/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <errno.h>
#include <string.h>
#include <stdint.h>
// For debugging
#define LOG_NDEBUG 0
// TEE is the Trusted Execution Environment
#define LOG_TAG "TEEKeyMaster"
#include <cutils/log.h>
#include <hardware/hardware.h>
#include <hardware/keymaster.h>
#include <openssl/bn.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/rand.h>
#include <openssl/x509.h>
#include <cryptoki.h>
#include <pkcs11.h>
#include <utils/UniquePtr.h>
/** The size of a key ID in bytes */
#define ID_LENGTH 32
/** The current stored key version. */
const static uint32_t KEY_VERSION = 1;
struct EVP_PKEY_Delete {
void operator()(EVP_PKEY* p) const {
EVP_PKEY_free(p);
}
};
typedef UniquePtr<EVP_PKEY, EVP_PKEY_Delete> Unique_EVP_PKEY;
struct RSA_Delete {
void operator()(RSA* p) const {
RSA_free(p);
}
};
typedef UniquePtr<RSA, RSA_Delete> Unique_RSA;
struct PKCS8_PRIV_KEY_INFO_Delete {
void operator()(PKCS8_PRIV_KEY_INFO* p) const {
PKCS8_PRIV_KEY_INFO_free(p);
}
};
typedef UniquePtr<PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO_Delete> Unique_PKCS8_PRIV_KEY_INFO;
typedef UniquePtr<keymaster_device_t> Unique_keymaster_device_t;
typedef UniquePtr<CK_BYTE[]> Unique_CK_BYTE;
typedef UniquePtr<CK_ATTRIBUTE[]> Unique_CK_ATTRIBUTE;
class ByteArray {
public:
ByteArray(CK_BYTE* array, size_t len) :
mArray(array), mLength(len) {
}
ByteArray(size_t len) :
mLength(len) {
mArray = new CK_BYTE[len];
}
~ByteArray() {
if (mArray != NULL) {
delete[] mArray;
}
}
CK_BYTE* get() const {
return mArray;
}
void setLength(size_t length) {
mLength = length;
}
size_t length() const {
return mLength;
}
CK_BYTE* release() {
CK_BYTE* array = mArray;
mArray = NULL;
return array;
}
private:
CK_BYTE* mArray;
size_t mLength;
};
typedef UniquePtr<ByteArray> Unique_ByteArray;
class CryptoSession {
public:
CryptoSession(CK_SESSION_HANDLE masterHandle) :
mHandle(masterHandle), mSubsession(CK_INVALID_HANDLE) {
CK_SESSION_HANDLE subsessionHandle = mHandle;
CK_RV openSessionRV = C_OpenSession(CKV_TOKEN_USER,
CKF_SERIAL_SESSION | CKF_RW_SESSION | CKVF_OPEN_SUB_SESSION,
NULL,
NULL,
&subsessionHandle);
if (openSessionRV != CKR_OK || subsessionHandle == CK_INVALID_HANDLE) {
(void) C_Finalize(NULL_PTR);
ALOGE("Error opening secondary session with TEE: 0x%x", openSessionRV);
} else {
ALOGV("Opening subsession 0x%x", subsessionHandle);
mSubsession = subsessionHandle;
}
}
~CryptoSession() {
if (mSubsession != CK_INVALID_HANDLE) {
CK_RV rv = C_CloseSession(mSubsession);
ALOGV("Closing subsession 0x%x: 0x%x", mSubsession, rv);
mSubsession = CK_INVALID_HANDLE;
}
}
CK_SESSION_HANDLE get() const {
return mSubsession;
}
CK_SESSION_HANDLE getPrimary() const {
return mHandle;
}
private:
CK_SESSION_HANDLE mHandle;
CK_SESSION_HANDLE mSubsession;
};
class ObjectHandle {
public:
ObjectHandle(const CryptoSession* session, CK_OBJECT_HANDLE handle = CK_INVALID_HANDLE) :
mSession(session), mHandle(handle) {
}
~ObjectHandle() {
if (mHandle != CK_INVALID_HANDLE) {
CK_RV rv = C_CloseObjectHandle(mSession->getPrimary(), mHandle);
if (rv != CKR_OK) {
ALOGW("Couldn't close object handle 0x%x: 0x%x", mHandle, rv);
} else {
ALOGV("Closing object handle 0x%x", mHandle);
mHandle = CK_INVALID_HANDLE;
}
}
}
CK_OBJECT_HANDLE get() const {
return mHandle;
}
void reset(CK_OBJECT_HANDLE handle) {
mHandle = handle;
}
private:
const CryptoSession* mSession;
CK_OBJECT_HANDLE mHandle;
};
/**
* Many OpenSSL APIs take ownership of an argument on success but don't free the argument
* on failure. This means we need to tell our scoped pointers when we've transferred ownership,
* without triggering a warning by not using the result of release().
