//===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Bitcode writer implementation. // //===----------------------------------------------------------------------===// #include "ReaderWriter_3_2.h" #include "legacy_bitcode.h" #include "ValueEnumerator.h" #include "llvm/ADT/Triple.h" #include "llvm/Bitcode/BitstreamWriter.h" #include "llvm/Bitcode/LLVMBitCodes.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" #include "llvm/IR/ValueSymbolTable.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/Program.h" #include "llvm/Support/raw_ostream.h" #include <cctype> #include <map> using namespace llvm; static bool EnablePreserveUseListOrdering = false; /// These are manifest constants used by the bitcode writer. They do not need to /// be kept in sync with the reader, but need to be consistent within this file. enum { CurVersion = 0, // VALUE_SYMTAB_BLOCK abbrev id's. VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, VST_ENTRY_7_ABBREV, VST_ENTRY_6_ABBREV, VST_BBENTRY_6_ABBREV, // CONSTANTS_BLOCK abbrev id's. CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, CONSTANTS_INTEGER_ABBREV, CONSTANTS_CE_CAST_Abbrev, CONSTANTS_NULL_Abbrev, // FUNCTION_BLOCK abbrev id's. FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, FUNCTION_INST_BINOP_ABBREV, FUNCTION_INST_BINOP_FLAGS_ABBREV, FUNCTION_INST_CAST_ABBREV, FUNCTION_INST_RET_VOID_ABBREV, FUNCTION_INST_RET_VAL_ABBREV, FUNCTION_INST_UNREACHABLE_ABBREV, // SwitchInst Magic SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex }; static unsigned GetEncodedCastOpcode(unsigned Opcode) { switch (Opcode) { default: llvm_unreachable("Unknown cast instruction!"); case Instruction::Trunc : return bitc::CAST_TRUNC; case Instruction::ZExt : return bitc::CAST_ZEXT; case Instruction::SExt : return bitc::CAST_SEXT; case Instruction::FPToUI : return bitc::CAST_FPTOUI; case Instruction::FPToSI : return bitc::CAST_FPTOSI; case Instruction::UIToFP : return bitc::CAST_UITOFP; case Instruction::SIToFP : return bitc::CAST_SITOFP; case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; case Instruction::FPExt : return bitc::CAST_FPEXT; case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; case Instruction::BitCast : return bitc::CAST_BITCAST; } } static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { switch (Opcode) { default: llvm_unreachable("Unknown binary instruction!"); case Instruction::Add: case Instruction::FAdd: return bitc::BINOP_ADD; case Instruction::Sub: case Instruction::FSub: return bitc::BINOP_SUB; case Instruction::Mul: case Instruction::FMul: return bitc::BINOP_MUL; case Instruction::UDiv: return bitc::BINOP_UDIV; case Instruction::FDiv: case Instruction::SDiv: return bitc::BINOP_SDIV; case Instruction::URem: return bitc::BINOP_UREM; case Instruction::FRem: case Instruction::SRem: return bitc::BINOP_SREM; case Instruction::Shl: return bitc::BINOP_SHL; case Instruction::LShr: return bitc::BINOP_LSHR; case Instruction::AShr: return bitc::BINOP_ASHR; case Instruction::And: return bitc::BINOP_AND; case Instruction::Or: return bitc::BINOP_OR; case Instruction::Xor: return bitc::BINOP_XOR; } } static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { switch (Op) { default: llvm_unreachable("Unknown RMW operation!"); case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; case AtomicRMWInst::Add: return bitc::RMW_ADD; case AtomicRMWInst::Sub: return bitc::RMW_SUB; case AtomicRMWInst::And: return bitc::RMW_AND; case AtomicRMWInst::Nand: return bitc::RMW_NAND; case AtomicRMWInst::Or: return bitc::RMW_OR; case AtomicRMWInst::Xor: return bitc::RMW_XOR; case AtomicRMWInst::Max: return bitc::RMW_MAX; case AtomicRMWInst::Min: return bitc::RMW_MIN; case AtomicRMWInst::UMax: return bitc::RMW_UMAX; case AtomicRMWInst::UMin: return bitc::RMW_UMIN; } } static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { switch (Ordering) { case NotAtomic: return bitc::ORDERING_NOTATOMIC; case Unordered: return bitc::ORDERING_UNORDERED; case Monotonic: return bitc::ORDERING_MONOTONIC; case Acquire: return bitc::ORDERING_ACQUIRE; case Release: return bitc::ORDERING_RELEASE; case AcquireRelease: return bitc::ORDERING_ACQREL; case SequentiallyConsistent: return bitc::ORDERING_SEQCST; } llvm_unreachable("Invalid ordering"); } static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { switch (SynchScope) { case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; } llvm_unreachable("Invalid synch scope"); } static void WriteStringRecord(unsigned Code, StringRef Str, unsigned AbbrevToUse, BitstreamWriter &Stream) { SmallVector<unsigned, 64> Vals; // Code: [strchar x N] for (unsigned i = 0, e = Str.size(); i != e; ++i) { if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) AbbrevToUse = 0; Vals.push_back(Str[i]); } // Emit the finished record. Stream.EmitRecord(Code, Vals, AbbrevToUse); } // Emit information about parameter attributes. static void WriteAttributeTable(const llvm_3_2::ValueEnumerator &VE, BitstreamWriter &Stream) { const std::vector<AttributeSet> &Attrs = VE.getAttributes(); if (Attrs.empty()) return; Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); SmallVector<uint64_t, 64> Record; for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { const AttributeSet &A = Attrs[i]; for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { Record.push_back(A.getSlotIndex(i)); Record.push_back(encodeLLVMAttributesForBitcode(A, A.getSlotIndex(i))); } // This needs to use the 3.2 entry type Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY_OLD, Record); Record.clear(); } Stream.ExitBlock(); } /// WriteTypeTable - Write out the type table for a module. static void WriteTypeTable(const llvm_3_2::ValueEnumerator &VE, BitstreamWriter &Stream) { const llvm_3_2::ValueEnumerator::TypeList &TypeList = VE.getTypes(); Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); SmallVector<uint64_t, 64> TypeVals; uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1); // Abbrev for TYPE_CODE_POINTER. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); // Abbrev for TYPE_CODE_FUNCTION. Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); // Abbrev for TYPE_CODE_STRUCT_ANON. Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); // Abbrev for TYPE_CODE_STRUCT_NAME. Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); // Abbrev for TYPE_CODE_STRUCT_NAMED. Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); // Abbrev for TYPE_CODE_ARRAY. Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); // Emit an entry count so the reader can reserve space. TypeVals.push_back(TypeList.size()); Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); TypeVals.clear(); // Loop over all of the types, emitting each in turn. for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { Type *T = TypeList[i]; int AbbrevToUse = 0; unsigned Code = 0; switch (T->getTypeID()) { default: llvm_unreachable("Unknown type!"); case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; case Type::IntegerTyID: // INTEGER: [width] Code = bitc::TYPE_CODE_INTEGER; TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); break; case Type::PointerTyID: { PointerType *PTy = cast<PointerType>(T); // POINTER: [pointee type, address space] Code = bitc::TYPE_CODE_POINTER; TypeVals.push_back(VE.getTypeID(PTy->getElementType())); unsigned AddressSpace = PTy->getAddressSpace(); TypeVals.push_back(AddressSpace); if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; break; } case Type::FunctionTyID: { FunctionType *FT = cast<FunctionType>(T); // FUNCTION: [isvararg, retty, paramty x N] Code = bitc::TYPE_CODE_FUNCTION; TypeVals.push_back(FT->isVarArg()); TypeVals.push_back(VE.getTypeID(FT->getReturnType())); for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); AbbrevToUse = FunctionAbbrev; break; } case Type::StructTyID: { StructType *ST = cast<StructType>(T); // STRUCT: [ispacked, eltty x N] TypeVals.push_back(ST->isPacked()); // Output all of the element types. for (StructType::element_iterator I = ST->element_begin(), E = ST->element_end(); I != E; ++I) TypeVals.push_back(VE.getTypeID(*I)); if (ST->isLiteral()) { Code = bitc::TYPE_CODE_STRUCT_ANON; AbbrevToUse = StructAnonAbbrev; } else { if (ST->isOpaque()) { Code = bitc::TYPE_CODE_OPAQUE; } else { Code = bitc::TYPE_CODE_STRUCT_NAMED; AbbrevToUse = StructNamedAbbrev; } // Emit the name if it is present. if (!ST->getName().empty()) WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), StructNameAbbrev, Stream); } break; } case Type::ArrayTyID: { ArrayType *AT = cast<ArrayType>(T); // ARRAY: [numelts, eltty] Code = bitc::TYPE_CODE_ARRAY; TypeVals.push_back(AT->getNumElements()); TypeVals.push_back(VE.getTypeID(AT->getElementType())); AbbrevToUse = ArrayAbbrev; break; } case Type::VectorTyID: { VectorType *VT = cast<VectorType>(T); // VECTOR [numelts, eltty] Code = bitc::TYPE_CODE_VECTOR; TypeVals.push_back(VT->getNumElements()); TypeVals.push_back(VE.getTypeID(VT->getElementType())); break; } } // Emit the finished record. Stream.EmitRecord(Code, TypeVals, AbbrevToUse); TypeVals.clear(); } Stream.ExitBlock(); } static unsigned getEncodedLinkage(const GlobalValue *GV) { switch (GV->getLinkage()) { case GlobalValue::ExternalLinkage: return 0; case GlobalValue::WeakAnyLinkage: return 1; case GlobalValue::AppendingLinkage: return 2; case GlobalValue::InternalLinkage: return 3; case GlobalValue::LinkOnceAnyLinkage: return 4; case GlobalValue::DLLImportLinkage: return 5; case GlobalValue::DLLExportLinkage: return 6; case GlobalValue::ExternalWeakLinkage: return 7; case GlobalValue::CommonLinkage: return 8; case GlobalValue::PrivateLinkage: return 9; case GlobalValue::WeakODRLinkage: return 10; case GlobalValue::LinkOnceODRLinkage: return 11; case GlobalValue::AvailableExternallyLinkage: return 12; case GlobalValue::LinkerPrivateLinkage: return 13; case GlobalValue::LinkerPrivateWeakLinkage: return 14; case GlobalValue::LinkOnceODRAutoHideLinkage: return 15; } llvm_unreachable("Invalid linkage"); } static unsigned getEncodedVisibility(const GlobalValue *GV) { switch (GV->getVisibility()) { case GlobalValue::DefaultVisibility: return 0; case GlobalValue::HiddenVisibility: return 1; case GlobalValue::ProtectedVisibility: return 2; } llvm_unreachable("Invalid visibility"); } static unsigned getEncodedThreadLocalMode(const GlobalVariable *GV) { switch (GV->getThreadLocalMode()) { case GlobalVariable::NotThreadLocal: return 0; case GlobalVariable::GeneralDynamicTLSModel: return 1; case GlobalVariable::LocalDynamicTLSModel: return 2; case GlobalVariable::InitialExecTLSModel: return 3; case GlobalVariable::LocalExecTLSModel: return 4; } llvm_unreachable("Invalid TLS model"); } // Emit top-level description of module, including target triple, inline asm, // descriptors for global variables, and function prototype info. static void WriteModuleInfo(const Module *M, const llvm_3_2::ValueEnumerator &VE, BitstreamWriter &Stream) { // Emit various pieces of data attached to a module. if (!M->getTargetTriple().empty()) WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 0/*TODO*/, Stream); if (!M->getDataLayout().empty()) WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 0/*TODO*/, Stream); if (!M->getModuleInlineAsm().empty()) WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 0/*TODO*/, Stream); // Emit information about sections and GC, computing how many there are. Also // compute the maximum alignment value. std::map<std::string, unsigned> SectionMap; std::map<std::string, unsigned> GCMap; unsigned MaxAlignment = 0; unsigned MaxGlobalType = 0; for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); GV != E; ++GV) { MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); if (GV->hasSection()) { // Give section names unique ID's. unsigned &Entry = SectionMap[GV->getSection()]; if (!Entry) { WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 0/*TODO*/, Stream); Entry = SectionMap.size(); } } } for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { MaxAlignment = std::max(MaxAlignment, F->getAlignment()); if (F->hasSection()) { // Give section names unique ID's. unsigned &Entry = SectionMap[F->getSection()]; if (!Entry) { WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 0/*TODO*/, Stream); Entry = SectionMap.size(); } } if (F->hasGC()) { // Same for GC names. unsigned &Entry = GCMap[F->getGC()]; if (!Entry) { WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 0/*TODO*/, Stream); Entry = GCMap.size(); } } } // Emit abbrev for globals, now that we know # sections and max alignment. unsigned SimpleGVarAbbrev = 0; if (!M->global_empty()) { // Add an abbrev for common globals with no visibility or thread localness. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(MaxGlobalType+1))); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. if (MaxAlignment == 0) // Alignment. Abbv->Add(BitCodeAbbrevOp(0)); else { unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(MaxEncAlignment+1))); } if (SectionMap.empty()) // Section. Abbv->Add(BitCodeAbbrevOp(0)); else Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(SectionMap.size()+1))); // Don't bother emitting vis + thread local. SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); } // Emit the global variable information. SmallVector<unsigned, 64> Vals; for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); GV != E; ++GV) { unsigned AbbrevToUse = 0; // GLOBALVAR: [type, isconst, initid, // linkage, alignment, section, visibility, threadlocal, // unnamed_addr] Vals.push_back(VE.getTypeID(GV->getType())); Vals.push_back(GV->isConstant()); Vals.push_back(GV->isDeclaration() ? 