/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "rsCpuIntrinsic.h" #include "rsCpuIntrinsicInlines.h" using namespace android; using namespace android::renderscript; namespace android { namespace renderscript { class RsdCpuScriptIntrinsicConvolve3x3 : public RsdCpuScriptIntrinsic { public: virtual void populateScript(Script *); virtual void invokeFreeChildren(); virtual void setGlobalVar(uint32_t slot, const void *data, size_t dataLength); virtual void setGlobalObj(uint32_t slot, ObjectBase *data); virtual ~RsdCpuScriptIntrinsicConvolve3x3(); RsdCpuScriptIntrinsicConvolve3x3(RsdCpuReferenceImpl *ctx, const Script *s, const Element *); protected: float mFp[16]; short mIp[16]; ObjectBaseRef<const Allocation> mAlloc; ObjectBaseRef<const Element> mElement; static void kernelU1(const RsForEachStubParamStruct *p, uint32_t xstart, uint32_t xend, uint32_t instep, uint32_t outstep); static void kernelU2(const RsForEachStubParamStruct *p, uint32_t xstart, uint32_t xend, uint32_t instep, uint32_t outstep); static void kernelU4(const RsForEachStubParamStruct *p, uint32_t xstart, uint32_t xend, uint32_t instep, uint32_t outstep); static void kernelF1(const RsForEachStubParamStruct *p, uint32_t xstart, uint32_t xend, uint32_t instep, uint32_t outstep); static void kernelF2(const RsForEachStubParamStruct *p, uint32_t xstart, uint32_t xend, uint32_t instep, uint32_t outstep); static void kernelF4(const RsForEachStubParamStruct *p, uint32_t xstart, uint32_t xend, uint32_t instep, uint32_t outstep); }; } } void RsdCpuScriptIntrinsicConvolve3x3::setGlobalObj(uint32_t slot, ObjectBase *data) { rsAssert(slot == 1); mAlloc.set(static_cast<Allocation *>(data)); } void RsdCpuScriptIntrinsicConvolve3x3::setGlobalVar(uint32_t slot, const void *data, size_t dataLength) { rsAssert(slot == 0); memcpy (&mFp, data, dataLength); for(int ct=0; ct < 9; ct++) { if (mFp[ct] >= 0) { mIp[ct] = (short)(mFp[ct] * 256.f + 0.5f); } else { mIp[ct] = (short)(mFp[ct] * 256.f - 0.5f); } } } extern "C" void rsdIntrinsicConvolve3x3_K(void *dst, const void *y0, const void *y1, const void *y2, const short *coef, uint32_t count); static void ConvolveOneU4(const RsForEachStubParamStruct *p, uint32_t x, uchar4 *out, const uchar4 *py0, const uchar4 *py1, const uchar4 *py2, const float* coeff) { uint32_t x1 = rsMax((int32_t)x-1, 0); uint32_t x2 = rsMin((int32_t)x+1, (int32_t)p->dimX-1); float4 px = convert_float4(py0[x1]) * coeff[0] + convert_float4(py0[x]) * coeff[1] + convert_float4(py0[x2]) * coeff[2] + convert_float4(py1[x1]) * coeff[3] + convert_float4(py1[x]) * coeff[4] + convert_float4(py1[x2]) * coeff[5] + convert_float4(py2[x1]) * coeff[6] + convert_float4(py2[x]) * coeff[7] + convert_float4(py2[x2]) * coeff[8]; px = clamp(px, 0.f, 255.f); uchar4 