*/
#define OWNERSHIP_TRANSFERRED(obj) \
typeof (obj.release()) _dummy __attribute__((unused)) = obj.release()
/*
* Checks this thread's OpenSSL error queue and logs if
* necessary.
*/
static void logOpenSSLError(const char* location) {
int error = ERR_get_error();
if (error != 0) {
char message[256];
ERR_error_string_n(error, message, sizeof(message));
ALOGE("OpenSSL error in %s %d: %s", location, error, message);
}
ERR_clear_error();
ERR_remove_state(0);
}
/**
* Convert from OpenSSL's BIGNUM format to TEE's Big Integer format.
*/
static ByteArray* bignum_to_array(const BIGNUM* bn) {
const int bignumSize = BN_num_bytes(bn);
Unique_CK_BYTE bytes(new CK_BYTE[bignumSize]);
unsigned char* tmp = reinterpret_cast<unsigned char*>(bytes.get());
if (BN_bn2bin(bn, tmp) != bignumSize) {
ALOGE("public exponent size wasn't what was expected");
return NULL;
}
return new ByteArray(bytes.release(), bignumSize);
}
static void set_attribute(CK_ATTRIBUTE* attrib, CK_ATTRIBUTE_TYPE type, void* pValue,
CK_ULONG ulValueLen) {
attrib->type = type;
attrib->pValue = pValue;
attrib->ulValueLen = ulValueLen;
}
static ByteArray* generate_random_id() {
Unique_ByteArray id(new ByteArray(ID_LENGTH));
if (RAND_pseudo_bytes(reinterpret_cast<unsigned char*>(id->get()), id->length()) < 0) {
return NULL;
}
return id.release();
}
static int keyblob_save(ByteArray* objId, uint8_t** key_blob, size_t* key_blob_length) {
Unique_ByteArray handleBlob(new ByteArray(sizeof(uint32_t) + objId->length()));
if (handleBlob.get() == NULL) {
ALOGE("Could not allocate key blob");
return -1;
}
uint8_t* tmp = handleBlob->get();
for (size_t i = 0; i < sizeof(uint32_t); i++) {
*tmp++ = KEY_VERSION >> ((sizeof(uint32_t) - i - 1) * 8);
}
memcpy(tmp, objId->get(), objId->length());
*key_blob_length = handleBlob->length();
*key_blob = handleBlob->get();
ByteArray* unused __attribute__((unused)) = handleBlob.release();
return 0;
}
static int find_single_object(const uint8_t* obj_id, const size_t obj_id_length,
CK_OBJECT_CLASS obj_class, const CryptoSession* session, ObjectHandle* object) {
// Note that the CKA_ID attribute is never written, so we can cast away const here.