0 : (VE.getValueID(GV->getInitializer()) + 1)); Vals.push_back(getEncodedLinkage(GV)); Vals.push_back(Log2_32(GV->getAlignment())+1); Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); if (GV->isThreadLocal() || GV->getVisibility() != GlobalValue::DefaultVisibility || GV->hasUnnamedAddr() || GV->isExternallyInitialized()) { Vals.push_back(getEncodedVisibility(GV)); Vals.push_back(getEncodedThreadLocalMode(GV)); Vals.push_back(GV->hasUnnamedAddr()); Vals.push_back(GV->isExternallyInitialized()); } else { AbbrevToUse = SimpleGVarAbbrev; } Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); Vals.clear(); } // Emit the function proto information. for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, // section, visibility, gc, unnamed_addr] Vals.push_back(VE.getTypeID(F->getType())); Vals.push_back(F->getCallingConv()); Vals.push_back(F->isDeclaration()); Vals.push_back(getEncodedLinkage(F)); Vals.push_back(VE.getAttributeID(F->getAttributes())); Vals.push_back(Log2_32(F->getAlignment())+1); Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); Vals.push_back(getEncodedVisibility(F)); Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); Vals.push_back(F->hasUnnamedAddr()); unsigned AbbrevToUse = 0; Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); Vals.clear(); } // Emit the alias information. for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); AI != E; ++AI) { // ALIAS: [alias type, aliasee val#, linkage, visibility] Vals.push_back(VE.getTypeID(AI->getType())); Vals.push_back(VE.getValueID(AI->getAliasee())); Vals.push_back(getEncodedLinkage(AI)); Vals.push_back(getEncodedVisibility(AI)); unsigned AbbrevToUse = 0; Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); Vals.clear(); } } static uint64_t GetOptimizationFlags(const Value *V) { uint64_t Flags = 0; if (const OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { if (OBO->hasNoSignedWrap()) Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; if (OBO->hasNoUnsignedWrap()) Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; } else if (const PossiblyExactOperator *PEO = dyn_cast<PossiblyExactOperator>(V)) { if (PEO->isExact()) Flags |= 1 << bitc::PEO_EXACT; } else if (const FPMathOperator *FPMO = dyn_cast<const FPMathOperator>(V)) { // FIXME(srhines): We don't handle fast math in llvm-rs-cc today. if (false) { if (FPMO->hasUnsafeAlgebra()) Flags |= FastMathFlags::UnsafeAlgebra; if (FPMO->hasNoNaNs()) Flags |= FastMathFlags::NoNaNs; if (FPMO->hasNoInfs()) Flags |= FastMathFlags::NoInfs; if (FPMO->hasNoSignedZeros()) Flags |= FastMathFlags::NoSignedZeros; if (FPMO->hasAllowReciprocal()) Flags |= FastMathFlags::AllowReciprocal; } } return Flags; } static void WriteMDNode(const MDNode *N, const llvm_3_2::ValueEnumerator &VE, BitstreamWriter &Stream, SmallVector<uint64_t, 64> &Record) { for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { if (N->getOperand(i)) { Record.push_back(VE.getTypeID(N->getOperand(i)->getType())); Record.push_back(VE.getValueID(N->getOperand(i))); } else { Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); Record.push_back(0); } } unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE : bitc::METADATA_NODE; Stream.EmitRecord(MDCode, Record, 0); Record.clear(); } static void WriteModuleMetadata(const Module *M, const llvm_3_2::ValueEnumerator &VE, BitstreamWriter &Stream) { const llvm_3_2::ValueEnumerator::ValueList &Vals = VE.getMDValues(); bool StartedMetadataBlock = false; unsigned MDSAbbrev = 0; SmallVector<uint64_t, 64> Record; for (unsigned i = 0, e = Vals.size(); i != e; ++i) { if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { if (!N->isFunctionLocal() || !N->getFunction()) { if (!StartedMetadataBlock) { Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); StartedMetadataBlock = true; } WriteMDNode(N, VE, Stream, Record); } } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { if (!StartedMetadataBlock) { Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); // Abbrev for METADATA_STRING. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); MDSAbbrev = Stream.EmitAbbrev(Abbv); StartedMetadataBlock = true; } // Code: [strchar x N] Record.append(MDS->begin(), MDS->end()); // Emit the finished record. Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); Record.clear(); } } // Write named metadata. for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), E = M->named_metadata_end(); I != E; ++I) { const NamedMDNode *NMD = I; if (!StartedMetadataBlock) { Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); StartedMetadataBlock = true; } // Write name. StringRef Str = NMD->getName(); for (unsigned i = 0, e = Str.size(); i != e; ++i) Record.push_back(Str[i]); Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); Record.clear(); // Write named metadata operands. for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) Record.push_back(VE.getValueID(NMD->getOperand(i))); Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); Record.clear(); } if (StartedMetadataBlock) Stream.ExitBlock(); } static void WriteFunctionLocalMetadata(const Function &F, const llvm_3_2::ValueEnumerator &VE, BitstreamWriter &Stream) { bool StartedMetadataBlock = false; SmallVector<uint64_t, 64> Record; const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues(); for (unsigned i = 0, e = Vals.size(); i != e; ++i) if (const MDNode *N = Vals[i]) if (N->isFunctionLocal() && N->getFunction() == &F) { if (!StartedMetadataBlock) { Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); StartedMetadataBlock = true; } WriteMDNode(N, VE, Stream, Record); } if (StartedMetadataBlock) Stream.ExitBlock(); } static void WriteMetadataAttachment(const Function &F, const llvm_3_2::ValueEnumerator &VE, BitstreamWriter &Stream) { Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); SmallVector<uint64_t, 64> Record; // Write metadata attachments // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] SmallVector<std::pair<unsigned, MDNode*>, 4> MDs; for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) { MDs.clear(); I->getAllMetadataOtherThanDebugLoc(MDs); // If no metadata, ignore instruction. if (MDs.empty()) continue; Record.push_back(VE.getInstructionID(I)); for (unsigned i = 0, e = MDs.size(); i != e; ++i) { Record.push_back(MDs[i].first); Record.push_back(VE.getValueID(MDs[i].second)); } Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); Record.clear(); } Stream.ExitBlock(); } static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { SmallVector<uint64_t, 64> Record; // Write metadata kinds // METADATA_KIND - [n x [id, name]] SmallVector<StringRef, 4> Names; M->getMDKindNames(Names); if (Names.empty()) return; Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { Record.push_back(MDKindID); StringRef KName = Names[MDKindID]; Record.append(KName.begin(), KName.end()); Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); Record.clear(); } Stream.ExitBlock(); } static void EmitAPInt(SmallVectorImpl<uint64_t> &Vals, unsigned &Code, unsigned &AbbrevToUse, const APInt &Val, bool EmitSizeForWideNumbers = false ) { if (Val.getBitWidth() <= 64) { uint64_t V = Val.getSExtValue(); if ((int64_t)V >= 0) Vals.push_back(V << 1); else Vals.push_back((-V << 1) | 1); Code = bitc::CST_CODE_INTEGER; AbbrevToUse = CONSTANTS_INTEGER_ABBREV; } else { // Wide integers, > 64 bits in size. // We have an arbitrary precision integer value to write whose // bit width is > 64. However, in canonical unsigned integer // format it is likely that the high bits are going to be zero. // So, we only write the number of active words. unsigned NWords = Val.getActiveWords(); if (EmitSizeForWideNumbers) Vals.push_back(NWords); const uint64_t *RawWords = Val.getRawData(); for (unsigned i = 0; i != NWords; ++i) { int64_t V = RawWords[i]; if (V >= 0) Vals.push_back(V << 1); else Vals.push_back((-V << 1) | 1); } Code = bitc::CST_CODE_WIDE_INTEGER; } } static void WriteConstants(unsigned FirstVal, unsigned LastVal, const llvm_3_2::ValueEnumerator &VE, BitstreamWriter &Stream, bool isGlobal) { if (FirstVal == LastVal) return; Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); unsigned AggregateAbbrev = 0; unsigned String8Abbrev = 0; unsigned CString7Abbrev = 0; unsigned CString6Abbrev = 0; // If this is a constant pool for the module, emit module-specific abbrevs. if (isGlobal) { // Abbrev for CST_CODE_AGGREGATE. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); AggregateAbbrev = Stream.EmitAbbrev(Abbv); // Abbrev for CST_CODE_STRING. Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); String8Abbrev = Stream.EmitAbbrev(Abbv); // Abbrev for CST_CODE_CSTRING. Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); CString7Abbrev = Stream.EmitAbbrev(Abbv); // Abbrev for CST_CODE_CSTRING. Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); CString6Abbrev = Stream.EmitAbbrev(Abbv); } SmallVector<uint64_t, 64> Record; const llvm_3_2::ValueEnumerator::ValueList &Vals = VE.getValues(); Type *LastTy = 0; for (unsigned i = FirstVal; i != LastVal; ++i) { const Value *V = Vals[i].first; // If we need to switch types, do so now. if (V->getType() != LastTy) { LastTy = V->getType(); Record.push_back(VE.getTypeID(LastTy)); Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, CONSTANTS_SETTYPE_ABBREV); Record.clear(); } if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { Record.push_back(unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | unsigned(IA->getDialect()&1) << 2); // Add the asm string. const std::string &AsmStr = IA->getAsmString(); Record.push_back(AsmStr.size()); for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) Record.push_back(AsmStr[i]); // Add the constraint string. const std::string &ConstraintStr = IA->getConstraintString(); Record.push_back(ConstraintStr.size()); for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) Record.push_back(ConstraintStr[i]); Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); Record.clear(); continue; } const Constant *C = cast<Constant>(V); unsigned Code = -1U; unsigned AbbrevToUse = 0; if (C->isNullValue()) { Code = bitc::CST_CODE_NULL; } else if (isa<UndefValue>(C)) { Code = bitc::CST_CODE_UNDEF; } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { EmitAPInt(Record, Code, AbbrevToUse, IV->getValue()); } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { Code = bitc::CST_CODE_FLOAT; Type *Ty = CFP->getType(); if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); } else if (Ty->isX86_FP80Ty()) { // api needed to prevent premature destruction // bits are not in the same order as a normal i80 APInt, compensate. APInt api = CFP->getValueAPF().bitcastToAPInt(); const uint64_t *p = api.getRawData(); Record.push_back((p[1] << 48) | (p[0] >> 16)); Record.push_back(p[0] & 0xffffLL); } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { APInt api = CFP->getValueAPF().bitcastToAPInt(); const uint64_t *p = api.getRawData(); Record.push_back(p[0]); Record.push_back(p[1]); } else { assert (0 && "Unknown FP type!"); } } else if (isa<ConstantDataSequential>(C) && cast<ConstantDataSequential>(C)->isString()) { const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); // Emit constant strings specially. unsigned NumElts = Str->getNumElements(); // If this is a null-terminated string, use the denser CSTRING encoding. if (Str->isCString()) { Code = bitc::CST_CODE_CSTRING; --NumElts; // Don't encode the null, which isn't allowed by char6. } else { Code = bitc::CST_CODE_STRING; AbbrevToUse = String8Abbrev; } bool isCStr7 = Code == bitc::CST_CODE_CSTRING; bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; for (unsigned i = 0; i != NumElts; ++i) { unsigned char V = Str->getElementAsInteger(i); Record.push_back(V); isCStr7 &= (V & 128) == 0; if (isCStrChar6) isCStrChar6 = BitCodeAbbrevOp::isChar6(V); } if (isCStrChar6) AbbrevToUse = CString6Abbrev; else if (isCStr7) AbbrevToUse = CString7Abbrev; } else if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(C)) { Code = bitc::CST_CODE_DATA; Type *EltTy = CDS->getType()->getElementType(); if (isa<IntegerType>(EltTy)) { for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) Record.push_back(CDS->getElementAsInteger(i)); } else if (EltTy->isFloatTy()) { for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { union { float F; uint32_t I; }; F = CDS->getElementAsFloat(i); Record.push_back(I); } } else { assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { union { double F; uint64_t I; }; F = CDS->getElementAsDouble(i); Record.push_back(I); } } } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || isa<ConstantVector>(C)) { Code = bitc::CST_CODE_AGGREGATE; for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) Record.push_back(VE.getValueID(C->getOperand(i))); AbbrevToUse = AggregateAbbrev; } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { switch (CE->getOpcode()) { default: if (Instruction::isCast(CE->getOpcode())) { Code = bitc::CST_CODE_CE_CAST; Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); Record.push_back(VE.getValueID(C->getOperand(0))); AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; } else { assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); Code = bitc::CST_CODE_CE_BINOP; Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); Record.push_back(VE.getValueID(C->getOperand(0))); Record.push_back(VE.getValueID(C->getOperand(1))); uint64_t Flags = GetOptimizationFlags(CE); if (Flags != 0) Record.push_back(Flags); } break; case Instruction::GetElementPtr: Code = bitc::CST_CODE_CE_GEP; if (cast<GEPOperator>(C)->isInBounds()) Code = bitc::CST_CODE_CE_INBOUNDS_GEP; for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); Record.push_back(VE.getValueID(C->getOperand(i))); } break; case Instruction::Select: Code = bitc::CST_CODE_CE_SELECT; Record.push_back(VE.getValueID(C->getOperand(0))); Record.push_back(VE.getValueID(C->getOperand(1))); Record.push_back(VE.getValueID(C->getOperand(2))); break; case Instruction::ExtractElement: Code = bitc::CST_CODE_CE_EXTRACTELT; Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); Record.push_back(VE.getValueID(C->getOperand(0))); Record.push_back(VE.getValueID(C->getOperand(1))); break; case