// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/quic/quic_stream_sequencer.h"
#include <utility>
#include <vector>
#include "base/rand_util.h"
#include "net/base/ip_endpoint.h"
#include "net/quic/reliable_quic_stream.h"
#include "net/quic/test_tools/quic_test_utils.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
using base::StringPiece;
using std::min;
using std::pair;
using std::vector;
using testing::_;
using testing::AnyNumber;
using testing::InSequence;
using testing::Return;
using testing::StrEq;
namespace net {
namespace test {
class QuicStreamSequencerPeer : public QuicStreamSequencer {
public:
explicit QuicStreamSequencerPeer(ReliableQuicStream* stream)
: QuicStreamSequencer(stream) {
}
QuicStreamSequencerPeer(int32 max_mem, ReliableQuicStream* stream)
: QuicStreamSequencer(max_mem, stream) {
}
virtual bool OnFinFrame(QuicStreamOffset byte_offset, const char* data) {
QuicStreamFrame frame;
frame.stream_id = 1;
frame.offset = byte_offset;
frame.data.Append(const_cast<char*>(data), strlen(data));
frame.fin = true;
return OnStreamFrame(frame);
}
virtual bool OnFrame(QuicStreamOffset byte_offset, const char* data) {
QuicStreamFrame frame;
frame.stream_id = 1;
frame.offset = byte_offset;
frame.data.Append(const_cast<char*>(data), strlen(data));
frame.fin = false;
return OnStreamFrame(frame);
}
void SetMemoryLimit(size_t limit) {
max_frame_memory_ = limit;
}
uint64 num_bytes_consumed() const { return num_bytes_consumed_; }
const FrameMap* frames() const { return &frames_; }
QuicStreamOffset close_offset() const { return close_offset_; }
};
class MockStream : public ReliableQuicStream {
public:
MockStream(QuicSession* session, QuicStreamId id)
: ReliableQuicStream(id, session) {
}
MOCK_METHOD0(OnFinRead, void());
MOCK_METHOD2(ProcessRawData, uint32(const char* data, uint32 data_len));
MOCK_METHOD2(CloseConnectionWithDetails, void(QuicErrorCode error,
const string& details));
MOCK_METHOD1(Reset, void(QuicRstStreamErrorCode error));
MOCK_METHOD0(OnCanWrite, void());
virtual QuicPriority EffectivePriority() const {
return QuicUtils::HighestPriority();
}
};
namespace {
static const char kPayload[] =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
class QuicStreamSequencerTest : public ::testing::Test {
protected:
QuicStreamSequencerTest()
: connection_(new MockConnection(false)),
session_(connection_),
stream_(&session_, 1),
sequencer_(new QuicStreamSequencerPeer(&stream_)) {
}
bool VerifyReadableRegions(const char** expected, size_t num_expected) {
iovec iovecs[5];
size_t num_iovecs = sequencer_->GetReadableRegions(iovecs,
arraysize(iovecs));
return VerifyIovecs(iovecs, num_iovecs, expected, num_expected);
}
bool VerifyIovecs(iovec* iovecs,
size_t num_iovecs,
const char** expected,
size_t num_expected) {
if (num_expected != num_iovecs) {
LOG(ERROR) << "Incorrect number of iovecs. Expected: "
<< num_expected << " Actual: " << num_iovecs;
return false;
}
for (size_t i = 0; i < num_expected; ++i) {
if (!VerifyIovec(iovecs[i], expected[i])) {
return false;
}
}
return true;
}
bool VerifyIovec(const iovec& iovec, StringPiece expected) {
if (iovec.iov_len != expected.length()) {
LOG(ERROR) << "Invalid length: " << iovec.iov_len
<< " vs " << expected.length();
return false;
}
if (memcmp(iovec.iov_base, expected.data(), expected.length()) != 0) {
LOG(ERROR) << "Invalid data: " << static_cast<char*>(iovec.iov_base)
<< " vs " << expected.data();
return false;
}
return true;
}
MockConnection* connection_;
MockSession session_;
testing::StrictMock<MockStream> stream_;
scoped_ptr<QuicStreamSequencerPeer> sequencer_;
};
TEST_F(QuicStreamSequencerTest, RejectOldFrame) {
EXPECT_CALL(stream_, ProcessRawData(StrEq("abc"), 3))
.WillOnce(Return(3));
EXPECT_TRUE(sequencer_->OnFrame(0, "abc"));
EXPECT_EQ(0u, sequencer_->frames()->size());
EXPECT_EQ(3u, sequencer_->num_bytes_consumed());
// Ignore this - it matches a past sequence number and we should not see it
// again.