void* obj_id_ptr = reinterpret_cast<void*>(const_cast<uint8_t*>(obj_id));
CK_ATTRIBUTE attributes[] = {
{ CKA_ID, obj_id_ptr, obj_id_length },
{ CKA_CLASS, &obj_class, sizeof(obj_class) },
};
CK_RV rv = C_FindObjectsInit(session->get(), attributes,
sizeof(attributes) / sizeof(CK_ATTRIBUTE));
if (rv != CKR_OK) {
ALOGE("Error in C_FindObjectsInit: 0x%x", rv);
return -1;
}
CK_OBJECT_HANDLE tmpHandle;
CK_ULONG tmpCount;
rv = C_FindObjects(session->get(), &tmpHandle, 1, &tmpCount);
ALOGV("Found %d object 0x%x : class 0x%x", tmpCount, tmpHandle, obj_class);
if (rv != CKR_OK || tmpCount != 1) {
C_FindObjectsFinal(session->get());
ALOGE("Couldn't find key!");
return -1;
}
C_FindObjectsFinal(session->get());
object->reset(tmpHandle);
return 0;
}
static int keyblob_restore(const CryptoSession* session, const uint8_t* keyBlob,
const size_t keyBlobLength, ObjectHandle* public_key, ObjectHandle* private_key) {
if (keyBlob == NULL) {
ALOGE("key blob was null");
return -1;
}
if (keyBlobLength < (sizeof(KEY_VERSION) + ID_LENGTH)) {
ALOGE("key blob is not correct size");
return -1;
}
uint32_t keyVersion = 0;
const uint8_t* p = keyBlob;
for (size_t i = 0; i < sizeof(keyVersion); i++) {
keyVersion = (keyVersion << 8) | *p++;
}
if (keyVersion != 1) {
ALOGE("Invalid key version %d", keyVersion);
return -1;
}
return find_single_object(p, ID_LENGTH, CKO_PUBLIC_KEY, session, public_key)
|| find_single_object(p, ID_LENGTH, CKO_PRIVATE_KEY, session, private_key);
}
static int tee_generate_keypair(const keymaster_device_t* dev,
const keymaster_keypair_t type, const void* key_params,
uint8_t** key_blob, size_t* key_blob_length) {
CK_BBOOL bTRUE = CK_TRUE;
if (type != TYPE_RSA) {
ALOGW("Unknown key type %d", type);
return -1;
}
if (key_params == NULL) {
ALOGW("generate_keypair params were NULL");
return -1;
}
keymaster_rsa_keygen_params_t* rsa_params = (keymaster_rsa_keygen_params_t*) key_params;
CK_MECHANISM mechanism = {
CKM_RSA_PKCS_KEY_PAIR_GEN, NULL, 0,
};
CK_ULONG modulusBits = (CK_ULONG) rsa_params->modulus_size;
/**
* Convert our unsigned 64-bit integer to the TEE Big Integer class. It's
* an unsigned array of bytes with MSB first.
*/
CK_BYTE publicExponent[sizeof(uint64_t)];
const uint64_t exp = rsa_params->public_exponent;
size_t offset = sizeof(publicExponent) - 1;
for (size_t i = 0; i < sizeof(publicExponent); i++) {
publicExponent[offset--] = (exp >> (i * CHAR_BIT)) & 0xFF;
}
Unique_ByteArray objId(generate_random_id());
if (objId.get() == NULL) {
ALOGE("Couldn't generate random key ID");
return -1;
}
CK_ATTRIBUTE publicKeyTemplate[] = {
{CKA_ID, objId->get(), objId->length()},
{CKA_TOKEN, &bTRUE, sizeof(bTRUE)},
{CKA_ENCRYPT, &bTRUE, sizeof(bTRUE)},
{CKA_VERIFY, &bTRUE, sizeof(bTRUE)},
{CKA_MODULUS_BITS, &modulusBits, sizeof(modulusBits)},
{CKA_PUBLIC_EXPONENT, publicExponent, sizeof(publicExponent)},
};
CK_ATTRIBUTE privateKeyTemplate[] = {
{CKA_ID, objId->get(), objId->length()},
{CKA_TOKEN, &bTRUE, sizeof(bTRUE)},
{CKA_DECRYPT, &bTRUE, sizeof(bTRUE)},
{CKA_SIGN, &bTRUE, sizeof(bTRUE)},
};
CryptoSession session(reinterpret_cast<CK_SESSION_HANDLE>(dev->context));
CK_OBJECT_HANDLE hPublicKey, hPrivateKey;
CK_RV rv = C_GenerateKeyPair(session.get(),
