/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dex/compiler_ir.h" #include "dex/compiler_internals.h" #include "dex/quick/arm/arm_lir.h" #include "dex/quick/mir_to_lir-inl.h" #include "entrypoints/quick/quick_entrypoints.h" #include "mirror/array.h" #include "verifier/method_verifier.h" namespace art { /* * This source files contains "gen" codegen routines that should * be applicable to most targets. Only mid-level support utilities * and "op" calls may be used here. */ /* * Generate an kPseudoBarrier marker to indicate the boundary of special * blocks. */ void Mir2Lir::GenBarrier() { LIR* barrier = NewLIR0(kPseudoBarrier); /* Mark all resources as being clobbered */ barrier->def_mask = -1; } // FIXME: need to do some work to split out targets with // condition codes and those without LIR* Mir2Lir::GenCheck(ConditionCode c_code, ThrowKind kind) { DCHECK_NE(cu_->instruction_set, kMips); LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind, current_dalvik_offset_); LIR* branch = OpCondBranch(c_code, tgt); // Remember branch target - will process later throw_launchpads_.Insert(tgt); return branch; } LIR* Mir2Lir::GenImmedCheck(ConditionCode c_code, int reg, int imm_val, ThrowKind kind) { LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind, current_dalvik_offset_, reg, imm_val); LIR* branch; if (c_code == kCondAl) { branch = OpUnconditionalBranch(tgt); } else { branch = OpCmpImmBranch(c_code, reg, imm_val, tgt); } // Remember branch target - will process later throw_launchpads_.Insert(tgt); return branch; } /* Perform null-check on a register. */ LIR* Mir2Lir::GenNullCheck(int s_reg, int m_reg, int opt_flags) { if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && opt_flags & MIR_IGNORE_NULL_CHECK) { return NULL; } return GenImmedCheck(kCondEq, m_reg, 0, kThrowNullPointer); } /* Perform check on two registers */ LIR* Mir2Lir::GenRegRegCheck(ConditionCode c_code, int reg1, int reg2, ThrowKind kind) { LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind, current_dalvik_offset_, reg1, reg2); LIR* branch = OpCmpBranch(c_code, reg1, reg2, tgt); // Remember branch target - will process later throw_launchpads_.Insert(tgt); return branch; } void Mir2Lir::GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1, RegLocation rl_src2, LIR* taken, LIR* fall_through) { ConditionCode cond; switch (opcode) { case Instruction::IF_EQ: cond = kCondEq; break; case Instruction::IF_NE: cond = kCondNe; break; case Instruction::IF_LT: cond = kCondLt; break; case Instruction::IF_GE: cond = kCondGe; break; case Instruction::IF_GT: cond = kCondGt; break; case Instruction::IF_LE: cond = kCondLe; break; default: cond = static_cast<ConditionCode>(0); LOG(FATAL) << "Unexpected opcode " << opcode; } // Normalize such that if either operand is constant, src2 will be constant if (rl_src1.is_const) { RegLocation rl_temp = rl_src1; rl_src1 = rl_src2; rl_src2 = rl_temp; cond = FlipComparisonOrder(cond); } rl_src1 = LoadValue(rl_src1, kCoreReg); // Is this really an immediate comparison? if (rl_src2.is_const) { // If it's already live in a register or not easily materialized, just keep going RegLocation rl_temp = UpdateLoc(rl_src2); if ((rl_temp.location == kLocDalvikFrame) && InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src2))) { // OK - convert this to a compare immediate and branch OpCmpImmBranch(cond, rl_src1.low_reg, mir_graph_->ConstantValue(rl_src2), taken); OpUnconditionalBranch(fall_through); return; } } rl_src2 = LoadValue(rl_src2, kCoreReg); OpCmpBranch(cond, rl_src1.low_reg, rl_src2.low_reg, taken); OpUnconditionalBranch(fall_through); } void Mir2Lir::GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src, LIR* taken, LIR* fall_through) { ConditionCode cond; rl_src = LoadValue(rl_src, kCoreReg); switch (opcode) { case Instruction::IF_EQZ: cond = kCondEq; break; case Instruction::IF_NEZ: cond = kCondNe; break; case