Instruction::InsertElement: Code = bitc::CST_CODE_CE_INSERTELT; Record.push_back(VE.getValueID(C->getOperand(0))); Record.push_back(VE.getValueID(C->getOperand(1))); Record.push_back(VE.getValueID(C->getOperand(2))); break; case Instruction::ShuffleVector: // If the return type and argument types are the same, this is a // standard shufflevector instruction. If the types are different, // then the shuffle is widening or truncating the input vectors, and // the argument type must also be encoded. if (C->getType() == C->getOperand(0)->getType()) { Code = bitc::CST_CODE_CE_SHUFFLEVEC; } else { Code = bitc::CST_CODE_CE_SHUFVEC_EX; Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); } Record.push_back(VE.getValueID(C->getOperand(0))); Record.push_back(VE.getValueID(C->getOperand(1))); Record.push_back(VE.getValueID(C->getOperand(2))); break; case Instruction::ICmp: case Instruction::FCmp: Code = bitc::CST_CODE_CE_CMP; Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); Record.push_back(VE.getValueID(C->getOperand(0))); Record.push_back(VE.getValueID(C->getOperand(1))); Record.push_back(CE->getPredicate()); break; } } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { Code = bitc::CST_CODE_BLOCKADDRESS; Record.push_back(VE.getTypeID(BA->getFunction()->getType())); Record.push_back(VE.getValueID(BA->getFunction())); Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); } else { #ifndef NDEBUG C->dump(); #endif llvm_unreachable("Unknown constant!"); } Stream.EmitRecord(Code, Record, AbbrevToUse); Record.clear(); } Stream.ExitBlock(); } static void WriteModuleConstants(const llvm_3_2::ValueEnumerator &VE, BitstreamWriter &Stream) { const llvm_3_2::ValueEnumerator::ValueList &Vals = VE.getValues(); // Find the first constant to emit, which is the first non-globalvalue value. // We know globalvalues have been emitted by WriteModuleInfo. for (unsigned i = 0, e = Vals.size(); i != e; ++i) { if (!isa<GlobalValue>(Vals[i].first)) { WriteConstants(i, Vals.size(), VE, Stream, true); return; } } } /// PushValueAndType - The file has to encode both the value and type id for /// many values, because we need to know what type to create for forward /// references. However, most operands are not forward references, so this type /// field is not needed. /// /// This function adds V's value ID to Vals. If the value ID is higher than the /// instruction ID, then it is a forward reference, and it also includes the /// type ID. static bool PushValueAndType(const Value *V, unsigned InstID, SmallVector<unsigned, 64> &Vals, llvm_3_2::ValueEnumerator &VE) { unsigned ValID = VE.getValueID(V); Vals.push_back(ValID); if (ValID >= InstID) { Vals.push_back(VE.getTypeID(V->getType())); return true; } return false; } /// WriteInstruction - Emit an instruction to the specified stream. static void WriteInstruction(const Instruction &I, unsigned InstID, llvm_3_2::ValueEnumerator &VE, BitstreamWriter &Stream, SmallVector<unsigned, 64> &Vals) { unsigned Code = 0; unsigned AbbrevToUse = 0; VE.setInstructionID(&I); switch (I.getOpcode()) { default: if (Instruction::isCast(I.getOpcode())) { Code = bitc::FUNC_CODE_INST_CAST; if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) AbbrevToUse = FUNCTION_INST_CAST_ABBREV; Vals.push_back(VE.getTypeID(I.getType())); Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); } else { assert(isa<BinaryOperator>(I) && "Unknown instruction!"); Code = bitc::FUNC_CODE_INST_BINOP; if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; Vals.push_back(VE.getValueID(I.getOperand(1))); Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); uint64_t Flags = GetOptimizationFlags(&I); if (Flags != 0) { if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; Vals.push_back(Flags); } } break; case Instruction::GetElementPtr: Code = bitc::FUNC_CODE_INST_GEP; if (cast<GEPOperator>(&I)->isInBounds()) Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) PushValueAndType(I.getOperand(i), InstID, Vals, VE); break; case Instruction::ExtractValue: { Code = bitc::FUNC_CODE_INST_EXTRACTVAL; PushValueAndType(I.getOperand(0), InstID, Vals, VE); const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) Vals.push_back(*i); break; } case Instruction::InsertValue: { Code = bitc::FUNC_CODE_INST_INSERTVAL; PushValueAndType(I.getOperand(0), InstID, Vals, VE); PushValueAndType(I.getOperand(1), InstID, Vals, VE); const InsertValueInst *IVI = cast<InsertValueInst>(&I); for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) Vals.push_back(*i); break; } case Instruction::Select: Code = bitc::FUNC_CODE_INST_VSELECT; PushValueAndType(I.getOperand(1), InstID, Vals, VE); Vals.push_back(VE.getValueID(I.getOperand(2))); PushValueAndType(I.getOperand(0), InstID, Vals, VE); break; case Instruction::ExtractElement: Code = bitc::FUNC_CODE_INST_EXTRACTELT; PushValueAndType(I.getOperand(0), InstID, Vals, VE); Vals.push_back(VE.getValueID(I.getOperand(1))); break; case Instruction::InsertElement: Code = bitc::FUNC_CODE_INST_INSERTELT; PushValueAndType(I.getOperand(0), InstID, Vals, VE); Vals.push_back(VE.getValueID(I.getOperand(1))); Vals.push_back(VE.getValueID(I.getOperand(2))); break; case Instruction::ShuffleVector: Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; PushValueAndType(I.getOperand(0), InstID, Vals, VE); Vals.push_back(VE.getValueID(I.getOperand(1))); Vals.push_back(VE.getValueID(I.getOperand(2))); break; case Instruction::ICmp: case Instruction::FCmp: // compare returning Int1Ty or vector of Int1Ty Code = bitc::FUNC_CODE_INST_CMP2; PushValueAndType(I.getOperand(0), InstID, Vals, VE); Vals.push_back(VE.getValueID(I.getOperand(1))); Vals.push_back(cast<CmpInst>(I).getPredicate()); break; case Instruction::Ret: { Code = bitc::FUNC_CODE_INST_RET; unsigned NumOperands = I.getNumOperands(); if (NumOperands == 0) AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; else if (NumOperands == 1) { if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; } else { for (unsigned i = 0, e = NumOperands; i != e; ++i) PushValueAndType(I.getOperand(i), InstID, Vals, VE); } } break; case Instruction::Br: { Code = bitc::FUNC_CODE_INST_BR; const BranchInst &II = cast<BranchInst>(I); Vals.push_back(VE.getValueID(II.getSuccessor(0))); if (II.isConditional()) { Vals.push_back(VE.getValueID(II.getSuccessor(1))); Vals.push_back(VE.getValueID(II.getCondition())); } } break; case Instruction::Switch: { // Redefine Vals, since here we need to use 64 bit values // explicitly to store large APInt numbers. SmallVector<uint64_t, 128> Vals64; Code = bitc::FUNC_CODE_INST_SWITCH; const SwitchInst &SI = cast<SwitchInst>(I); uint32_t SwitchRecordHeader = SI.hash() | (SWITCH_INST_MAGIC << 16); Vals64.push_back(SwitchRecordHeader); Vals64.push_back(VE.getTypeID(SI.getCondition()->getType())); Vals64.push_back(VE.getValueID(SI.getCondition())); Vals64.push_back(VE.getValueID(SI.getDefaultDest())); Vals64.push_back(SI.getNumCases()); for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) { const