&mechanism,
publicKeyTemplate,
sizeof(publicKeyTemplate)/sizeof(CK_ATTRIBUTE),
privateKeyTemplate,
sizeof(privateKeyTemplate)/sizeof(CK_ATTRIBUTE),
&hPublicKey,
&hPrivateKey);
if (rv != CKR_OK) {
ALOGE("Generate keypair failed: 0x%x", rv);
return -1;
}
ObjectHandle publicKey(&session, hPublicKey);
ObjectHandle privateKey(&session, hPrivateKey);
ALOGV("public handle = 0x%x, private handle = 0x%x", publicKey.get(), privateKey.get());
return keyblob_save(objId.get(), key_blob, key_blob_length);
}
static int tee_import_keypair(const keymaster_device_t* dev,
const uint8_t* key, const size_t key_length,
uint8_t** key_blob, size_t* key_blob_length) {
CK_RV rv;
CK_BBOOL bTRUE = CK_TRUE;
if (key == NULL) {
ALOGW("provided key is null");
return -1;
}
Unique_PKCS8_PRIV_KEY_INFO pkcs8(d2i_PKCS8_PRIV_KEY_INFO(NULL, &key, key_length));
if (pkcs8.get() == NULL) {
logOpenSSLError("tee_import_keypair");
return -1;
}
/* assign to EVP */
Unique_EVP_PKEY pkey(EVP_PKCS82PKEY(pkcs8.get()));
if (pkey.get() == NULL) {
logOpenSSLError("tee_import_keypair");
return -1;
}
if (EVP_PKEY_type(pkey->type) != EVP_PKEY_RSA) {
ALOGE("Unsupported key type: %d", EVP_PKEY_type(pkey->type));
return -1;
}
Unique_RSA rsa(EVP_PKEY_get1_RSA(pkey.get()));
if (rsa.get() == NULL) {
logOpenSSLError("tee_import_keypair");
return -1;
}
Unique_ByteArray modulus(bignum_to_array(rsa->n));
if (modulus.get() == NULL) {
ALOGW("Could not convert modulus to array");
return -1;
}
Unique_ByteArray publicExponent(bignum_to_array(rsa->e));
if (publicExponent.get() == NULL) {
ALOGW("Could not convert publicExponent to array");
return -1;
}
CK_KEY_TYPE rsaType = CKK_RSA;
CK_OBJECT_CLASS pubClass = CKO_PUBLIC_KEY;
Unique_ByteArray objId(generate_random_id());
if (objId.get() == NULL) {
ALOGE("Couldn't generate random key ID");
return -1;
}
CK_ATTRIBUTE publicKeyTemplate[] = {
{CKA_ID, objId->get(), objId->length()},
{CKA_TOKEN, &bTRUE, sizeof(bTRUE)},
{CKA_CLASS, &pubClass, sizeof(pubClass)},
{CKA_KEY_TYPE, &rsaType, sizeof(rsaType)},
{CKA_ENCRYPT, &bTRUE, sizeof(bTRUE)},
{CKA_VERIFY, &bTRUE, sizeof(bTRUE)},
{CKA_MODULUS, modulus->get(), modulus->length()},
{CKA_PUBLIC_EXPONENT, publicExponent->get(), publicExponent->length()},
};
CryptoSession session(reinterpret_cast<CK_SESSION_HANDLE>(dev->context));
CK_OBJECT_HANDLE hPublicKey;
rv = C_CreateObject(session.get(),
publicKeyTemplate,
sizeof(publicKeyTemplate)/sizeof(CK_ATTRIBUTE),
&hPublicKey);
if (rv != CKR_OK) {
ALOGE("Creation of public key failed: 0x%x", rv);
return -1;
}
ObjectHandle publicKey(&session, hPublicKey);
Unique_ByteArray privateExponent(bignum_to_array(rsa->d));
if (privateExponent.get() == NULL) {
ALOGW("Could not convert private exponent");
return -1;
}
/*
* Normally we need:
* CKA_ID
* CKA_TOKEN
* CKA_CLASS
* CKA_KEY_TYPE
*
* CKA_DECRYPT
* CKA_SIGN
*
* CKA_MODULUS
* CKA_PUBLIC_EXPONENT
* CKA_PRIVATE_EXPONENT
*/
#define PRIV_ATTRIB_NORMAL_NUM (4 + 2 + 3)
/*
* For additional private key values:
* CKA_PRIME_1
* CKA_PRIME_2
*
* CKA_EXPONENT_1
* CKA_EXPONENT_2
*
* CKA_COEFFICIENT
*/
#define PRIV_ATTRIB_EXTENDED_NUM (PRIV_ATTRIB_NORMAL_NUM + 5)
/*
* If we have the prime, prime exponents, and coefficient, we can
* copy them in.
