// Copyright 2006, 2008 Google Inc.
// Authors: Chandra Chereddi, Lincoln Smith
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <config.h>
#include "blockhash.h"
#include <stdint.h> // uint32_t
#include <string.h> // memcpy, memcmp
#include <algorithm> // std::min
#include "compile_assert.h"
#include "logging.h"
#include "rolling_hash.h"
namespace open_vcdiff {
typedef unsigned long uword_t; // a machine word NOLINT
BlockHash::BlockHash(const char* source_data,
size_t source_size,
int starting_offset)
: source_data_(source_data),
source_size_(source_size),
hash_table_mask_(0),
starting_offset_(starting_offset),
last_block_added_(-1) {
}
BlockHash::~BlockHash() { }
// kBlockSize must be at least 2 to be meaningful. Since it's a compile-time
// constant, check its value at compile time rather than wasting CPU cycles
// on runtime checks.
VCD_COMPILE_ASSERT(BlockHash::kBlockSize >= 2, kBlockSize_must_be_at_least_2);
// kBlockSize is required to be a power of 2 because multiplication
// (n * kBlockSize), division (n / kBlockSize) and MOD (n % kBlockSize)
// are commonly-used operations. If kBlockSize is a compile-time
// constant and a power of 2, the compiler can convert these three operations
// into bit-shift (>> or <<) and bitwise-AND (&) operations, which are much
// more efficient than executing full integer multiply, divide, or remainder
// instructions.
VCD_COMPILE_ASSERT((BlockHash::kBlockSize & (BlockHash::kBlockSize - 1)) == 0,
kBlockSize_must_be_a_power_of_2);
bool BlockHash::Init(bool populate_hash_table) {
if (!hash_table_.empty() ||
!next_block_table_.empty() ||
!last_block_table_.empty()) {
VCD_DFATAL << "Init() called twice for same BlockHash object" << VCD_ENDL;
return false;
}
const size_t table_size = CalcTableSize(source_size_);
if (table_size == 0) {
VCD_DFATAL << "Error finding table size for source size " << source_size_
<< VCD_ENDL;
return false;
}
// Since table_size is a power of 2, (table_size - 1) is a bit mask
// containing all the bits below table_size.
hash_table_mask_ = static_cast<uint32_t>(table_size - 1);
hash_table_.resize(table_size, -1);
next_block_table_.resize(GetNumberOfBlocks(), -1);
last_block_table_.resize(GetNumberOfBlocks(), -1);
if (populate_hash_table) {
AddAllBlocks();
}
return true;
}
const BlockHash* BlockHash::CreateDictionaryHash(const char* dictionary_data,
size_t dictionary_size) {
BlockHash* new_dictionary_hash = new BlockHash(dictionary_data,
dictionary_size,
0);
if (!new_dictionary_hash->Init(/* populate_hash_table = */ true)) {
delete new_dictionary_hash;
return NULL;
} else {
return new_dictionary_hash;
}
}
BlockHash* BlockHash::CreateTargetHash(const char* target_data,
size_t target_size,
size_t dictionary_size) {
BlockHash* new_target_hash = new BlockHash(target_data,
target_size,
static_cast<int>(dictionary_size));
if (!new_target_hash->Init(/* populate_hash_table = */ false)) {
delete new_target_hash;
return NULL;
} else {
return new_target_hash;
}
}
// Returns zero if an error occurs.
size_t BlockHash::CalcTableSize(const size_t dictionary_size) {
// Overallocate the hash table by making it the same size (in bytes)
// as the source data. This is a trade-off between space and time:
// the empty entries in the hash table will reduce the
// probability of a hash collision to (sizeof(int) / kblockSize),
// and so save time comparing false matches.
const size_t min_size = (dictionary_size / sizeof(int)) + 1; // NOLINT
size_t table_size = 1;
// Find the smallest power of 2 that is >= min_size, and assign
// that value to table_size.
while (table_size < min_size) {
table_size <<= 1;
// Guard against an infinite loop
if (table_size <= 0) {
VCD_DFATAL << "Internal error: CalcTableSize(dictionary_size = "
<< dictionary_size
<< "): resulting table_size " << table_size
<< " is zero or negative" << VCD_ENDL;
return 0;
}
}
// Check size sanity
if ((table_size & (table_size - 1)) != 0) {
VCD_DFATAL << "Internal error: CalcTableSize(dictionary_size = "
<< dictionary_size
<< "): resulting table_size " << table_size
<< " is not a power of 2" << VCD_ENDL;
return 0;
}
// The loop above tries to find the smallest power of 2 that is >= min_size.