IntegersSubset& CaseRanges = i.getCaseValueEx(); unsigned Code, Abbrev; // will unused. if (CaseRanges.isSingleNumber()) { Vals64.push_back(1/*NumItems = 1*/); Vals64.push_back(true/*IsSingleNumber = true*/); EmitAPInt(Vals64, Code, Abbrev, CaseRanges.getSingleNumber(0), true); } else { Vals64.push_back(CaseRanges.getNumItems()); if (CaseRanges.isSingleNumbersOnly()) { for (unsigned ri = 0, rn = CaseRanges.getNumItems(); ri != rn; ++ri) { Vals64.push_back(true/*IsSingleNumber = true*/); EmitAPInt(Vals64, Code, Abbrev, CaseRanges.getSingleNumber(ri), true); } } else for (unsigned ri = 0, rn = CaseRanges.getNumItems(); ri != rn; ++ri) { IntegersSubset::Range r = CaseRanges.getItem(ri); bool IsSingleNumber = CaseRanges.isSingleNumber(ri); Vals64.push_back(IsSingleNumber); EmitAPInt(Vals64, Code, Abbrev, r.getLow(), true); if (!IsSingleNumber) EmitAPInt(Vals64, Code, Abbrev, r.getHigh(), true); } } Vals64.push_back(VE.getValueID(i.getCaseSuccessor())); } Stream.EmitRecord(Code, Vals64, AbbrevToUse); // Also do expected action - clear external Vals collection: Vals.clear(); return; } break; case Instruction::IndirectBr: Code = bitc::FUNC_CODE_INST_INDIRECTBR; Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) Vals.push_back(VE.getValueID(I.getOperand(i))); break; case Instruction::Invoke: { const InvokeInst *II = cast<InvokeInst>(&I); const Value *Callee(II->getCalledValue()); PointerType *PTy = cast<PointerType>(Callee->getType()); FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); Code = bitc::FUNC_CODE_INST_INVOKE; Vals.push_back(VE.getAttributeID(II->getAttributes())); Vals.push_back(II->getCallingConv()); Vals.push_back(VE.getValueID(II->getNormalDest())); Vals.push_back(VE.getValueID(II->getUnwindDest())); PushValueAndType(Callee, InstID, Vals, VE); // Emit value #'s for the fixed parameters. for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) Vals.push_back(VE.getValueID(I.getOperand(i))); // fixed param. // Emit type/value pairs for varargs params. if (FTy->isVarArg()) { for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; i != e; ++i) PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg } break; } case Instruction::Resume: Code = bitc::FUNC_CODE_INST_RESUME; PushValueAndType(I.getOperand(0), InstID, Vals, VE); break; case Instruction::Unreachable: Code = bitc::FUNC_CODE_INST_UNREACHABLE; AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; break; case Instruction::PHI: { const PHINode &PN = cast<PHINode>(I); Code = bitc::FUNC_CODE_INST_PHI; Vals.push_back(VE.getTypeID(PN.getType())); for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { Vals.push_back(VE.getValueID(PN.getIncomingValue(i))); Vals.push_back(VE.getValueID(PN.getIncomingBlock(i))); } break; } case Instruction::LandingPad: { const LandingPadInst &LP = cast<LandingPadInst>(I); Code = bitc::FUNC_CODE_INST_LANDINGPAD; Vals.push_back(VE.getTypeID(LP.getType())); PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); Vals.push_back(LP.isCleanup()); Vals.push_back(LP.getNumClauses()); for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { if (LP.isCatch(I)) Vals.push_back(LandingPadInst::Catch); else Vals.push_back(LandingPadInst::Filter); PushValueAndType(LP.getClause(I), InstID, Vals, VE); } break; } case Instruction::Alloca: Code = bitc::FUNC_CODE_INST_ALLOCA; Vals.push_back(VE.getTypeID(I.getType())); Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); Vals.push_back(VE.getValueID(I.getOperand(0))); // size. Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); break; case Instruction::Load: if (cast<LoadInst>(I).isAtomic()) { Code = bitc::FUNC_CODE_INST_LOADATOMIC; PushValueAndType(I.getOperand(0), InstID, Vals, VE); } else { Code = bitc::FUNC_CODE_INST_LOAD; if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; } Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); Vals.push_back(cast<LoadInst>(I).isVolatile()); if (cast<LoadInst>(I).isAtomic()) { Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); } break; case Instruction::Store: if (cast<StoreInst>(I).isAtomic()) Code = bitc::FUNC_CODE_INST_STOREATOMIC; else Code = bitc::FUNC_CODE_INST_STORE; PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr Vals.push_back(VE.getValueID(I.getOperand(0))); // val. Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); Vals.push_back(cast<StoreInst>(I).isVolatile()); if (cast<StoreInst>(I).isAtomic()) { Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); } break; case Instruction::AtomicCmpXchg: Code = bitc::FUNC_CODE_INST_CMPXCHG; PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr Vals.push_back(VE.getValueID(I.getOperand(1))); // cmp. Vals.push_back(VE.getValueID(I.getOperand(2))); // newval. Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); Vals.push_back(GetEncodedOrdering( cast<AtomicCmpXchgInst>(I).getOrdering())); Vals.push_back(GetEncodedSynchScope( cast<AtomicCmpXchgInst>(I).getSynchScope())); break; case Instruction::AtomicRMW: Code = bitc::FUNC_CODE_INST_ATOMICRMW; PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr Vals.push_back(VE.getValueID(I.getOperand(1))); // val. Vals.push_back(GetEncodedRMWOperation( cast<AtomicRMWInst>(I).getOperation())); Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); Vals.push_back(GetEncodedSynchScope( cast<AtomicRMWInst>(I).getSynchScope())); break; case Instruction::Fence: Code = bitc::FUNC_CODE_INST_FENCE; Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); break; case Instruction::Call: { const CallInst &CI = cast<CallInst>(I); PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); Code = bitc::FUNC_CODE_INST_CALL; Vals.push_back(VE.getAttributeID(CI.getAttributes())); Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall())); PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee // Emit value #'s for the fixed parameters. for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) Vals.push_back(VE.getValueID(CI.getArgOperand(i))); // fixed param. // Emit type/value pairs for varargs params. if (FTy->isVarArg()) { for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); i != e; ++i) PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs } break; } case Instruction::VAArg: Code = bitc::FUNC_CODE_INST_VAARG; Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. Vals.push_back(VE.getTypeID(I.getType())); // restype. break; } Stream.EmitRecord(Code, Vals, AbbrevToUse); Vals.clear(); } // Emit names for globals/functions etc. static void WriteValueSymbolTable(const ValueSymbolTable &VST, const llvm_3_2::ValueEnumerator &VE, BitstreamWriter &Stream) { if (VST.empty()) return; Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); // FIXME: Set up the abbrev, we know how many values there are! // FIXME: We know if the type names can use 7-bit ascii. SmallVector<unsigned, 