/* Copyright (C) 2012 IBM
Author: Maynard Johnson <maynardj@us.ibm.com>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.
The GNU General Public License is contained in the file COPYING.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#if defined(HAS_DFP)
typedef union stuff {
_Decimal64 dec_val;
_Decimal128 dec_val128;
unsigned long long u64_val;
struct {
unsigned long long valu;
unsigned long long vall;
} u128;
} dfp_val_t;
typedef unsigned char Bool;
#define True 1
#define False 0
#define ALLCR "cr0","cr1","cr2","cr3","cr4","cr5","cr6","cr7"
#define SET_CR(_arg) \
__asm__ __volatile__ ("mtcr %0" : : "b"(_arg) : ALLCR );
#define SET_XER(_arg) \
__asm__ __volatile__ ("mtxer %0" : : "b"(_arg) : "xer" );
#define GET_CR(_lval) \
__asm__ __volatile__ ("mfcr %0" : "=b"(_lval) )
#define GET_XER(_lval) \
__asm__ __volatile__ ("mfxer %0" : "=b"(_lval) )
#define GET_CR_XER(_lval_cr,_lval_xer) \
do { GET_CR(_lval_cr); GET_XER(_lval_xer); } while (0)
#define SET_CR_ZERO \
SET_CR(0)
#define SET_XER_ZERO \
SET_XER(0)
#define SET_CR_XER_ZERO \
do { SET_CR_ZERO; SET_XER_ZERO; } while (0)
#define SET_FPSCR_ZERO \
do { double _d = 0.0; \
__asm__ __volatile__ ("mtfsf 0xFF, %0" : : "f"(_d) ); \
} while (0)
#define GET_FPSCR(_arg) \
__asm__ __volatile__ ("mffs %0" : "=f"(_arg) )
#define SET_FPSCR_DRN \
__asm__ __volatile__ ("mtfsf 1, %0, 0, 1" : : "f"(f14) )
#ifndef __powerpc64__
typedef uint32_t HWord_t;
#else
typedef uint64_t HWord_t;
#endif /* __powerpc64__ */
enum BF_vals { BF_val1 = 0, BF_val2 = 1, BF_val3 =6};
// The assembly-level instructions being tested
static void _test_dtstsf(unsigned int BF, unsigned int ref_sig, dfp_val_t valB)
{
_Decimal64 f16 = valB.dec_val;
register HWord_t r14 __asm__ ("r14");
double f14;
r14 = (HWord_t)&ref_sig;
__asm __volatile__ ("lfiwax %0, 0, %1" : "=f" (f14): "r" (r14));
switch (BF) {
case BF_val1:
__asm__ __volatile__ ("dtstsf %0, %1, %2" : : "i" (BF_val1), "f" (f14), "f" (f16));
break;
case BF_val2:
__asm__ __volatile__ ("dtstsf %0, %1, %2" : : "i" (BF_val2), "f" (f14), "f" (f16));
break;
case BF_val3:
__asm__ __volatile__ ("dtstsf %0, %1, %2" : : "i" (BF_val3), "f" (f14), "f" (f16));
break;
default:
fprintf(stderr, "Invalid value %d for BF\n", BF);
break;
}
}
static void _test_dtstsfq(unsigned int BF, unsigned int ref_sig, dfp_val_t valB)
{
_Decimal128 f16 = valB.dec_val128;
register HWord_t r14 __asm__ ("r14");
double f14;
r14 = (HWord_t)&ref_sig;
__asm __volatile__ ("lfiwax %0, 0, %1" : "=f" (f14): "r" (r14));
switch (BF) {
case BF_val1:
__asm__ __volatile__ ("dtstsfq %0, %1, %2" : : "i" (BF_val1), "f" (f14), "f" (f16));
break;
case BF_val2:
__asm__ __volatile__ ("dtstsfq %0, %1, %2" : : "i" (BF_val2), "f" (f14), "f" (f16));
break;
case BF_val3:
__asm__ __volatile__ ("dtstsfq %0, %1, %2" : : "i" (BF_val3), "f" (f14), "f" (f16));
break;
default:
fprintf(stderr, "Invalid value %d for BF\n", BF);
break;
}
}
static dfp_val_t _test_ddedpd(unsigned int SP, dfp_val_t valB)
{
_Decimal64 ret = 0;
dfp_val_t result;
_Decimal64 f16 = valB.dec_val;
switch (SP) {
case 0:
__asm__ __volatile__ ("ddedpd. 0, %0, %1" : "=f" (ret) : "f" (f16));
break;
case 1:
__asm__ __volatile__ ("ddedpd. 1, %0, %1" : "=f" (ret) : "f" (f16));
break;
case 2:
__asm__ __volatile__ ("ddedpd. 2, %0, %1" : "=f" (ret) : "f" (f16));
break;
case 3:
__asm__ __volatile__ ("ddedpd. 3, %0, %1" : "=f" (ret) : "f" (f16));
break;
default:
fprintf(stderr, "Invalid value %d for SP\n", SP);
break;
}
result.dec_val = ret;
return result;
}
static dfp_val_t _test_ddedpdq(unsigned int SP, dfp_val_t valB)
{
_Decimal128 ret = 0;
dfp_val_t result;
_Decimal128 f16 = valB.dec_val128;
switch (SP) {
case 0:
__asm__ __volatile__ ("ddedpdq 0, %0, %1" : "=f" (ret) : "f" (f16));
break;
case 1:
__asm__ __volatile__ ("ddedpdq 1, %0, %1" : "=f" (ret) : "f" (f16));
break;
case 2:
__asm__ __volatile__ ("ddedpdq 2, %0, %1" : "=f" (ret) : "f" (f16));
break;
case 3:
__asm__ __volatile__ ("ddedpdq 3, %0, %1" : "=f" (ret) : "f" (f16));
break;
default:
fprintf(stderr, "Invalid value %d for SP\n", SP);
break;
}
result.dec_val128 = ret;
return result;
}
static dfp_val_t _test_denbcd(unsigned int S, dfp_val_t valB)
{
_Decimal64 ret = 0;
dfp_val_t result;
_Decimal64 f16 = valB.dec_val;
switch (S) {
case 0:
__asm__ __volatile__ ("denbcd. 0, %0, %1" : "=f" (ret) : "f" (f16));
break;
case 1:
__asm__ __volatile__ ("denbcd. 1, %0, %1" : "=f" (ret) : "f" (f16));
break;
default:
fprintf(stderr, "Invalid value %d for S\n", S);
break;
}
result.dec_val = ret;
return result;
}
static dfp_val_t _test_denbcdq(unsigned int S, dfp_val_t valB)
{
_Decimal128 ret = 0;
dfp_val_t result;
_Decimal128 f16 = valB.dec_val128;
switch (S) {
case 0:
__asm__ __volatile__ ("denbcdq 0, %0, %1" : "=f" (ret) : "f" (f16));
break;
case 1:
__asm__ __volatile__ ("denbcdq 1, %0, %1" : "=f" (ret) : "f" (f16));
break;
default:
fprintf(stderr, "Invalid value %d for S\n", S);
break;
}
result.dec_val128 = ret;
return result;
}
typedef void (*test_func_t)(unsigned int imm, unsigned int imm2, dfp_val_t valB);
typedef dfp_val_t (*test_func_bcd_t)(unsigned int imm, dfp_val_t valB);
typedef void (*test_driver_func_t)(void);
typedef struct test_table
{
test_driver_func_t test_category;
char * name;
} test_table_t;
/*
* 345.0DD (0x2207c00000000000 0xe50)
* 1.2300e+5DD (0x2207c00000000000 0x14c000)
* -16.0DD (0xa207c00000000000 0xe0)
* 0.00189DD (0x2206c00000000000 0xcf)
* -4.1235DD (0xa205c00000000000 0x10a395bcf)
* 9.8399e+20DD (0x2209400000000000 0x253f1f534acdd4)
* 0DD (0x2208000000000000 0x0)
* 0DD (0x2208000000000000 0x0)
* infDD (0x7800000000000000 0x0)
* nanDD (0x7c00000000000000 0x0
*/
static unsigned long long dfp128_vals[] = {
// Some finite numbers
0x2207c00000000000ULL, 0x0000000000000e50ULL,
0x2207c00000000000ULL, 0x000000000014c000ULL,
0xa207c00000000000ULL, 0x00000000000000e0ULL,
0x2206c00000000000ULL, 0x00000000000000cfULL,
0xa205c00000000000ULL, 0x000000010a395bcfULL,
0x6209400000fd0000ULL, 0x00253f1f534acdd4ULL, // huge number
0x000400000089b000ULL, 0x0a6000d000000049ULL, // very small number
// flavors of zero
0x2208000000000000ULL, 0x0000000000000000ULL,
0xa208000000000000ULL, 0x0000000000000000ULL, // negative
0xa248000000000000ULL, 0x0000000000000000ULL,
// flavors of NAN
0x7c00000000000000ULL, 0x0000000000000000ULL, // quiet
0xfc00000000000000ULL, 0xc00100035b007700ULL,
0x7e00000000000000ULL, 0xfe000000d0e0a0d0ULL, // signaling
// flavors of Infinity
0x7800000000000000ULL, 0x0000000000000000ULL,
0xf800000000000000ULL, 0x0000000000000000ULL, // negative