// That value must lie somewhere between min_size and (min_size * 2),
// except for the case (dictionary_size == 0, table_size == 1).
if ((dictionary_size > 0) && (table_size > (min_size * 2))) {
VCD_DFATAL << "Internal error: CalcTableSize(dictionary_size = "
<< dictionary_size
<< "): resulting table_size " << table_size
<< " is too large" << VCD_ENDL;
return 0;
}
return table_size;
}
// If the hash value is already available from the rolling hash,
// call this function to save time.
void BlockHash::AddBlock(uint32_t hash_value) {
if (hash_table_.empty()) {
VCD_DFATAL << "BlockHash::AddBlock() called before BlockHash::Init()"
<< VCD_ENDL;
return;
}
// The initial value of last_block_added_ is -1.
int block_number = last_block_added_ + 1;
const int total_blocks =
static_cast<int>(source_size_ / kBlockSize); // round down
if (block_number >= total_blocks) {
VCD_DFATAL << "BlockHash::AddBlock() called"
" with block number " << block_number
<< " that is past last block " << (total_blocks - 1)
<< VCD_ENDL;
return;
}
if (next_block_table_[block_number] != -1) {
VCD_DFATAL << "Internal error in BlockHash::AddBlock(): "
"block number = " << block_number
<< ", next block should be -1 but is "
<< next_block_table_[block_number] << VCD_ENDL;
return;
}
const uint32_t hash_table_index = GetHashTableIndex(hash_value);
const int first_matching_block = hash_table_[hash_table_index];
if (first_matching_block < 0) {
// This is the first entry with this hash value
hash_table_[hash_table_index] = block_number;
last_block_table_[block_number] = block_number;
} else {
// Add this entry at the end of the chain of matching blocks
const int last_matching_block = last_block_table_[first_matching_block];
if (next_block_table_[last_matching_block] != -1) {
VCD_DFATAL << "Internal error in BlockHash::AddBlock(): "
"first matching block = " << first_matching_block
<< ", last matching block = " << last_matching_block
<< ", next block should be -1 but is "
<< next_block_table_[last_matching_block] << VCD_ENDL;
return;
}
next_block_table_[last_matching_block] = block_number;
last_block_table_[first_matching_block] = block_number;
}
last_block_added_ = block_number;
}
void BlockHash::AddAllBlocks() {
AddAllBlocksThroughIndex(static_cast<int>(source_size_));
}
void BlockHash::AddAllBlocksThroughIndex(int end_index) {
if (end_index > static_cast<int>(source_size_)) {
VCD_DFATAL << "BlockHash::AddAllBlocksThroughIndex() called"
" with index " << end_index
<< " higher than end index " << source_size_ << VCD_ENDL;
return;
}
const int last_index_added = last_block_added_ * kBlockSize;
if (end_index <= last_index_added) {
VCD_DFATAL << "BlockHash::AddAllBlocksThroughIndex() called"
" with index " << end_index
<< " <= last index added ( " << last_index_added
<< ")" << VCD_ENDL;
return;
}
int end_limit = end_index;
// Don't allow reading any indices at or past source_size_.