Instruction::IF_LTZ: cond = kCondLt; break; case Instruction::IF_GEZ: cond = kCondGe; break; case Instruction::IF_GTZ: cond = kCondGt; break; case Instruction::IF_LEZ: cond = kCondLe; break; default: cond = static_cast<ConditionCode>(0); LOG(FATAL) << "Unexpected opcode " << opcode; } OpCmpImmBranch(cond, rl_src.low_reg, 0, taken); OpUnconditionalBranch(fall_through); } void Mir2Lir::GenIntToLong(RegLocation rl_dest, RegLocation rl_src) { RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); if (rl_src.location == kLocPhysReg) { OpRegCopy(rl_result.low_reg, rl_src.low_reg); } else { LoadValueDirect(rl_src, rl_result.low_reg); } OpRegRegImm(kOpAsr, rl_result.high_reg, rl_result.low_reg, 31); StoreValueWide(rl_dest, rl_result); } void Mir2Lir::GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src) { rl_src = LoadValue(rl_src, kCoreReg); RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); OpKind op = kOpInvalid; switch (opcode) { case Instruction::INT_TO_BYTE: op = kOp2Byte; break; case Instruction::INT_TO_SHORT: op = kOp2Short; break; case Instruction::INT_TO_CHAR: op = kOp2Char; break; default: LOG(ERROR) << "Bad int conversion type"; } OpRegReg(op, rl_result.low_reg, rl_src.low_reg); StoreValue(rl_dest, rl_result); } /* * Let helper function take care of everything. Will call * Array::AllocFromCode(type_idx, method, count); * Note: AllocFromCode will handle checks for errNegativeArraySize. */ void Mir2Lir::GenNewArray(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src) { FlushAllRegs(); /* Everything to home location */ ThreadOffset func_offset(-1); if (cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *cu_->dex_file, type_idx)) { func_offset = QUICK_ENTRYPOINT_OFFSET(pAllocArray); } else { func_offset= QUICK_ENTRYPOINT_OFFSET(pAllocArrayWithAccessCheck); } CallRuntimeHelperImmMethodRegLocation(func_offset, type_idx, rl_src, true); RegLocation rl_result = GetReturn(false); StoreValue(rl_dest, rl_result); } /* * Similar to GenNewArray, but with post-allocation initialization. * Verifier guarantees we're dealing with an array class. Current * code throws runtime exception "bad Filled array req" for 'D' and 'J'. * Current code also throws internal unimp if not 'L', '[' or 'I'. */ void Mir2Lir::GenFilledNewArray(CallInfo* info) { int elems = info->num_arg_words; int type_idx = info->index; FlushAllRegs(); /* Everything to home location */ ThreadOffset func_offset(-1); if (cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *cu_->dex_file, type_idx)) { func_offset = QUICK_ENTRYPOINT_OFFSET(pCheckAndAllocArray); } else { func_offset = QUICK_ENTRYPOINT_OFFSET(pCheckAndAllocArrayWithAccessCheck); } CallRuntimeHelperImmMethodImm(func_offset, type_idx, elems, true); FreeTemp(TargetReg(kArg2)); FreeTemp(TargetReg(kArg1)); /* * NOTE: the implicit target for Instruction::FILLED_NEW_ARRAY is the * return region. Because AllocFromCode placed the new array * in kRet0, we'll just lock it into place. When debugger support is * added, it may be necessary to additionally copy all return * values to a home location in thread-local storage */ LockTemp(TargetReg(kRet0)); // TODO: use the correct component size, currently all supported types // share array alignment with ints (see comment at head of function) size_t component_size = sizeof(int32_t); // Having a range of 0 is legal if (info->is_range && (elems > 0)) { /* * Bit of ugliness here. We're going generate a mem copy loop * on the register range, but it is possible that some regs * in the range have been promoted. This is unlikely, but * before generating the copy, we'll just force a flush * of any regs in the source range that have been promoted to * home location. */ for (int i = 0; i < elems; i++) { RegLocation loc = UpdateLoc(info->args[i]); if (loc.location == kLocPhysReg) { StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low), loc.low_reg, kWord); } } /* * TUNING