0xf900000000000000ULL, 0x0000000000000000ULL
};
static unsigned long long dfp64_vals[] = {
// various finite numbers
0x2234000000000e50ULL,
0x223400000014c000ULL,
0xa2340000000000e0ULL,// negative
0x22240000000000cfULL,
0xa21400010a395bcfULL,// negative
0x6e4d3f1f534acdd4ULL,// huge number
0x000400000089b000ULL,// very small number
// flavors of zero
0x2238000000000000ULL,
0xa238000000000000ULL,
0x4248000000000000ULL,
// flavors of NAN
0x7e34000000000111ULL,
0xfe000000d0e0a0d0ULL,//signaling
0xfc00000000000000ULL,//quiet
// flavors of Infinity
0x7800000000000000ULL,
0xf800000000000000ULL,//negative
0x7a34000000000000ULL,
};
/* The bcd64_vals and bdc128_vals hold the unique results of executing
* the ddedpd instruction on the basic dfp64 and dfp128 array values.
* Executing the inverse operation (denbcd) on these values with the
* appropriate S (signed) value should yield values approximating the
* original dfp values (except being 2^4 in magnitude since the decoding
* operation shifted the value one hex digit to the left to make room
* for signedness info).
*/
static unsigned long long bcd64_vals[] = {
0x0000000000003450ULL,
0x000000000003450cULL,
0x000000000003450fULL,
0x0000000001230000ULL,
0x000000001230000cULL,
0x000000001230000fULL,
0x0000000000000160ULL,
0x000000000000160dULL,
0x0000000000000189ULL,
0x000000000000189cULL,
0x000000000000189fULL,
0x0000004123456789ULL,
0x000004123456789dULL,
0x9839871234533354ULL,
0x839871234533354cULL,
0x839871234533354fULL,
0x0000000008864000ULL,
0x000000008864000cULL,
0x000000008864000fULL,
0x0000000000000000ULL,
0x000000000000000cULL,
0x000000000000000fULL,
0x000000000000000dULL,
0x0000000000000211ULL,
0x000000000000211cULL,
0x000000000000211fULL,
0x0000003882028150ULL,
0x000003882028150dULL
};
static unsigned long long bcd128_vals[] = {
0x0000000000000000ULL, 0x0000000000003450ULL,
0x0000000000000000ULL, 0x000000000003450cULL,
0x0000000000000000ULL, 0x000000000003450fULL,
0x0000000000000000ULL, 0x0000000001230000ULL,
0x0000000000000000ULL, 0x000000001230000cULL,
0x0000000000000000ULL, 0x000000001230000fULL,
0x0000000000000000ULL, 0x0000000000000160ULL,
0x0000000000000000ULL, 0x000000000000160dULL,
0x0000000000000000ULL, 0x0000000000000189ULL,
0x0000000000000000ULL, 0x000000000000189cULL,
0x0000000000000000ULL, 0x000000000000189fULL,
0x0000000000000000ULL, 0x0000004123456789ULL,
0x0000000000000000ULL, 0x000004123456789dULL,
0x0000097100000000ULL, 0x9839871234533354ULL,
0x0000971000000009ULL, 0x839871234533354cULL,
0x0000971000000009ULL, 0x839871234533354fULL,
0x0000010954000051ULL, 0x8000640000000049ULL,
0x0000109540000518ULL, 0x000640000000049cULL,
0x0000109540000518ULL, 0x000640000000049fULL,
0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL, 0x000000000000000cULL,
0x0000000000000000ULL, 0x000000000000000fULL,
0x0000000000000000ULL, 0x000000000000000dULL,
0x0000000000080000ULL, 0x0200801330811600ULL,
0x0000000000800000ULL, 0x200801330811600dULL,
0x0000000000088170ULL, 0x0000003882028150ULL,
0x0000000000881700ULL, 0x000003882028150cULL,
0x0000000000881700ULL, 0x000003882028150fULL
};
// Both Long and Quad arrays of DFP values should have the same length, so it
// doesn't matter which array I use for calculating the following #define.