o = {(uchar)px.x, (uchar)px.y, (uchar)px.z, (uchar)px.w}; *out = o; } static void ConvolveOneU2(const RsForEachStubParamStruct *p, uint32_t x, uchar2 *out, const uchar2 *py0, const uchar2 *py1, const uchar2 *py2, const float* coeff) { uint32_t x1 = rsMax((int32_t)x-1, 0); uint32_t x2 = rsMin((int32_t)x+1, (int32_t)p->dimX-1); float2 px = convert_float2(py0[x1]) * coeff[0] + convert_float2(py0[x]) * coeff[1] + convert_float2(py0[x2]) * coeff[2] + convert_float2(py1[x1]) * coeff[3] + convert_float2(py1[x]) * coeff[4] + convert_float2(py1[x2]) * coeff[5] + convert_float2(py2[x1]) * coeff[6] + convert_float2(py2[x]) * coeff[7] + convert_float2(py2[x2]) * coeff[8]; px = clamp(px, 0.f, 255.f); *out = convert_uchar2(px); } static void ConvolveOneU1(const RsForEachStubParamStruct *p, uint32_t x, uchar *out, const uchar *py0, const uchar *py1, const uchar *py2, const float* coeff) { uint32_t x1 = rsMax((int32_t)x-1, 0); uint32_t x2 = rsMin((int32_t)x+1, (int32_t)p->dimX-1); float px = ((float)py0[x1]) * coeff[0] + ((float)py0[x]) * coeff[1] + ((float)py0[x2]) * coeff[2] + ((float)py1[x1]) * coeff[3] + ((float)py1[x]) * coeff[4] + ((float)py1[x2]) * coeff[5] + ((float)py2[x1]) * coeff[6] + ((float)py2[x]) * coeff[7] + ((float)py2[x2]) * coeff[8]; *out = clamp(px, 0.f, 255.f); } static void ConvolveOneF4(const RsForEachStubParamStruct *p, uint32_t x, float4 *out, const float4 *py0, const float4 *py1, const float4 *py2, const float* coeff) { uint32_t x1 = rsMax((int32_t)x-1, 0); uint32_t x2 = rsMin((int32_t)x+1, (int32_t)p->dimX-1); *out = (py0[x1] * coeff[0]) + (py0[x] * coeff[1]) + (py0[x2] * coeff[2]) + (py1[x1] * coeff[3]) + (py1[x] * coeff[4]) + (py1[x2] * coeff[5]) + (py2[x1] * coeff[6]) + (py2[x] * coeff[7]) + (py2[x2] * coeff[8]); } static void ConvolveOneF2(const RsForEachStubParamStruct *p, uint32_t x, float2 *out, const float2 *py0, const float2 *py1, const float2 *py2, const float* coeff) { uint32_t x1 = rsMax((int32_t)x-1, 0); uint32_t x2 = rsMin((int32_t)x+1, (int32_t)p->dimX-1); *out = (py0[x1] * coeff[0]) + (py0[x] * coeff[1]) + (py0[x2] * coeff[2]) + (py1[x1] * coeff[3]) + (py1[x] * coeff[4]) + (py1[x2] * coeff[5]) + (py2[x1] * coeff[6]) + (py2[x] * coeff[7]) + (py2[x2] * coeff[8]); } static void ConvolveOneF1(const RsForEachStubParamStruct *p, uint32_t x, float *out, const float *py0, const float *py1, const float *py2, const float* coeff) { uint32_t x1 = rsMax((int32_t)x-1, 0); uint32_t x2 = rsMin((int32_t)x+1, (int32_t)p->dimX-1); *out = (py0[x1] * coeff[0]) + (py0[x] * coeff[1]) + (py0[x2] * coeff[2]) + (py1[x1] * coeff[3]) + (py1[x] * coeff[4]) + (py1[x2] * coeff[5]) + (py2[x1] * coeff[6]) + (py2[x] * coeff[7]) + (py2[x2] * coeff[8]); } void RsdCpuScriptIntrinsicConvolve3x3::kernelU4(const