EXPECT_TRUE(sequencer_->OnFrame(0, "def"));
EXPECT_EQ(0u, sequencer_->frames()->size());
}
TEST_F(QuicStreamSequencerTest, RejectOverlyLargeFrame) {
// TODO(rch): enable when chromium supports EXPECT_DFATAL.
/*
EXPECT_DFATAL(sequencer_.reset(new QuicStreamSequencerPeer(2, &stream_)),
"Setting max frame memory to 2. "
"Some frames will be impossible to handle.");
EXPECT_DEBUG_DEATH(sequencer_->OnFrame(0, "abc"), "");
*/
}
TEST_F(QuicStreamSequencerTest, DropFramePastBuffering) {
sequencer_->SetMemoryLimit(3);
EXPECT_FALSE(sequencer_->OnFrame(3, "abc"));
}
TEST_F(QuicStreamSequencerTest, RejectBufferedFrame) {
EXPECT_CALL(stream_, ProcessRawData(StrEq("abc"), 3));
EXPECT_TRUE(sequencer_->OnFrame(0, "abc"));
EXPECT_EQ(1u, sequencer_->frames()->size());
EXPECT_EQ(0u, sequencer_->num_bytes_consumed());
// Ignore this - it matches a buffered frame.
// Right now there's no checking that the payload is consistent.
EXPECT_TRUE(sequencer_->OnFrame(0, "def"));
EXPECT_EQ(1u, sequencer_->frames()->size());
}
TEST_F(QuicStreamSequencerTest, FullFrameConsumed) {
EXPECT_CALL(stream_, ProcessRawData(StrEq("abc"), 3)).WillOnce(Return(3));
EXPECT_TRUE(sequencer_->OnFrame(0, "abc"));
EXPECT_EQ(0u, sequencer_->frames()->size());
EXPECT_EQ(3u, sequencer_->num_bytes_consumed());
}
TEST_F(QuicStreamSequencerTest, EmptyFrame) {
EXPECT_CALL(stream_,
CloseConnectionWithDetails(QUIC_INVALID_STREAM_FRAME, _));
EXPECT_FALSE(sequencer_->OnFrame(0, ""));
EXPECT_EQ(0u, sequencer_->frames()->size());
EXPECT_EQ(0u, sequencer_->num_bytes_consumed());
}
TEST_F(QuicStreamSequencerTest, EmptyFinFrame) {
EXPECT_CALL(stream_, OnFinRead());
EXPECT_TRUE(sequencer_->OnFinFrame(0, ""));
EXPECT_EQ(0u, sequencer_->frames()->size());
EXPECT_EQ(0u, sequencer_->num_bytes_consumed());
}
TEST_F(QuicStreamSequencerTest, PartialFrameConsumed) {
EXPECT_CALL(stream_, ProcessRawData(StrEq("abc"), 3)).WillOnce(Return(2));
EXPECT_TRUE(sequencer_->OnFrame(0, "abc"));
EXPECT_EQ(1u, sequencer_->frames()->size());
EXPECT_EQ(2u, sequencer_->num_bytes_consumed());
EXPECT_EQ("c", sequencer_->frames()->find(2)->second);
}
TEST_F(QuicStreamSequencerTest, NextxFrameNotConsumed) {
EXPECT_CALL(stream_, ProcessRawData(StrEq("abc"), 3)).WillOnce(Return(0));
EXPECT_TRUE(sequencer_->OnFrame(0, "abc"));
EXPECT_EQ(1u, sequencer_->frames()->size());
EXPECT_EQ(0u, sequencer_->num_bytes_consumed());
EXPECT_EQ("abc", sequencer_->frames()->find(0)->second);
}