#define NUM_DFP_VALS (sizeof(dfp64_vals)/8)
typedef enum {
LONG_TEST,
QUAD_TEST
} precision_type_t;
typedef struct dfp_one_arg_test
{
test_func_t test_func;
const char * name;
precision_type_t precision;
const char * op;
} dfp_one_arg_test_t;
typedef struct dfp_one_arg_bcd_test
{
test_func_bcd_t test_func;
const char * name;
precision_type_t precision;
const char * op;
} dfp_one_arg_bcd_test_t;
static dfp_one_arg_bcd_test_t
dfp_test_dfp_ddedpd_tests[] = {
{ &_test_ddedpd, "ddedpd", LONG_TEST, "[D->B]"},
{ &_test_ddedpdq, "ddedpdq", QUAD_TEST, "[D->B]"},
{ NULL, NULL, 0, NULL}
};
static void test_dfp_ddedpd_ops(void)
{
test_func_bcd_t func;
dfp_val_t test_val;
int k = 0;
while ((func = dfp_test_dfp_ddedpd_tests[k].test_func)) {
int i;
dfp_one_arg_bcd_test_t test_def = dfp_test_dfp_ddedpd_tests[k];
for (i = 0; i < NUM_DFP_VALS; i++) {
unsigned int SP;
if (test_def.precision == LONG_TEST) {
test_val.u64_val = dfp64_vals[i];
} else {
test_val.u128.valu = dfp128_vals[i * 2];
test_val.u64_val = test_val.u128.valu;
test_val.u128.vall = dfp128_vals[(i * 2) + 1];
}
for (SP = 0; SP < 4; SP++) {
dfp_val_t result;
result = (*func)(SP, test_val);
printf("%s (SP=%d) %s%016llx", test_def.name, SP,
test_def.op, test_val.u64_val);
if (test_def.precision == QUAD_TEST) {
printf(" %016llx", test_val.u128.vall);
}
if (test_def.precision == LONG_TEST)
printf(" ==> %016llx\n", result.u64_val);
else
printf(" ==> %016llx %016llx\n", result.u128.valu, result.u128.vall);
}
}
k++;
printf( "\n" );
}
}
static dfp_one_arg_bcd_test_t
dfp_test_dfp_denbcd_tests[] = {
{ &_test_denbcd, "denbcd", LONG_TEST, "[B->D]"},
{ &_test_denbcdq, "denbcdq", QUAD_TEST, "[B->D]"},
{ NULL, NULL, 0, NULL}
};
static void test_dfp_denbcd_ops(void)
{
test_func_bcd_t func;
dfp_val_t test_val;
int num_test_vals;
int k = 0;
while ((func = dfp_test_dfp_denbcd_tests[k].test_func)) {
int i;
dfp_one_arg_bcd_test_t test_def = dfp_test_dfp_denbcd_tests[k];
if (test_def.precision == LONG_TEST)
num_test_vals = sizeof(bcd64_vals)/sizeof(unsigned long long);
else
num_test_vals = sizeof(bcd128_vals)/(2 * sizeof(unsigned long long));
for (i = 0; i < num_test_vals; i++) {
unsigned int S;
dfp_val_t result;
/* The DPD-to-BCD decodings may contain up to 3 decodings for each normal DFP
* value: the first is an unsigned decoding, and the other two are
* signed decodings, with SP[1] set to '0' and '1' respectively at decode
* time. But some of the results of decodings were duplicates, so they were
* not included in the bcd64_vals and bcd128_vals arrays.