// The Hash function extends (kBlockSize - 1) bytes past the index,
// so leave a margin of that size.
int last_legal_hash_index = static_cast<int>(source_size() - kBlockSize);
if (end_limit > last_legal_hash_index) {
end_limit = last_legal_hash_index + 1;
}
const char* block_ptr = source_data() + NextIndexToAdd();
const char* const end_ptr = source_data() + end_limit;
while (block_ptr < end_ptr) {
AddBlock(RollingHash<kBlockSize>::Hash(block_ptr));
block_ptr += kBlockSize;
}
}
VCD_COMPILE_ASSERT((BlockHash::kBlockSize % sizeof(uword_t)) == 0,
kBlockSize_must_be_a_multiple_of_machine_word_size);
// A recursive template to compare a fixed number
// of (possibly unaligned) machine words starting
// at addresses block1 and block2. Returns true or false
// depending on whether an exact match was found.
template<int number_of_words>
inline bool CompareWholeWordValues(const char* block1,
const char* block2) {
return CompareWholeWordValues<1>(block1, block2) &&
CompareWholeWordValues<number_of_words - 1>(block1 + sizeof(uword_t),
block2 + sizeof(uword_t));
}
// The base of the recursive template: compare one pair of machine words.
template<>
inline bool CompareWholeWordValues<1>(const char* word1,
const char* word2) {
uword_t aligned_word1, aligned_word2;
memcpy(&aligned_word1, word1, sizeof(aligned_word1));
memcpy(&aligned_word2, word2, sizeof(aligned_word2));
return aligned_word1 == aligned_word2;
}
// A block must be composed of an integral number of machine words
// (uword_t values.) This function takes advantage of that fact
// by comparing the blocks as series of (possibly unaligned) word values.
// A word-sized comparison can be performed as a single
// machine instruction. Comparing words instead of bytes means that,
// on a 64-bit platform, this function will use 8 times fewer test-and-branch
// instructions than a byte-by-byte comparison. Even with the extra
// cost of the calls to memcpy, this method is still at least twice as fast
// as memcmp (measured using gcc on a 64-bit platform, with a block size
// of 32.) For blocks with identical contents (a common case), this method
// is over six times faster than memcmp.
inline bool BlockCompareWordsInline(const char* block1, const char* block2) {
static const size_t kWordsPerBlock = BlockHash::kBlockSize / sizeof(uword_t);
return CompareWholeWordValues<kWordsPerBlock>(block1, block2);
}
bool BlockHash::BlockCompareWords(const char* block1, const char* block2) {
return BlockCompareWordsInline(block1, block2);
}
inline bool BlockContentsMatchInline(const char* block1, const char* block2) {
// Optimize for mismatch in first byte. Since this function is called only
// when the hash values of the two blocks match, it is very likely that either
// the blocks are identical, or else the first byte does not match.
if (*block1 != *block2) {
return false;
}
#ifdef VCDIFF_USE_BLOCK_COMPARE_WORDS
return BlockCompareWordsInline(block1, block2);
#else // !VCDIFF_USE_BLOCK_COMPARE_WORDS
return memcmp(block1, block2, BlockHash::kBlockSize) == 0;
#endif // VCDIFF_USE_BLOCK_COMPARE_WORDS
}
bool BlockHash::BlockContentsMatch(const char* block1, const char* block2) {
return BlockContentsMatchInline(block1, block2);
}
inline int BlockHash::SkipNonMatchingBlocks(int block_number,
const char* block_ptr) const {
int probes = 0;
while ((block_number >= 0) &&
!BlockContentsMatchInline(block_ptr,
&source_data_[block_number * kBlockSize])) {
if (++probes > kMaxProbes) {
return -1; // Avoid too much chaining
}
block_number = next_block_table_[block_number];
}
return block_number;
}
// Init() must have been called and returned true before using
// FirstMatchingBlock or NextMatchingBlock. No check is performed
// for this condition; the code will crash if this condition is violated.
inline int BlockHash::FirstMatchingBlockInline(uint32_t hash_value,
const char* block_ptr) const {
return SkipNonMatchingBlocks(hash_table_[GetHashTableIndex(hash_value)],
block_ptr);
}
int BlockHash::FirstMatchingBlock(uint32_t hash_value,
const char* block_ptr) const {
return FirstMatchingBlockInline(hash_value, block_ptr);
}
int BlockHash::NextMatchingBlock(int block_number,
const char* block_ptr) const {
if (static_cast<size_t>(block_number) >= GetNumberOfBlocks()) {
VCD_DFATAL << "NextMatchingBlock called for invalid block number "
<< block_number << VCD_ENDL;
return -1;
}
return SkipNonMatchingBlocks(next_block_table_[block_number], block_ptr);
}
// Keep a count of the number of matches found. This will throttle the
// number of iterations in FindBestMatch. For example, if the entire
// dictionary is made up of spaces (' ') and the search string is also
// made up of spaces, there will be one match for each block in the
// dictionary.