TEST_F(QuicStreamSequencerTest, FutureFrameNotProcessed) {
EXPECT_TRUE(sequencer_->OnFrame(3, "abc"));
EXPECT_EQ(1u, sequencer_->frames()->size());
EXPECT_EQ(0u, sequencer_->num_bytes_consumed());
EXPECT_EQ("abc", sequencer_->frames()->find(3)->second);
}
TEST_F(QuicStreamSequencerTest, OutOfOrderFrameProcessed) {
// Buffer the first
EXPECT_TRUE(sequencer_->OnFrame(6, "ghi"));
EXPECT_EQ(1u, sequencer_->frames()->size());
EXPECT_EQ(0u, sequencer_->num_bytes_consumed());
// Buffer the second
EXPECT_TRUE(sequencer_->OnFrame(3, "def"));
EXPECT_EQ(2u, sequencer_->frames()->size());
EXPECT_EQ(0u, sequencer_->num_bytes_consumed());
InSequence s;
EXPECT_CALL(stream_, ProcessRawData(StrEq("abc"), 3)).WillOnce(Return(3));
EXPECT_CALL(stream_, ProcessRawData(StrEq("def"), 3)).WillOnce(Return(3));
EXPECT_CALL(stream_, ProcessRawData(StrEq("ghi"), 3)).WillOnce(Return(3));
// Ack right away
EXPECT_TRUE(sequencer_->OnFrame(0, "abc"));
EXPECT_EQ(9u, sequencer_->num_bytes_consumed());
EXPECT_EQ(0u, sequencer_->frames()->size());
}
TEST_F(QuicStreamSequencerTest, OutOfOrderFramesProcessedWithBuffering) {
sequencer_->SetMemoryLimit(9);
// Too far to buffer.
EXPECT_FALSE(sequencer_->OnFrame(9, "jkl"));
// We can afford to buffer this.
EXPECT_TRUE(sequencer_->OnFrame(6, "ghi"));
EXPECT_EQ(0u, sequencer_->num_bytes_consumed());
InSequence s;
EXPECT_CALL(stream_, ProcessRawData(StrEq("abc"), 3)).WillOnce(Return(3));
// Ack right away
EXPECT_TRUE(sequencer_->OnFrame(0, "abc"));
EXPECT_EQ(3u, sequencer_->num_bytes_consumed());
// We should be willing to buffer this now.
EXPECT_TRUE(sequencer_->OnFrame(9, "jkl"));
EXPECT_EQ(3u, sequencer_->num_bytes_consumed());
EXPECT_CALL(stream_, ProcessRawData(StrEq("def"), 3)).WillOnce(Return(3));
EXPECT_CALL(stream_, ProcessRawData(StrEq("ghi"), 3)).WillOnce(Return(3));
EXPECT_CALL(stream_, ProcessRawData(StrEq("jkl"), 3)).WillOnce(Return(3));
EXPECT_TRUE(sequencer_->OnFrame(3, "def"));
EXPECT_EQ(12u, sequencer_->num_bytes_consumed());
EXPECT_EQ(0u, sequencer_->frames()->size());
}
TEST_F(QuicStreamSequencerTest, OutOfOrderFramesBlockignWithReadv) {
sequencer_->SetMemoryLimit(9);
char buffer[20];
iovec iov[2];
iov[0].iov_base = &buffer[0];
iov[0].iov_len = 1;
iov[1].iov_base = &buffer[1];
iov[1].iov_len = 2;
// Push abc - process.
// Push jkl - buffer (not next data)
// Push def - don't process.
// Push mno - drop (too far out)
// Push ghi - buffer (def not processed)
// Read 2.