*
* When doing the encoding operation (denbcd), we'll attempt both S=0 and
* S=1; one or the other should encode the BCD value to something close to
* its original DFP value (except being 2^4 in magnitude since the decoding
* operation shifted the value one hex digit to the left to make room
* for signedness info).
*/
for (S = 0; S < 2; S++) {
if (test_def.precision == LONG_TEST) {
test_val.u64_val = bcd64_vals[i];
} else {
test_val.u128.valu = bcd128_vals[i * 2];
test_val.u64_val = test_val.u128.valu;
test_val.u128.vall = bcd128_vals[(i * 2) + 1];
}
result = (*func)(S, test_val);
printf("%s (S=%d) %s%016llx", test_def.name, S,
test_def.op, test_val.u64_val);
if (test_def.precision == QUAD_TEST) {
printf(" %016llx", test_val.u128.vall);
}
if (test_def.precision == LONG_TEST)
printf(" ==> %016llx\n", result.u64_val);
else
printf(" ==> %016llx %016llx\n", result.u128.valu, result.u128.vall);
}
}
k++;
printf( "\n" );
}
}
static dfp_one_arg_test_t
dfp_test_significance_tests[] = {
{ &_test_dtstsf, "dtstsf", LONG_TEST, "[tSig]"},
{ &_test_dtstsfq, "dtstsfq", QUAD_TEST, "[tSig]"},
{ NULL, NULL, 0, NULL}
};
static void test_dfp_test_significance_ops(void)
{
test_func_t func;
dfp_val_t test_valB;
int k = 0;
unsigned int BF_vals[] = {BF_val1, BF_val2, BF_val3};
unsigned int reference_sig, reference_sig_vals[] = {0U, 1U, 2U, 4U, 6U, 63U};
int num_reference_sig_vals = sizeof(reference_sig_vals)/sizeof(unsigned int);
while ((func = dfp_test_significance_tests[k].test_func)) {
int i;
dfp_one_arg_test_t test_def = dfp_test_significance_tests[k];
for (i = 0; i < NUM_DFP_VALS; i++) {
int j;
if (test_def.precision == LONG_TEST) {
test_valB.u64_val = dfp64_vals[i];
} else {
test_valB.u128.valu = dfp128_vals[i * 2];
test_valB.u64_val = test_valB.u128.valu;
test_valB.u128.vall = dfp128_vals[(i * 2) + 1];
}
for (j = 0; j < num_reference_sig_vals; j++) {
int bf_idx, BF;
reference_sig = reference_sig_vals[j];
for (bf_idx = 0; bf_idx < sizeof(BF_vals)/sizeof(unsigned int); bf_idx++) {
unsigned int condreg;
unsigned int flags;
BF = BF_vals[bf_idx];
SET_FPSCR_ZERO;
SET_CR_XER_ZERO;
(*func)(BF, reference_sig, test_valB);
GET_CR(flags);
condreg = ((flags >> (4 * (7-BF)))) & 0xf;
printf("%s (ref_sig=%d) %s%016llx", test_def.name, reference_sig,
test_def.op, test_valB.u64_val);
if (test_def.precision == QUAD_TEST) {
printf(" %016llx", test_valB.u128.vall);
}
printf(" => %x (BF=%d)\n", condreg, BF);
}
}
printf( "\n" );
}
k++;
}
}
static test_table_t
all_tests[] =
{
{ &test_dfp_test_significance_ops,
"Test DFP test significance instructions"},
{ &test_dfp_ddedpd_ops,
"Test DFP DPD-to-BCD instructions"},
{ &test_dfp_denbcd_ops,
"Test DFP BCD-to-DPD instructions"},
{ NULL, NULL }
};
#endif // HAS_DFP
int main() {
#if defined(HAS_DFP)
test_table_t aTest;
test_driver_func_t func;
int i = 0;
while ((func = all_tests[i].test_category)) {
aTest = all_tests[i];
printf( "%s\n", aTest.name );
(*func)();
i++;
}
#endif // HAS_DFP
return 0;
}