note: generated code here could be much improved, but * this is an uncommon operation and isn't especially performance * critical. */ int r_src = AllocTemp(); int r_dst = AllocTemp(); int r_idx = AllocTemp(); int r_val = INVALID_REG; switch (cu_->instruction_set) { case kThumb2: r_val = TargetReg(kLr); break; case kX86: FreeTemp(TargetReg(kRet0)); r_val = AllocTemp(); break; case kMips: r_val = AllocTemp(); break; default: LOG(FATAL) << "Unexpected instruction set: " << cu_->instruction_set; } // Set up source pointer RegLocation rl_first = info->args[0]; OpRegRegImm(kOpAdd, r_src, TargetReg(kSp), SRegOffset(rl_first.s_reg_low)); // Set up the target pointer OpRegRegImm(kOpAdd, r_dst, TargetReg(kRet0), mirror::Array::DataOffset(component_size).Int32Value()); // Set up the loop counter (known to be > 0) LoadConstant(r_idx, elems - 1); // Generate the copy loop. Going backwards for convenience LIR* target = NewLIR0(kPseudoTargetLabel); // Copy next element LoadBaseIndexed(r_src, r_idx, r_val, 2, kWord); StoreBaseIndexed(r_dst, r_idx, r_val, 2, kWord); FreeTemp(r_val); OpDecAndBranch(kCondGe, r_idx, target); if (cu_->instruction_set == kX86) { // Restore the target pointer OpRegRegImm(kOpAdd, TargetReg(kRet0), r_dst, -mirror::Array::DataOffset(component_size).Int32Value()); } } else if (!info->is_range) { // TUNING: interleave for (int i = 0; i < elems; i++) { RegLocation rl_arg = LoadValue(info->args[i], kCoreReg); StoreBaseDisp(TargetReg(kRet0), mirror::Array::DataOffset(component_size).Int32Value() + i * 4, rl_arg.low_reg, kWord); // If the LoadValue caused a temp to be allocated, free it if (IsTemp(rl_arg.low_reg)) { FreeTemp(rl_arg.low_reg); } } } if (info->result.location != kLocInvalid) { StoreValue(info->result, GetReturn(false /* not fp */)); } } void Mir2Lir::GenSput(uint32_t field_idx, RegLocation rl_src, bool is_long_or_double, bool is_object) { int field_offset; int ssb_index; bool is_volatile; bool is_referrers_class; bool fast_path = cu_->compiler_driver->ComputeStaticFieldInfo( field_idx, mir_graph_->GetCurrentDexCompilationUnit(), field_offset, ssb_index, is_referrers_class, is_volatile, true); if (fast_path && !SLOW_FIELD_PATH) { DCHECK_GE(field_offset, 0); int rBase; if (is_referrers_class) { // Fast path, static storage base is this method's class RegLocation rl_method = LoadCurrMethod(); rBase = AllocTemp(); LoadWordDisp(rl_method.low_reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), rBase); if (IsTemp(rl_method.low_reg)) { FreeTemp(rl_method.low_reg); } } else { // Medium path, static storage base in a different class which requires checks that the other // class is initialized. // TODO: remove initialized check now that we are initializing classes in the compiler driver. DCHECK_GE(ssb_index, 0); // May do runtime call so everything to home locations. FlushAllRegs(); // Using fixed register to sync with possible call to runtime support. int r_method = TargetReg(kArg1); LockTemp(r_method); LoadCurrMethodDirect(r_method); rBase = TargetReg(kArg0); LockTemp(rBase); LoadWordDisp(r_method, mirror::ArtMethod::DexCacheInitializedStaticStorageOffset().Int32Value(), rBase); LoadWordDisp(rBase, mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value() + sizeof(int32_t*) * ssb_index, rBase); // rBase now points at appropriate static storage base (Class*) // or NULL if not initialized. Check for NULL and call helper if NULL. // TUNING: fast path should fall through LIR* branch_over = OpCmpImmBranch(kCondNe, rBase, 0, NULL); LoadConstant(TargetReg(kArg0), ssb_index); CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeStaticStorage), ssb_index, true); if (cu_->instruction_set == kMips) { // For Arm, kRet0 = kArg0 = rBase, for Mips, we need to copy OpRegCopy(rBase, TargetReg(kRet0)); } LIR* skip_target = NewLIR0(kPseudoTargetLabel); branch_over->target = skip_target; FreeTemp(r_method); } // rBase