inline bool BlockHash::TooManyMatches(int* match_counter) {
++(*match_counter);
return (*match_counter) > kMaxMatchesToCheck;
}
// Returns the number of bytes to the left of source_match_start
// that match the corresponding bytes to the left of target_match_start.
// Will not examine more than max_bytes bytes, which is to say that
// the return value will be in the range [0, max_bytes] inclusive.
int BlockHash::MatchingBytesToLeft(const char* source_match_start,
const char* target_match_start,
int max_bytes) {
const char* source_ptr = source_match_start;
const char* target_ptr = target_match_start;
int bytes_found = 0;
while (bytes_found < max_bytes) {
--source_ptr;
--target_ptr;
if (*source_ptr != *target_ptr) {
break;
}
++bytes_found;
}
return bytes_found;
}
// Returns the number of bytes starting at source_match_end
// that match the corresponding bytes starting at target_match_end.
// Will not examine more than max_bytes bytes, which is to say that
// the return value will be in the range [0, max_bytes] inclusive.
int BlockHash::MatchingBytesToRight(const char* source_match_end,
const char* target_match_end,
int max_bytes) {
const char* source_ptr = source_match_end;
const char* target_ptr = target_match_end;
int bytes_found = 0;
while ((bytes_found < max_bytes) && (*source_ptr == *target_ptr)) {
++bytes_found;
++source_ptr;
++target_ptr;
}
return bytes_found;
}
// No NULL checks are performed on the pointer arguments. The caller
// must guarantee that none of the arguments is NULL, or a crash will occur.
//
// The vast majority of calls to FindBestMatch enter the loop *zero* times,
// which is to say that most candidate blocks find no matches in the dictionary.
// The important sections for optimization are therefore the code outside the
// loop and the code within the loop conditions. Keep this to a minimum.
void BlockHash::FindBestMatch(uint32_t hash_value,
const char* target_candidate_start,
const char* target_start,
size_t target_size,
Match* best_match) const {
int match_counter = 0;
for (int block_number = FirstMatchingBlockInline(hash_value,
target_candidate_start);
(block_number >= 0) && !TooManyMatches(&match_counter);
block_number = NextMatchingBlock(block_number, target_candidate_start)) {
int source_match_offset = block_number * kBlockSize;
const int source_match_end = source_match_offset + kBlockSize;
int target_match_offset =
static_cast<int>(target_candidate_start - target_start);
const int target_match_end = target_match_offset + kBlockSize;
size_t match_size = kBlockSize;
{
// Extend match start towards beginning of unencoded data
const int limit_bytes_to_left = std::min(source_match_offset,
target_match_offset);
const int matching_bytes_to_left =
MatchingBytesToLeft(source_data_ + source_match_offset,
target_start + target_match_offset,
limit_bytes_to_left);
source_match_offset -= matching_bytes_to_left;
target_match_offset -= matching_bytes_to_left;
match_size += matching_bytes_to_left;
}
{
// Extend match end towards end of unencoded data
const size_t source_bytes_to_right = source_size_ - source_match_end;
const size_t target_bytes_to_right = target_size - target_match_end;
const size_t limit_bytes_to_right = std::min(source_bytes_to_right,
target_bytes_to_right);
match_size +=
MatchingBytesToRight(source_data_ + source_match_end,
target_start + target_match_end,
static_cast<int>(limit_bytes_to_right));
}
// Update in/out parameter if the best match found was better
// than any match already stored in *best_match.
best_match->ReplaceIfBetterMatch(match_size,
source_match_offset + starting_offset_,
target_match_offset);
}
}
} // namespace open_vcdiff