*/
bool has_extra_data = (rsa->p != NULL) && (rsa->q != NULL) && (rsa->dmp1 != NULL) &&
(rsa->dmq1 != NULL) && (rsa->iqmp != NULL);
Unique_CK_ATTRIBUTE privateKeyTemplate(new CK_ATTRIBUTE[
has_extra_data ? PRIV_ATTRIB_EXTENDED_NUM : PRIV_ATTRIB_NORMAL_NUM]);
CK_OBJECT_CLASS privClass = CKO_PRIVATE_KEY;
size_t templateOffset = 0;
set_attribute(&privateKeyTemplate[templateOffset++], CKA_ID, objId->get(), objId->length());
set_attribute(&privateKeyTemplate[templateOffset++], CKA_TOKEN, &bTRUE, sizeof(bTRUE));
set_attribute(&privateKeyTemplate[templateOffset++], CKA_CLASS, &privClass, sizeof(privClass));
set_attribute(&privateKeyTemplate[templateOffset++], CKA_KEY_TYPE, &rsaType, sizeof(rsaType));
set_attribute(&privateKeyTemplate[templateOffset++], CKA_DECRYPT, &bTRUE, sizeof(bTRUE));
set_attribute(&privateKeyTemplate[templateOffset++], CKA_SIGN, &bTRUE, sizeof(bTRUE));
set_attribute(&privateKeyTemplate[templateOffset++], CKA_MODULUS, modulus->get(),
modulus->length());
set_attribute(&privateKeyTemplate[templateOffset++], CKA_PUBLIC_EXPONENT,
publicExponent->get(), publicExponent->length());
set_attribute(&privateKeyTemplate[templateOffset++], CKA_PRIVATE_EXPONENT,
privateExponent->get(), privateExponent->length());
Unique_ByteArray prime1, prime2, exp1, exp2, coeff;
if (has_extra_data) {
prime1.reset(bignum_to_array(rsa->p));
if (prime1->get() == NULL) {
ALOGW("Could not convert prime1");
return -1;
}
set_attribute(&privateKeyTemplate[templateOffset++], CKA_PRIME_1, prime1->get(),
prime1->length());
prime2.reset(bignum_to_array(rsa->q));
if (prime2->get() == NULL) {
ALOGW("Could not convert prime2");
return -1;
}
set_attribute(&privateKeyTemplate[templateOffset++], CKA_PRIME_2, prime2->get(),
prime2->length());
exp1.reset(bignum_to_array(rsa->dmp1));
if (exp1->get() == NULL) {
ALOGW("Could not convert exponent 1");
return -1;
}
set_attribute(&privateKeyTemplate[templateOffset++], CKA_EXPONENT_1, exp1->get(),
exp1->length());
exp2.reset(bignum_to_array(rsa->dmq1));
if (exp2->get() == NULL) {
ALOGW("Could not convert exponent 2");
return -1;
}
set_attribute(&privateKeyTemplate[templateOffset++], CKA_EXPONENT_2, exp2->get(),
exp2->length());
coeff.reset(bignum_to_array(rsa->iqmp));
if (coeff->get() == NULL) {
ALOGW("Could not convert coefficient");
return -1;
}
set_attribute(&privateKeyTemplate[templateOffset++], CKA_COEFFICIENT, coeff->get(),
coeff->length());
}
CK_OBJECT_HANDLE hPrivateKey;
rv = C_CreateObject(session.get(),
privateKeyTemplate.get(),
templateOffset,
&hPrivateKey);
if (rv != CKR_OK) {
ALOGE("Creation of private key failed: 0x%x", rv);
return -1;
}
ObjectHandle privateKey(&session, hPrivateKey);
ALOGV("public handle = 0x%x, private handle = 0x%x", publicKey.get(), privateKey.get());
return keyblob_save(objId.get(), key_blob, key_blob_length);
}
static int tee_get_keypair_public(const struct keymaster_device* dev,
const uint8_t* key_blob, const size_t key_blob_length,
uint8_t** x509_data, size_t* x509_data_length) {
CryptoSession session(reinterpret_cast<CK_SESSION_HANDLE>(dev->context));
ObjectHandle publicKey(&session);
ObjectHandle privateKey(&session);
if (keyblob_restore(&session, key_blob, key_blob_length, &publicKey, &privateKey)) {
return -1;
}
if (x509_data == NULL || x509_data_length == NULL) {
ALOGW("Provided destination variables were null");
return -1;
}
CK_ATTRIBUTE attributes[] = {
{CKA_MODULUS, NULL, 0},
{CKA_PUBLIC_EXPONENT, NULL, 0},
};
// Call first to get the sizes of the values.