// Push mno - buffer (not all read)
// Read all
// Push pqr - process
InSequence s;
EXPECT_CALL(stream_, ProcessRawData(StrEq("abc"), 3)).WillOnce(Return(3));
EXPECT_CALL(stream_, ProcessRawData(StrEq("def"), 3)).WillOnce(Return(0));
EXPECT_CALL(stream_, ProcessRawData(StrEq("pqr"), 3)).WillOnce(Return(3));
EXPECT_TRUE(sequencer_->OnFrame(0, "abc"));
EXPECT_TRUE(sequencer_->OnFrame(3, "def"));
EXPECT_TRUE(sequencer_->OnFrame(9, "jkl"));
EXPECT_FALSE(sequencer_->OnFrame(12, "mno"));
EXPECT_TRUE(sequencer_->OnFrame(6, "ghi"));
// Read 3 bytes.
EXPECT_EQ(3, sequencer_->Readv(iov, 2));
EXPECT_EQ(0, strncmp(buffer, "def", 3));
// Now we have space to bufer this.
EXPECT_TRUE(sequencer_->OnFrame(12, "mno"));
// Read the remaining 9 bytes.
iov[1].iov_len = 19;
EXPECT_EQ(9, sequencer_->Readv(iov, 2));
EXPECT_EQ(0, strncmp(buffer, "ghijklmno", 9));
EXPECT_TRUE(sequencer_->OnFrame(15, "pqr"));
}
// Same as above, just using a different method for reading.
TEST_F(QuicStreamSequencerTest, OutOfOrderFramesBlockignWithGetReadableRegion) {
sequencer_->SetMemoryLimit(9);
InSequence s;
EXPECT_CALL(stream_, ProcessRawData(StrEq("abc"), 3)).WillOnce(Return(3));
EXPECT_CALL(stream_, ProcessRawData(StrEq("def"), 3)).WillOnce(Return(0));
EXPECT_CALL(stream_, ProcessRawData(StrEq("pqr"), 3)).WillOnce(Return(3));
EXPECT_TRUE(sequencer_->OnFrame(0, "abc"));
EXPECT_TRUE(sequencer_->OnFrame(3, "def"));
EXPECT_TRUE(sequencer_->OnFrame(9, "jkl"));
EXPECT_FALSE(sequencer_->OnFrame(12, "mno"));
EXPECT_TRUE(sequencer_->OnFrame(6, "ghi"));
// Read 3 bytes.
const char* expected[] = {"def", "ghi", "jkl"};
ASSERT_TRUE(VerifyReadableRegions(expected, arraysize(expected)));
char buffer[9];
iovec read_iov = { &buffer[0], 3 };
ASSERT_EQ(3, sequencer_->Readv(&read_iov, 1));
// Now we have space to bufer this.
EXPECT_TRUE(sequencer_->OnFrame(12, "mno"));
// Read the remaining 9 bytes.
const char* expected2[] = {"ghi", "jkl", "mno"};
ASSERT_TRUE(VerifyReadableRegions(expected2, arraysize(expected2)));
read_iov.iov_len = 9;
ASSERT_EQ(9, sequencer_->Readv(&read_iov, 1));
EXPECT_TRUE(sequencer_->OnFrame(15, "pqr"));
}
// Same as above, just using a different method for reading.
TEST_F(QuicStreamSequencerTest, MarkConsumed) {
sequencer_->SetMemoryLimit(9);
InSequence s;
EXPECT_CALL(stream_, ProcessRawData(StrEq("abc"), 3)).WillOnce(Return(0));
EXPECT_TRUE(sequencer_->OnFrame(0, "abc"));
EXPECT_TRUE(sequencer_->OnFrame(3, "def"));
EXPECT_TRUE(sequencer_->OnFrame(6, "ghi"));
// Peek into the data.
const char* expected[] = {"abc", "def", "ghi"};
ASSERT_TRUE(VerifyReadableRegions(expected, arraysize(expected)));
// Consume 1 byte.