64> NameVals; for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); SI != SE; ++SI) { const ValueName &Name = *SI; // Figure out the encoding to use for the name. bool is7Bit = true; bool isChar6 = true; for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); C != E; ++C) { if (isChar6) isChar6 = BitCodeAbbrevOp::isChar6(*C); if ((unsigned char)*C & 128) { is7Bit = false; break; // don't bother scanning the rest. } } unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; // VST_ENTRY: [valueid, namechar x N] // VST_BBENTRY: [bbid, namechar x N] unsigned Code; if (isa<BasicBlock>(SI->getValue())) { Code = bitc::VST_CODE_BBENTRY; if (isChar6) AbbrevToUse = VST_BBENTRY_6_ABBREV; } else { Code = bitc::VST_CODE_ENTRY; if (isChar6) AbbrevToUse = VST_ENTRY_6_ABBREV; else if (is7Bit) AbbrevToUse = VST_ENTRY_7_ABBREV; } NameVals.push_back(VE.getValueID(SI->getValue())); for (const char *P = Name.getKeyData(), *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) NameVals.push_back((unsigned char)*P); // Emit the finished record. Stream.EmitRecord(Code, NameVals, AbbrevToUse); NameVals.clear(); } Stream.ExitBlock(); } /// WriteFunction - Emit a function body to the module stream. static void WriteFunction(const Function &F, llvm_3_2::ValueEnumerator &VE, BitstreamWriter &Stream) { Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); VE.incorporateFunction(F); SmallVector<unsigned, 64> Vals; // Emit the number of basic blocks, so the reader can create them ahead of // time. Vals.push_back(VE.getBasicBlocks().size()); Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); Vals.clear(); // If there are function-local constants, emit them now. unsigned CstStart, CstEnd; VE.getFunctionConstantRange(CstStart, CstEnd); WriteConstants(CstStart, CstEnd, VE, Stream, false); // If there is function-local metadata, emit it now. WriteFunctionLocalMetadata(F, VE, Stream); // Keep a running idea of what the instruction ID is. unsigned InstID = CstEnd; bool NeedsMetadataAttachment = false; DebugLoc LastDL; // Finally, emit all the instructions, in order. for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) { WriteInstruction(*I, InstID, VE, Stream, Vals); if (!I->getType()->isVoidTy()) ++InstID; // If the instruction has metadata, write a metadata attachment later. NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); // If the instruction has a debug location, emit it. DebugLoc DL = I->getDebugLoc(); if (DL.isUnknown()) { // nothing todo. } else if (DL == LastDL) { // Just repeat the same debug loc as last time. Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); } else { MDNode *Scope, *IA; DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); Vals.push_back(DL.getLine()); Vals.push_back(DL.getCol()); Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0); Vals.push_back(IA ? VE.getValueID(IA)+1 : 0); Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); Vals.clear(); LastDL = DL; } } // Emit names for all the instructions etc. WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); if (NeedsMetadataAttachment) WriteMetadataAttachment(F, VE, Stream); VE.purgeFunction(); Stream.ExitBlock(); } // Emit blockinfo, which defines the standard abbreviations etc. static void WriteBlockInfo(const llvm_3_2::ValueEnumerator &VE, BitstreamWriter &Stream) { // We only want to emit block info records for blocks that have multiple // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other // blocks can defined their abbrevs inline. Stream.EnterBlockInfoBlock(2); { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != VST_ENTRY_8_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { // 7-bit fixed width VST_ENTRY strings. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != VST_ENTRY_7_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { // 6-bit char6 VST_ENTRY strings. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != VST_ENTRY_6_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { // 6-bit char6 VST_BBENTRY strings. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != VST_BBENTRY_6_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { // SETTYPE abbrev for CONSTANTS_BLOCK. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(VE.getTypes().size()+1))); if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != CONSTANTS_SETTYPE_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { // INTEGER abbrev for CONSTANTS_BLOCK. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != CONSTANTS_INTEGER_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { // CE_CAST abbrev for CONSTANTS_BLOCK. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid Log2_32_Ceil(VE.getTypes().size()+1))); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != CONSTANTS_CE_CAST_Abbrev) llvm_unreachable("Unexpected abbrev ordering!"); } { // NULL abbrev for CONSTANTS_BLOCK. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != CONSTANTS_NULL_Abbrev) llvm_unreachable("Unexpected abbrev ordering!"); } // FIXME: This should only use space for first class types! { // INST_LOAD abbrev for FUNCTION_BLOCK. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != FUNCTION_INST_LOAD_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { // INST_BINOP abbrev for FUNCTION_BLOCK. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != FUNCTION_INST_BINOP_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { // INST_CAST abbrev for FUNCTION_BLOCK. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty Log2_32_Ceil(VE.getTypes().size()+1))); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != FUNCTION_INST_CAST_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { // INST_RET abbrev for FUNCTION_BLOCK. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != FUNCTION_INST_RET_VOID_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { // INST_RET abbrev for FUNCTION_BLOCK. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != FUNCTION_INST_RET_VAL_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. BitCodeAbbrev *Abbv = new BitCodeAbbrev(); Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) llvm_unreachable("Unexpected abbrev ordering!"); } Stream.ExitBlock(); } // Sort the Users based on the order in which the reader parses the bitcode // file. static bool bitcodereader_order(const User *lhs, const User *rhs) { // TODO: Implement. return true; } static void WriteUseList(const Value *V, const llvm_3_2::ValueEnumerator &VE, BitstreamWriter &Stream) { // One or zero uses can't get out of order. if (V->use_empty() || V->hasNUses(1)) return; // Make a copy of the in-memory use-list for sorting. unsigned UseListSize = std::distance(V->use_begin(), V->use_end()); SmallVector<const User*, 8> UseList; UseList.reserve(UseListSize); for (Value::const_use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I) { const User *U = *I; UseList.push_back(U); } // Sort the copy based on the order read by the BitcodeReader. std::sort(UseList.begin(), UseList.end(), bitcodereader_order); // TODO: Generate a diff between the BitcodeWriter in-memory use-list and the // sorted list (i.e., the expected BitcodeReader in-memory use-list). // TODO: Emit the USELIST_CODE_ENTRYs. } static void WriteFunctionUseList(const Function *F, llvm_3_2::ValueEnumerator &VE, BitstreamWriter &Stream) { VE.incorporateFunction(*F); for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); AI != AE; ++AI) WriteUseList(AI, VE, Stream); for (Function::const_iterator BB = F->begin(), FE = F->end(); BB != FE; ++BB) { WriteUseList(BB, VE, Stream); for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE; ++II) { WriteUseList(II, VE, Stream); for (User::const_op_iterator OI = II->op_begin(), E = II->op_end(); OI != E; ++OI) { if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) || isa<InlineAsm>(*OI)) WriteUseList(*OI, VE, Stream); } } } VE.purgeFunction(); } // Emit use-lists. static void WriteModuleUseLists(const Module *M, llvm_3_2::ValueEnumerator &VE, BitstreamWriter &Stream) { Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); // XXX: this modifies the module, but in a way that should never change the // behavior of any pass or codegen in LLVM. The problem is that GVs may // contain entries in the use_list that do not exist in the Module and are // not stored in the .bc file. for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); I != E; ++I) I->removeDeadConstantUsers(); // Write the global variables. for (Module::const_global_iterator GI = M->global_begin(), GE = M->global_end(); GI != GE; ++GI) { WriteUseList(GI, VE, Stream); // Write the global variable initializers. if (GI->hasInitializer()) WriteUseList(GI->getInitializer(), VE, Stream); } // Write the functions. for (Module::const_iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) { WriteUseList(FI, VE, Stream); if (!FI->isDeclaration()) WriteFunctionUseList(FI, VE, Stream); } // Write the aliases. for (Module::const_alias_iterator AI = M->alias_begin(), AE = M->alias_end(); AI != AE; ++AI) { WriteUseList(AI, VE, Stream); WriteUseList(AI->getAliasee(), VE, Stream); } Stream.ExitBlock(); } /// WriteModule - Emit the specified module to the bitstream. static void WriteModule(const Module *M, BitstreamWriter &Stream) { Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); // Emit the version number if it is non-zero. if (CurVersion) { SmallVector<unsigned, 1> Vals; Vals.push_back(CurVersion); Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); } // Analyze the module, enumerating globals, functions, etc. llvm_3_2::ValueEnumerator VE(M); // Emit blockinfo, which defines the standard abbreviations etc. WriteBlockInfo(VE, Stream); // Emit information about parameter attributes. WriteAttributeTable(VE, Stream); // Emit information describing all of the types in the module. WriteTypeTable(VE, Stream); // Emit top-level description of module, including target triple, inline asm, // descriptors for global variables, and function prototype info. WriteModuleInfo(M, VE, Stream); // Emit constants. WriteModuleConstants(VE, Stream); // Emit metadata. WriteModuleMetadata(M, VE, Stream); // Emit metadata. WriteModuleMetadataStore(M, Stream); // Emit names for globals/functions etc. WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); // Emit use-lists. if (EnablePreserveUseListOrdering) WriteModuleUseLists(M, VE, Stream); // Emit function bodies. for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) if (!F->isDeclaration()) WriteFunction(*F, VE, Stream); Stream.ExitBlock(); } /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a /// header and trailer to make it compatible with the system archiver. To do /// this we emit the following header, and then emit a trailer that pads the /// file out to be a multiple of 16 bytes. /// /// struct bc_header { /// uint32_t Magic; // 0x0B17C0DE /// uint32_t Version; // Version, currently always 0. /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. /// uint32_t BitcodeSize; // Size of traditional bitcode file. /// uint32_t CPUType; // CPU specifier. /// ... potentially more later ... /// }; enum { DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. DarwinBCHeaderSize = 5*4 }; static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, uint32_t &Position) { Buffer[Position + 0] = (unsigned char) (Value >> 0); Buffer[Position + 1] = (unsigned char) (Value >> 8); Buffer[Position + 2] = (unsigned char) (Value >> 16); Buffer[Position + 3] = (unsigned char) (Value >> 24); Position += 4; } static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, const Triple &TT) { unsigned CPUType = ~0U; // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic // number from /usr/include/mach/machine.h. It is ok to reproduce the // specific constants here because they are implicitly part of the Darwin ABI. enum { DARWIN_CPU_ARCH_ABI64 = 0x01000000, DARWIN_CPU_TYPE_X86 = 7, DARWIN_CPU_TYPE_ARM = 12, DARWIN_CPU_TYPE_POWERPC = 18 }; Triple::ArchType Arch = TT.getArch(); if (Arch == Triple::x86_64) CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; else if (Arch == Triple::x86) CPUType = DARWIN_CPU_TYPE_X86; else if (Arch == Triple::ppc) CPUType = DARWIN_CPU_TYPE_POWERPC; else if (Arch == Triple::ppc64) CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; else if (Arch == Triple::arm || Arch == Triple::thumb) CPUType = DARWIN_CPU_TYPE_ARM; // Traditional Bitcode starts after header. assert(Buffer.size() >= DarwinBCHeaderSize && "Expected header size to be reserved"); unsigned BCOffset = DarwinBCHeaderSize; unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; // Write the magic and version. unsigned Position = 0; WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); WriteInt32ToBuffer(0 , Buffer, Position); // Version. WriteInt32ToBuffer(BCOffset , Buffer, Position); WriteInt32ToBuffer(BCSize , Buffer, Position); WriteInt32ToBuffer(CPUType , Buffer, Position); // If the file is not a multiple of 16 bytes, insert dummy padding. while (Buffer.size() & 15) Buffer.push_back(0); } /// WriteBitcodeToFile - Write the specified module to the specified output /// stream. void llvm_3_2::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { SmallVector<char, 1024> Buffer; Buffer.reserve(256*1024); // If this is darwin or another generic macho target, reserve space for the // header. Triple TT(M->getTargetTriple()); if (TT.isOSDarwin()) Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); // Emit the module into the buffer. { BitstreamWriter Stream(Buffer); // Emit the file header. Stream.Emit((unsigned)'B', 8); Stream.Emit((unsigned)'C', 8); Stream.Emit(0x0, 4); Stream.Emit(0xC, 4); Stream.Emit(0xE, 4); Stream.Emit(0xD, 4); // Emit the module. WriteModule(M, Stream); } if (TT.isOSDarwin()) EmitDarwinBCHeaderAndTrailer(Buffer, TT); // Write the generated bitstream to "Out". Out.write((char*)&Buffer.front(), Buffer.size()); }