CK_RV rv = C_GetAttributeValue(session.get(), publicKey.get(), attributes,
sizeof(attributes)/sizeof(CK_ATTRIBUTE));
if (rv != CKR_OK) {
ALOGW("Could not query attribute value sizes: 0x%02x", rv);
return -1;
}
ByteArray modulus(new CK_BYTE[attributes[0].ulValueLen], attributes[0].ulValueLen);
ByteArray exponent(new CK_BYTE[attributes[1].ulValueLen], attributes[1].ulValueLen);
attributes[0].pValue = modulus.get();
attributes[1].pValue = exponent.get();
rv = C_GetAttributeValue(session.get(), publicKey.get(), attributes,
sizeof(attributes) / sizeof(CK_ATTRIBUTE));
if (rv != CKR_OK) {
ALOGW("Could not query attribute values: 0x%02x", rv);
return -1;
}
ALOGV("modulus is %d (ret=%d), exponent is %d (ret=%d)",
modulus.length(), attributes[0].ulValueLen,
exponent.length(), attributes[1].ulValueLen);
/*
* Work around a bug in the implementation. The first call to measure how large the array
* should be sometimes returns values that are too large. The call to get the actual value
* returns the correct length of the array, so use that instead.
*/
modulus.setLength(attributes[0].ulValueLen);
exponent.setLength(attributes[1].ulValueLen);
Unique_RSA rsa(RSA_new());
if (rsa.get() == NULL) {
ALOGE("Could not allocate RSA structure");
return -1;
}
rsa->n = BN_bin2bn(reinterpret_cast<const unsigned char*>(modulus.get()), modulus.length(),
NULL);
if (rsa->n == NULL) {
logOpenSSLError("tee_get_keypair_public");
return -1;
}
rsa->e = BN_bin2bn(reinterpret_cast<const unsigned char*>(exponent.get()), exponent.length(),
NULL);
if (rsa->e == NULL) {
logOpenSSLError("tee_get_keypair_public");
return -1;
}
Unique_EVP_PKEY pkey(EVP_PKEY_new());
if (pkey.get() == NULL) {
ALOGE("Could not allocate EVP_PKEY structure");
return -1;
}
if (EVP_PKEY_assign_RSA(pkey.get(), rsa.get()) != 1) {
logOpenSSLError("tee_get_keypair_public");
return -1;
}
OWNERSHIP_TRANSFERRED(rsa);
int len = i2d_PUBKEY(pkey.get(), NULL);
if (len <= 0) {
logOpenSSLError("tee_get_keypair_public");
return -1;
}
UniquePtr<uint8_t> key(static_cast<uint8_t*>(malloc(len)));
if (key.get() == NULL) {
ALOGE("Could not allocate memory for public key data");
return -1;
}
unsigned char* tmp = reinterpret_cast<unsigned char*>(key.get());
if (i2d_PUBKEY(pkey.get(), &tmp) != len) {
logOpenSSLError("tee_get_keypair_public");
return -1;
}
ALOGV("Length of x509 data is %d", len);
*x509_data_length = len;
*x509_data = key.release();
return 0;
}
static int tee_delete_keypair(const struct keymaster_device* dev,
const uint8_t* key_blob, const size_t key_blob_length) {
CryptoSession session(reinterpret_cast<CK_SESSION_HANDLE>(dev->context));
ObjectHandle publicKey(&session);
ObjectHandle privateKey(&session);
if (keyblob_restore(&session, key_blob, key_blob_length, &publicKey, &privateKey)) {
return -1;
}
// Delete the private key.