sequencer_->MarkConsumed(1);
// Verify data.
const char* expected2[] = {"bc", "def", "ghi"};
ASSERT_TRUE(VerifyReadableRegions(expected2, arraysize(expected2)));
// Consume 2 bytes.
sequencer_->MarkConsumed(2);
// Verify data.
const char* expected3[] = {"def", "ghi"};
ASSERT_TRUE(VerifyReadableRegions(expected3, arraysize(expected3)));
// Consume 5 bytes.
sequencer_->MarkConsumed(5);
// Verify data.
const char* expected4[] = {"i"};
ASSERT_TRUE(VerifyReadableRegions(expected4, arraysize(expected4)));
}
TEST_F(QuicStreamSequencerTest, MarkConsumedError) {
// TODO(rch): enable when chromium supports EXPECT_DFATAL.
/*
EXPECT_CALL(stream_, ProcessRawData(StrEq("abc"), 3)).WillOnce(Return(0));
EXPECT_TRUE(sequencer_->OnFrame(0, "abc"));
EXPECT_TRUE(sequencer_->OnFrame(9, "jklmnopqrstuvwxyz"));
// Peek into the data. Only the first chunk should be readable
// because of the missing data.
const char* expected[] = {"abc"};
ASSERT_TRUE(VerifyReadableRegions(expected, arraysize(expected)));
// Now, attempt to mark consumed more data than was readable
// and expect the stream to be closed.
EXPECT_CALL(stream_, Reset(QUIC_ERROR_PROCESSING_STREAM));
EXPECT_DFATAL(sequencer_->MarkConsumed(4),
"Invalid argument to MarkConsumed. num_bytes_consumed_: 3 "
"end_offset: 4 offset: 9 length: 17");
*/
}
TEST_F(QuicStreamSequencerTest, MarkConsumedWithMissingPacket) {
InSequence s;
EXPECT_CALL(stream_, ProcessRawData(StrEq("abc"), 3)).WillOnce(Return(0));
EXPECT_TRUE(sequencer_->OnFrame(0, "abc"));
EXPECT_TRUE(sequencer_->OnFrame(3, "def"));
// Missing packet: 6, ghi
EXPECT_TRUE(sequencer_->OnFrame(9, "jkl"));
const char* expected[] = {"abc", "def"};
ASSERT_TRUE(VerifyReadableRegions(expected, arraysize(expected)));
sequencer_->MarkConsumed(6);
}
TEST_F(QuicStreamSequencerTest, BasicHalfCloseOrdered) {
InSequence s;
EXPECT_CALL(stream_, ProcessRawData(StrEq("abc"), 3)).WillOnce(Return(3));
EXPECT_CALL(stream_, OnFinRead());
EXPECT_TRUE(sequencer_->OnFinFrame(0, "abc"));
EXPECT_EQ(3u, sequencer_->close_offset());
}
TEST_F(QuicStreamSequencerTest, BasicHalfCloseUnorderedWithFlush) {
sequencer_->OnFinFrame(6, "");
EXPECT_EQ(6u, sequencer_->close_offset());
InSequence s;
EXPECT_CALL(stream_, ProcessRawData(StrEq("abc"), 3)).WillOnce(Return(3));
EXPECT_CALL(stream_, ProcessRawData(StrEq("def"), 3)).WillOnce(Return(3));
EXPECT_CALL(stream_, OnFinRead());
EXPECT_TRUE(sequencer_->OnFrame(3, "def"));
EXPECT_TRUE(sequencer_->OnFrame(0, "abc"));
}
TEST_F(QuicStreamSequencerTest, BasicHalfUnordered) {
sequencer_->OnFinFrame(3, "");
EXPECT_EQ(3u, sequencer_->close_offset());
InSequence s;
EXPECT_CALL(stream_, ProcessRawData(StrEq("abc"), 3)).WillOnce(Return(3));
EXPECT_CALL(stream_, OnFinRead());
EXPECT_TRUE(sequencer_->OnFrame(0, "abc"));
}
TEST_F(QuicStreamSequencerTest, TerminateWithReadv) {
char buffer[3];
sequencer_->OnFinFrame(3, "");
EXPECT_EQ(3u, sequencer_->close_offset());
EXPECT_FALSE(sequencer_->IsClosed());
