict_set); } else { *conflict_set = DRD_(bm_new)(); } if (s_trace_conflict_set) { char* str; str = DRD_(vc_aprint)(DRD_(thread_get_vc)(tid)); VG_(message)(Vg_DebugMsg, "computing conflict set for thread %d with vc %s\n", tid, str); VG_(free)(str); } p = DRD_(g_threadinfo)[tid].sg_last; { unsigned j; if (s_trace_conflict_set) { char* vc; vc = DRD_(vc_aprint)(&p->vc); VG_(message)(Vg_DebugMsg, "conflict set: thread [%d] at vc %s\n", tid, vc); VG_(free)(vc); } for (j = 0; j < DRD_N_THREADS; j++) { if (j != tid && DRD_(IsValidDrdThreadId)(j)) { Segment* q; for (q = DRD_(g_threadinfo)[j].sg_last; q; q = q->thr_prev) { if (!DRD_(vc_lte)(&q->vc, &p->vc) && !DRD_(vc_lte)(&p->vc, &q->vc)) { if (s_trace_conflict_set) { char* str; str = DRD_(vc_aprint)(&q->vc); VG_(message)(Vg_DebugMsg, "conflict set: [%d] merging segment %s\n", j, str); VG_(free)(str); } DRD_(bm_merge2)(*conflict_set, DRD_(sg_bm)(q)); } else { if (s_trace_conflict_set) { char* str; str = DRD_(vc_aprint)(&q->vc); VG_(message)(Vg_DebugMsg, "conflict set: [%d] ignoring segment %s\n", j, str); VG_(free)(str); } } } } } } s_conflict_set_bitmap_creation_count += DRD_(bm_get_bitmap_creation_count)(); s_conflict_set_bitmap2_creation_count += DRD_(bm_get_bitmap2_creation_count)(); if (s_trace_conflict_set_bm) { VG_(message)(Vg_DebugMsg, "[%d] new conflict set:\n", tid); DRD_(bm_print)(*conflict_set); VG_(message)(Vg_DebugMsg, "[%d] end of new conflict set.\n", tid); } } /** * Update the conflict set after the vector clock of thread tid has been * updated from old_vc to its current value, either because a new segment has * been created or because of a synchronization operation. */ void DRD_(thread_update_conflict_set)(const DrdThreadId tid, const VectorClock* const old_vc) { const VectorClock* new_vc; Segment* p; unsigned j; tl_assert(0 <= (int)tid && tid < DRD_N_THREADS && tid != DRD_INVALID_THREADID); tl_assert(old_vc); tl_assert(tid == DRD_(g_drd_running_tid)); tl_assert(DRD_(g_conflict_set)); if (s_trace_conflict_set) { char* str; str = DRD_(vc_aprint)(DRD_(thread_get_vc)(tid)); VG_(message)(Vg_DebugMsg, "updating conflict set for thread %d with vc %s\n", tid, str); VG_(free)(str); } new_vc = DRD_(thread_get_vc)(tid); tl_assert(DRD_(vc_lte)(old_vc, new_vc)); DRD_(bm_unmark)(DRD_(g_conflict_set)); for (j = 0; j < DRD_N_THREADS; j++) { Segment* q; if (j == tid || ! DRD_(IsValidDrdThreadId)(j)) continue; for (q = DRD_(g_threadinfo)[j].sg_last; q && !DRD_(vc_lte)(&q->vc, new_vc); q = q->thr_prev) { const Bool included_in_old_conflict_set = !DRD_(vc_lte)(old_vc, &q->vc); const Bool included_in_new_conflict_set = !DRD_(vc_lte)(new_vc, &q->vc); if (UNLIKELY(s_trace_conflict_set)) { char* str; str = DRD_(vc_aprint)(&q->vc); VG_(message)(Vg_DebugMsg, "conflict set: [%d] %s segment %s\n", j, included_in_old_conflict_set != included_in_new_conflict_set ? "merging" : "ignoring", str); VG_(free)(str); } if (included_in_old_conflict_set != included_in_new_conflict_set) DRD_(bm_mark)(DRD_(g_conflict_set), DRD_(sg_bm)(q)); } for ( ; q && !DRD_(vc_lte)(&q->vc, old_vc); q = q->thr_prev) { const Bool