CK_RV rv = C_DestroyObject(session.get(), privateKey.get());
if (rv != CKR_OK) {
ALOGW("Could destroy private key object: 0x%02x", rv);
return -1;
}
// Delete the public key.
rv = C_DestroyObject(session.get(), publicKey.get());
if (rv != CKR_OK) {
ALOGW("Could destroy public key object: 0x%02x", rv);
return -1;
}
return 0;
}
static int tee_sign_data(const keymaster_device_t* dev,
const void* params,
const uint8_t* key_blob, const size_t key_blob_length,
const uint8_t* data, const size_t dataLength,
uint8_t** signedData, size_t* signedDataLength) {
ALOGV("tee_sign_data(%p, %p, %llu, %p, %llu, %p, %p)", dev, key_blob,
(unsigned long long) key_blob_length, data, (unsigned long long) dataLength, signedData,
signedDataLength);
if (params == NULL) {
ALOGW("Signing params were null");
return -1;
}
CryptoSession session(reinterpret_cast<CK_SESSION_HANDLE>(dev->context));
ObjectHandle publicKey(&session);
ObjectHandle privateKey(&session);
if (keyblob_restore(&session, key_blob, key_blob_length, &publicKey, &privateKey)) {
return -1;
}
ALOGV("public handle = 0x%x, private handle = 0x%x", publicKey.get(), privateKey.get());
keymaster_rsa_sign_params_t* sign_params = (keymaster_rsa_sign_params_t*) params;
if (sign_params->digest_type != DIGEST_NONE) {
ALOGW("Cannot handle digest type %d", sign_params->digest_type);
return -1;
} else if (sign_params->padding_type != PADDING_NONE) {
ALOGW("Cannot handle padding type %d", sign_params->padding_type);
return -1;
}
CK_MECHANISM rawRsaMechanism = {
CKM_RSA_X_509, NULL, 0
};
CK_RV rv = C_SignInit(session.get(), &rawRsaMechanism, privateKey.get());
if (rv != CKR_OK) {
ALOGV("C_SignInit failed: 0x%x", rv);
return -1;
}
CK_BYTE signature[1024];
CK_ULONG signatureLength = 1024;
rv = C_Sign(session.get(), data, dataLength, signature, &signatureLength);
if (rv != CKR_OK) {
ALOGV("C_SignFinal failed: 0x%x", rv);
return -1;
}
UniquePtr<uint8_t[]> finalSignature(new uint8_t[signatureLength]);
if (finalSignature.get() == NULL) {
ALOGE("Couldn't allocate memory to copy signature");
return -1;
}
memcpy(finalSignature.get(), signature, signatureLength);
*signedData = finalSignature.release();
*signedDataLength = static_cast<size_t>(signatureLength);
ALOGV("tee_sign_data(%p, %p, %llu, %p, %llu, %p, %p) => %p size %llu", dev, key_blob,
(unsigned long long) key_blob_length, data, (unsigned long long) dataLength, signedData,
signedDataLength, *signedData, (unsigned long long) *signedDataLength);
return 0;
}
static int tee_verify_data(const keymaster_device_t* dev,
const void* params,
const uint8_t* keyBlob, const size_t keyBlobLength,
const uint8_t* signedData, const size_t signedDataLength,
const uint8_t* signature, const size_t signatureLength) {
ALOGV("tee_verify_data(%p, %p, %llu, %p, %llu, %p, %llu)", dev, keyBlob,
(unsigned long long) keyBlobLength, signedData, (unsigned long long) signedDataLength,
signature, (unsigned long long) signatureLength);
if (params == NULL) {
ALOGW("Verification params were null");
return -1;
}
CryptoSession session(reinterpret_cast<CK_SESSION_HANDLE>(dev->context));
ObjectHandle publicKey(&session);
ObjectHandle privateKey(&session);
if (keyblob_restore(&session, keyBlob, keyBlobLength, &publicKey, &privateKey)) {
return -1;
}
ALOGV("public handle = 0x%x, private handle = 0x%x", publicKey.get(), privateKey.get());
keymaster_rsa_sign_params_t* sign_params = (keymaster_rsa_sign_params_t*) params;
if (sign_params->digest_type != DIGEST_NONE) {
ALOGW("Cannot handle digest type %d", sign_params->digest_type);
return -1;
} else if (sign_params->padding_type != PADDING_NONE) {
ALOGW("Cannot handle padding type %d", sign_params->padding_type);
return -1;
}
CK_MECHANISM rawRsaMechanism = {
CKM_RSA_X_509, NULL, 0
};
CK_RV rv = C_VerifyInit(session.get(), &rawRsaMechanism, publicKey.get());
if (rv != CKR_OK) {
ALOGV("C_VerifyInit failed: 0x%x", rv);
return -1;
}
// This is a bad prototype for this function. C_Verify should have only const args.