RsForEachStubParamStruct *p, uint32_t xstart, uint32_t xend, uint32_t instep, uint32_t outstep) { RsdCpuScriptIntrinsicConvolve3x3 *cp = (RsdCpuScriptIntrinsicConvolve3x3 *)p->usr; if (!cp->mAlloc.get()) { ALOGE("Convolve3x3 executed without input, skipping"); return; } const uchar *pin = (const uchar *)cp->mAlloc->mHal.drvState.lod[0].mallocPtr; const size_t stride = cp->mAlloc->mHal.drvState.lod[0].stride; uint32_t y1 = rsMin((int32_t)p->y + 1, (int32_t)(p->dimY-1)); uint32_t y2 = rsMax((int32_t)p->y - 1, 0); const uchar4 *py0 = (const uchar4 *)(pin + stride * y2); const uchar4 *py1 = (const uchar4 *)(pin + stride * p->y); const uchar4 *py2 = (const uchar4 *)(pin + stride * y1); uchar4 *out = (uchar4 *)p->out; uint32_t x1 = xstart; uint32_t x2 = xend; if(x1 == 0) { ConvolveOneU4(p, 0, out, py0, py1, py2, cp->mFp); x1 ++; out++; } if(x2 > x1) { #if defined(ARCH_ARM_HAVE_VFP) if (gArchUseSIMD) { int32_t len = (x2 - x1 - 1) >> 1; if(len > 0) { rsdIntrinsicConvolve3x3_K(out, &py0[x1-1], &py1[x1-1], &py2[x1-1], cp->mIp, len); x1 += len << 1; out += len << 1; } } #endif while(x1 != x2) { ConvolveOneU4(p, x1, out, py0, py1, py2, cp->mFp); out++; x1++; } } } void RsdCpuScriptIntrinsicConvolve3x3::kernelU2(const RsForEachStubParamStruct *p, uint32_t xstart, uint32_t xend, uint32_t instep, uint32_t outstep) { RsdCpuScriptIntrinsicConvolve3x3 *cp = (RsdCpuScriptIntrinsicConvolve3x3 *)p->usr; if (!cp->mAlloc.get()) { ALOGE("Convolve3x3 executed without input, skipping"); return; } const uchar *pin = (const uchar *)cp->mAlloc->mHal.drvState.lod[0].mallocPtr; const size_t stride = cp->mAlloc->mHal.drvState.lod[0].stride; uint32_t y1 = rsMin((int32_t)p->y + 1, (int32_t)(p->dimY-1)); uint32_t y2 = rsMax((int32_t)p->y - 1, 0); const uchar2 *py0 = (const uchar2 *)(pin + stride * y2); const uchar2 *py1 = (const uchar2 *)(pin + stride * p->y); const uchar2 *py2 = (const uchar2 *)(pin + stride * y1); uchar2 *out = (uchar2 *)p->out; uint32_t x1 = xstart; uint32_t x2 = xend; if(x1 == 0) { ConvolveOneU2(p, 0, out, py0, py1, py2, cp->mFp); x1 ++; out++; } if(x2 > x1) { #if 0//defined(ARCH_ARM_HAVE_NEON) int32_t len = (x2 - x1 - 1) >> 1; if(len > 0) { rsdIntrinsicConvolve3x3_K(out, &py0[x1-1], &py1[x1-1], &py2[x1-1], cp->mIp, len); x1 += len << 1; out += len << 1; } #endif while(x1 != x2) { ConvolveOneU2(p, x1, out, py0, py1, py2, cp->mFp); out++; x1++; } } } void RsdCpuScriptIntrinsicConvolve3x3::kernelU1(const RsForEachStubParamStruct *p, uint32_t xstart, uint32_t xend, uint32_t instep, uint32_t outstep) { RsdCpuScriptIntrinsicConvolve3x3 *cp = (RsdCpuScriptIntrinsicConvolve3x3 *)p->usr; if (!cp->mAlloc.get()) { ALOGE("Convolve3x3 executed without input, skipping"); return; } const uchar *pin = (const uchar *)cp->mAlloc->mHal.drvState.lod[0].mallocPtr; const size_t stride = cp->mAlloc->mHal.drvState.lod[0].stride; uint32_t y1 = rsMin((int32_t)p->y + 1, (int32_t)(p->dimY-1)); uint32_t y2 = rsMax((int32_t)p->y - 1, 0); const uchar *py0 = (const uchar *)(pin + stride * y2); const uchar *py1 = (const uchar *)(pin + stride * p->y); const uchar *py2 = (const uchar *)(pin + stride * y1); uchar *out = (uchar *)p->out; uint32_t x1 = xstart; uint32_t x2 = xend; if(x1 == 0) { ConvolveOneU1(p, 0, out, py0, py1, py2, cp->mFp); x1 ++; out++; } if(x2 > x1) { #if 0//defined(ARCH_ARM_HAVE_NEON) int32_t len = (x2 - x1 - 1) >> 1; if(len > 0) { rsdIntrinsicConvolve3x3_K(out, &py0[x1-1], &py1[x1-1], &py2[x1-1], cp->mIp, len); x1 += len << 1; out += len << 1; } #endif while(x1 != x2) { ConvolveOneU1(p, x1, out, py0, py1, py2, cp->mFp); out++; x1++; } } } void RsdCpuScriptIntrinsicConvolve3x3::kernelF4(const RsForEachStubParamStruct *p, uint32_t xstart, uint32_t xend, uint32_t instep, uint32_t outstep) { RsdCpuScriptIntrinsicConvolve3x3 *cp = (RsdCpuScriptIntrinsicConvolve3x3 *)p->usr; if (!cp->mAlloc.get()) { ALOGE("Convolve3x3 executed without input, skipping"); return; } const uchar *pin = (const uchar *)cp->mAlloc->mHal.drvState.lod[0].mallocPtr; const size_t stride = cp->mAlloc->mHal.drvState.lod[0].stride; uint32_t y1 = rsMin((int32_t)p->y + 1, (int32_t)(p->dimY-1)); uint32_t y2 = rsMax((int32_t)p->y - 1, 0); const float4 *py0 = (const float4 *)(pin + stride * y2); const float4 *py1 = (const float4 *)(pin + stride * p->y); const float4 *py2 = (const float4 *)(pin + stride * y1); float4 *out = (float4 *)p->out; uint32_t x1 = xstart; uint32_t x2 = xend; if(x1 == 0) { ConvolveOneF4(p, 0, out, py0, py1, py2, cp->mFp); x1 ++; out++; } if(x2 > x1) { #if 0//defined(ARCH_ARM_HAVE_NEON) int32_t len = (x2 - x1 - 1) >> 1; if(len > 0) { rsdIntrinsicConvolve3x3_K(out, &py0[x1-1], &py1[x1-1], &py2[x1-1], cp->mIp, len); x1 += len << 1; out += len << 1; } #endif while(x1 != x2) { ConvolveOneF4(p, x1, out, py0, py1, py2, cp->mFp); out++; x1++; } } } void RsdCpuScriptIntrinsicConvolve3x3::kernelF2(const RsForEachStubParamStruct *p, uint32_t xstart, uint32_t xend, uint32_t instep, uint32_t outstep) { RsdCpuScriptIntrinsicConvolve3x3 *cp = (RsdCpuScriptIntrinsicConvolve3x3 *)p->usr; if (!cp->mAlloc.get()) { ALOGE("Convolve3x3 executed without input, skipping"); return; } const uchar *pin = (const uchar *)cp->mAlloc->mHal.drvState.lod[0].mallocPtr; const size_t stride = cp->mAlloc->mHal.drvState.lod[0].stride; uint32_t y1 = rsMin((int32_t)p->y + 1, (int32_t)(p->dimY-1)); uint32_t y2 = rsMax((int32_t)p->y - 1, 0); const float2 *py0 = (const float2 *)(pin + stride * y2); const float2 *py1 = (const float2 *)(pin + stride * p->y); const float2 *py2 = (const float2 *)(pin + stride * y1); float2 *out = (float2 *)p->out; uint32_t x1 = xstart; uint32_t x2 = xend; if(x1 == 0) { ConvolveOneF2(p, 0, out, py0, py1, py2, cp->mFp); x1 ++; out++; } if(x2 > x1) { #if 0//defined(ARCH_ARM_HAVE_NEON) int32_t len = (x2 - x1 - 1) >> 1; if(len > 0) { rsdIntrinsicConvolve3x3_K(out, &py0[x1-1], &py1[x1-1], &py2[x1-1], cp->mIp, len); x1 += len << 1; out += len << 1; } #endif while(x1 != x2) { ConvolveOneF2(p, x1, out, py0, py1, py2, cp->mFp); out++; x1++; } } } void RsdCpuScriptIntrinsicConvolve3x3::kernelF1(const RsForEachStubParamStruct *p, uint32_t xstart, uint32_t xend, uint32_t instep, uint32_t outstep) { RsdCpuScriptIntrinsicConvolve3x3 *cp = (RsdCpuScriptIntrinsicConvolve3x3 *)p->usr; if (!cp->mAlloc.get()) { ALOGE("Convolve3x3 executed without input, skipping"); return; } const uchar *pin = (const uchar *)cp->mAlloc->mHal.drvState.lod[0].mallocPtr; const size_t stride = cp->mAlloc->mHal.drvState.lod[0].stride; uint32_t y1 = rsMin((int32_t)p->y + 1, (int32_t)(p->dimY-1)); uint32_t y2 = rsMax((int32_t)p->y - 1, 0); const float *py0 = (const float *)(pin + stride * y2); const float *py1 = (const float *)(pin + stride * p->y); const float *py2 = (const float *)(pin + stride * y1); float *out = (float *)p->out; uint32_t x1 = xstart; uint32_t x2 = xend; if(x1 == 0) { ConvolveOneF1(p, 0, out, py0, py1, py2, cp->mFp); x1 ++; out++; } if(x2 > x1) { #if 0//defined(ARCH_ARM_HAVE_NEON) int32_t len = (x2 - x1 - 1) >> 1; if(len > 0) { rsdIntrinsicConvolve3x3_K(out, &py0[x1-1], &py1[x1-1], &py2[x1-1], cp->mIp, len); x1 += len << 1; out += len << 1; } #endif while(x1 != x2) { ConvolveOneF1(p, x1, out, py0, py1, py2, cp->mFp); out++; x1++; } } } RsdCpuScriptIntrinsicConvolve3x3::RsdCpuScriptIntrinsicConvolve3x3( RsdCpuReferenceImpl *ctx, const Script *s, const Element *e) : RsdCpuScriptIntrinsic(ctx, s, e, RS_SCRIPT_INTRINSIC_ID_CONVOLVE_3x3) { if (e->getType() == RS_TYPE_FLOAT_32) { switch(e->getVectorSize()) { case 1: mRootPtr = &kernelF1; break; case 2: mRootPtr = &kernelF2; break; case 3: case 4: mRootPtr = &kernelF4; break; } } else { switch(e->getVectorSize()) { case 1: mRootPtr = &kernelU1; break; case 2: mRootPtr = &kernelU2; break; case 3: case 4: mRootPtr = &kernelU4; break; } } for(int ct=0; ct < 9; ct++) { mFp[ct] = 1.f / 9.f; mIp[ct] = (short)(mFp[ct] * 256.f + 0.5f); } } RsdCpuScriptIntrinsicConvolve3x3::~RsdCpuScriptIntrinsicConvolve3x3() { } void RsdCpuScriptIntrinsicConvolve3x3::populateScript(Script *s) { s->mHal.info.exportedVariableCount = 2; } void RsdCpuScriptIntrinsicConvolve3x3::invokeFreeChildren() { mAlloc.clear(); } RsdCpuScriptImpl * rsdIntrinsic_Convolve3x3(RsdCpuReferenceImpl *ctx, const Script *s, const Element *e) { return new RsdCpuScriptIntrinsicConvolve3x3(ctx, s, e); }