included_in_old_conflict_set = !DRD_(vc_lte)(old_vc, &q->vc); const Bool included_in_new_conflict_set = !DRD_(vc_lte)(&q->vc, new_vc) && !DRD_(vc_lte)(new_vc, &q->vc); if (UNLIKELY(s_trace_conflict_set)) { char* str; str = DRD_(vc_aprint)(&q->vc); VG_(message)(Vg_DebugMsg, "conflict set: [%d] %s segment %s\n", j, included_in_old_conflict_set != included_in_new_conflict_set ? "merging" : "ignoring", str); VG_(free)(str); } if (included_in_old_conflict_set != included_in_new_conflict_set) DRD_(bm_mark)(DRD_(g_conflict_set), DRD_(sg_bm)(q)); } } DRD_(bm_clear_marked)(DRD_(g_conflict_set)); p = DRD_(g_threadinfo)[tid].sg_last; for (j = 0; j < DRD_N_THREADS; j++) { if (j != tid && DRD_(IsValidDrdThreadId)(j)) { Segment* q; for (q = DRD_(g_threadinfo)[j].sg_last; q && !DRD_(vc_lte)(&q->vc, &p->vc); q = q->thr_prev) { if (!DRD_(vc_lte)(&p->vc, &q->vc)) DRD_(bm_merge2_marked)(DRD_(g_conflict_set), DRD_(sg_bm)(q)); } } } DRD_(bm_remove_cleared_marked)(DRD_(g_conflict_set)); s_update_conflict_set_count++; if (s_trace_conflict_set_bm) { VG_(message)(Vg_DebugMsg, "[%d] updated conflict set:\n", tid); DRD_(bm_print)(DRD_(g_conflict_set)); VG_(message)(Vg_DebugMsg, "[%d] end of updated conflict set.\n", tid); } tl_assert(thread_conflict_set_up_to_date(DRD_(g_drd_running_tid))); } /** Report the number of context switches performed. */ ULong DRD_(thread_get_context_switch_count)(void) { return s_context_switch_count; } /** Report the number of ordered segments that have been discarded. */ ULong DRD_(thread_get_discard_ordered_segments_count)(void) { return s_discard_ordered_segments_count; } /** Return how many times the conflict set has been updated entirely. */ ULong DRD_(thread_get_compute_conflict_set_count)() { return s_compute_conflict_set_count; } /** Return how many times the conflict set has been updated partially. */ ULong DRD_(thread_get_update_conflict_set_count)(void) { return s_update_conflict_set_count; } /** * Return how many times the conflict set has been updated partially * because a new segment has been created. */ ULong DRD_(thread_get_update_conflict_set_new_sg_count)(void) { return s_update_conflict_set_new_sg_count; } /** * Return how many times the conflict set has been updated partially * because of combining vector clocks due to synchronization operations * other than reader/writer lock or barrier operations. */ ULong DRD_(thread_get_update_conflict_set_sync_count)(void) { return s_update_conflict_set_sync_count; } /** * Return how many times the conflict set has been updated partially * because of thread joins. */ ULong DRD_(thread_get_update_conflict_set_join_count)(void) { return s_update_conflict_set_join_count; } /** * Return the number of first-level bitmaps that have been created during * conflict set updates. */ ULong DRD_(thread_get_conflict_set_bitmap_creation_count)(void) { return s_conflict_set_bitmap_creation_count; } /** * Return the number of second-level bitmaps that have been created during * conflict set updates. */ ULong DRD_(thread_get_conflict_set_bitmap2_creation_count)(void) { return s_conflict_set_bitmap2_creation_count; }