EXPECT_CALL(stream_, ProcessRawData(StrEq("abc"), 3)).WillOnce(Return(0));
EXPECT_TRUE(sequencer_->OnFrame(0, "abc"));
iovec iov = { &buffer[0], 3 };
int bytes_read = sequencer_->Readv(&iov, 1);
EXPECT_EQ(3, bytes_read);
EXPECT_TRUE(sequencer_->IsClosed());
}
TEST_F(QuicStreamSequencerTest, MutipleOffsets) {
sequencer_->OnFinFrame(3, "");
EXPECT_EQ(3u, sequencer_->close_offset());
EXPECT_CALL(stream_, Reset(QUIC_MULTIPLE_TERMINATION_OFFSETS));
sequencer_->OnFinFrame(5, "");
EXPECT_EQ(3u, sequencer_->close_offset());
EXPECT_CALL(stream_, Reset(QUIC_MULTIPLE_TERMINATION_OFFSETS));
sequencer_->OnFinFrame(1, "");
EXPECT_EQ(3u, sequencer_->close_offset());
sequencer_->OnFinFrame(3, "");
EXPECT_EQ(3u, sequencer_->close_offset());
}
class QuicSequencerRandomTest : public QuicStreamSequencerTest {
public:
typedef pair<int, string> Frame;
typedef vector<Frame> FrameList;
void CreateFrames() {
int payload_size = arraysize(kPayload) - 1;
int remaining_payload = payload_size;
while (remaining_payload != 0) {
int size = min(OneToN(6), remaining_payload);
int index = payload_size - remaining_payload;
list_.push_back(make_pair(index, string(kPayload + index, size)));
remaining_payload -= size;
}
}
QuicSequencerRandomTest() {
CreateFrames();
}
int OneToN(int n) {
return base::RandInt(1, n);
}
int MaybeProcessMaybeBuffer(const char* data, uint32 len) {
int to_process = len;
if (base::RandUint64() % 2 != 0) {
to_process = base::RandInt(0, len);
}
output_.append(data, to_process);
return to_process;
}
string output_;
FrameList list_;
};
// All frames are processed as soon as we have sequential data.
// Infinite buffering, so all frames are acked right away.
TEST_F(QuicSequencerRandomTest, RandomFramesNoDroppingNoBackup) {
InSequence s;
for (size_t i = 0; i < list_.size(); ++i) {
string* data = &list_[i].second;
EXPECT_CALL(stream_, ProcessRawData(StrEq(*data), data->size()))
.WillOnce(Return(data->size()));
}
while (!list_.empty()) {
int index = OneToN(list_.size()) - 1;
LOG(ERROR) << "Sending index " << index << " "
<< list_[index].second.data();
EXPECT_TRUE(sequencer_->OnFrame(list_[index].first,
list_[index].second.data()));
list_.erase(list_.begin() + index);
}
}
// All frames are processed as soon as we have sequential data.
// Buffering, so some frames are rejected.
TEST_F(QuicSequencerRandomTest, RandomFramesDroppingNoBackup) {
sequencer_->SetMemoryLimit(26);
InSequence s;
for (size_t i = 0; i < list_.size(); ++i) {
string* data = &list_[i].second;
EXPECT_CALL(stream_, ProcessRawData(StrEq(*data), data->size()))
.WillOnce(Return(data->size()));
}
while (!list_.empty()) {
int index = OneToN(list_.size()) - 1;
LOG(ERROR) << "Sending index " << index << " "
<< list_[index].second.data();
bool acked = sequencer_->OnFrame(list_[index].first,
list_[index].second.data());
if (acked) {
list_.erase(list_.begin() + index);
}
}
}
} // namespace
} // namespace test
} // namespace net