rv = C_Verify(session.get(), signedData, signedDataLength,
const_cast<unsigned char*>(signature), signatureLength);
if (rv != CKR_OK) {
ALOGV("C_Verify failed: 0x%x", rv);
return -1;
}
return 0;
}
/* Close an opened OpenSSL instance */
static int tee_close(hw_device_t *dev) {
keymaster_device_t *keymaster_dev = (keymaster_device_t *) dev;
if (keymaster_dev != NULL) {
CK_SESSION_HANDLE handle = reinterpret_cast<CK_SESSION_HANDLE>(keymaster_dev->context);
if (handle != CK_INVALID_HANDLE) {
C_CloseSession(handle);
}
}
CK_RV finalizeRV = C_Finalize(NULL_PTR);
if (finalizeRV != CKR_OK) {
ALOGE("Error closing the TEE");
}
free(dev);
return 0;
}
/*
* Generic device handling
*/
static int tee_open(const hw_module_t* module, const char* name,
hw_device_t** device) {
if (strcmp(name, KEYSTORE_KEYMASTER) != 0)
return -EINVAL;
Unique_keymaster_device_t dev(new keymaster_device_t);
if (dev.get() == NULL)
return -ENOMEM;
dev->common.tag = HARDWARE_DEVICE_TAG;
dev->common.version = 1;
dev->common.module = (struct hw_module_t*) module;
dev->common.close = tee_close;
dev->generate_keypair = tee_generate_keypair;
dev->import_keypair = tee_import_keypair;
dev->get_keypair_public = tee_get_keypair_public;
dev->delete_keypair = tee_delete_keypair;
dev->sign_data = tee_sign_data;
dev->verify_data = tee_verify_data;
dev->delete_all = NULL;
CK_RV initializeRV = C_Initialize(NULL);
if (initializeRV != CKR_OK) {
ALOGE("Error initializing TEE: 0x%x", initializeRV);
return -ENODEV;
}
CK_INFO info;
CK_RV infoRV = C_GetInfo(&info);
if (infoRV != CKR_OK) {
(void) C_Finalize(NULL_PTR);
ALOGE("Error getting information about TEE during initialization: 0x%x", infoRV);
return -ENODEV;
}
ALOGI("C_GetInfo cryptokiVer=%d.%d manufID=%s flags=%d libDesc=%s libVer=%d.%d\n",
info.cryptokiVersion.major, info.cryptokiVersion.minor,
info.manufacturerID, info.flags, info.libraryDescription,
info.libraryVersion.major, info.libraryVersion.minor);
CK_SESSION_HANDLE sessionHandle = CK_INVALID_HANDLE;
CK_RV openSessionRV = C_OpenSession(CKV_TOKEN_USER,
CKF_SERIAL_SESSION | CKF_RW_SESSION,
NULL,
NULL,
&sessionHandle);
if (openSessionRV != CKR_OK || sessionHandle == CK_INVALID_HANDLE) {
(void) C_Finalize(NULL_PTR);
ALOGE("Error opening primary session with TEE: 0x%x", openSessionRV);
return -1;
}
ERR_load_crypto_strings();
ERR_load_BIO_strings();
dev->context = reinterpret_cast<void*>(sessionHandle);
*device = reinterpret_cast<hw_device_t*>(dev.release());
return 0;
}
static struct hw_module_methods_t keystore_module_methods = {
open: tee_open,
};
struct keystore_module HAL_MODULE_INFO_SYM
__attribute__ ((visibility ("default"))) = {
common: {
tag: HARDWARE_MODULE_TAG,
version_major: 1,
version_minor: 0,
id: KEYSTORE_HARDWARE_MODULE_ID,
name: "Keymaster TEE HAL",
author: "The Android Open Source Project",
methods: &keystore_module_methods,
dso: 0,
reserved: {},
},
};