now holds static storage base if (is_long_or_double) { rl_src = LoadValueWide(rl_src, kAnyReg); } else { rl_src = LoadValue(rl_src, kAnyReg); } if (is_volatile) { GenMemBarrier(kStoreStore); } if (is_long_or_double) { StoreBaseDispWide(rBase, field_offset, rl_src.low_reg, rl_src.high_reg); } else { StoreWordDisp(rBase, field_offset, rl_src.low_reg); } if (is_volatile) { GenMemBarrier(kStoreLoad); } if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) { MarkGCCard(rl_src.low_reg, rBase); } FreeTemp(rBase); } else { FlushAllRegs(); // Everything to home locations ThreadOffset setter_offset = is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(pSet64Static) : (is_object ? QUICK_ENTRYPOINT_OFFSET(pSetObjStatic) : QUICK_ENTRYPOINT_OFFSET(pSet32Static)); CallRuntimeHelperImmRegLocation(setter_offset, field_idx, rl_src, true); } } void Mir2Lir::GenSget(uint32_t field_idx, RegLocation rl_dest, bool is_long_or_double, bool is_object) { int field_offset; int ssb_index; bool is_volatile; bool is_referrers_class; bool fast_path = cu_->compiler_driver->ComputeStaticFieldInfo( field_idx, mir_graph_->GetCurrentDexCompilationUnit(), field_offset, ssb_index, is_referrers_class, is_volatile, false); if (fast_path && !SLOW_FIELD_PATH) { DCHECK_GE(field_offset, 0); int rBase; if (is_referrers_class) { // Fast path, static storage base is this method's class RegLocation rl_method = LoadCurrMethod(); rBase = AllocTemp(); LoadWordDisp(rl_method.low_reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), rBase); } else { // Medium path, static storage base in a different class which requires checks that the other // class is initialized // TODO: remove initialized check now that we are initializing classes in the compiler driver. DCHECK_GE(ssb_index, 0); // May do runtime call so everything to home locations. FlushAllRegs(); // Using fixed register to sync with possible call to runtime support. int r_method = TargetReg(kArg1); LockTemp(r_method); LoadCurrMethodDirect(r_method); rBase = TargetReg(kArg0); LockTemp(rBase); LoadWordDisp(r_method, mirror::ArtMethod::DexCacheInitializedStaticStorageOffset().Int32Value(), rBase); LoadWordDisp(rBase, mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value() + sizeof(int32_t*) * ssb_index, rBase); // rBase now points at appropriate static storage base (Class*) // or NULL if not initialized. Check for NULL and call helper if NULL. // TUNING: fast path should fall through LIR* branch_over = OpCmpImmBranch(kCondNe, rBase, 0, NULL); CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeStaticStorage), ssb_index, true); if (cu_->instruction_set == kMips) { // For Arm, kRet0 = kArg0 = rBase, for Mips, we need to copy OpRegCopy(rBase, TargetReg(kRet0)); } LIR* skip_target = NewLIR0(kPseudoTargetLabel); branch_over->target = skip_target; FreeTemp(r_method); } // rBase now holds static storage base RegLocation rl_result = EvalLoc(rl_dest, kAnyReg, true); if (is_volatile) { GenMemBarrier(kLoadLoad); } if (is_long_or_double) { LoadBaseDispWide(rBase, field_offset, rl_result.low_reg, rl_result.high_reg, INVALID_SREG); } else { LoadWordDisp(rBase, field_offset, rl_result.low_reg); } FreeTemp(rBase); if (is_long_or_double) { StoreValueWide(rl_dest, rl_result); } else { StoreValue(rl_dest, rl_result); } } else { FlushAllRegs(); // Everything to home locations ThreadOffset getterOffset = is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(pGet64Static) :(is_object ? QUICK_ENTRYPOINT_OFFSET(pGetObjStatic) : QUICK_ENTRYPOINT_OFFSET(pGet32Static)); CallRuntimeHelperImm(getterOffset, field_idx, true); if (is_long_or_double) { RegLocation rl_result = GetReturnWide(rl_dest.fp); StoreValueWide(rl_dest, rl_result); } else { RegLocation rl_result = GetReturn(rl_dest.fp); StoreValue(rl_dest, rl_result); } } } void Mir2Lir::HandleSuspendLaunchPads() { int num_elems = suspend_launchpads_.Size(); ThreadOffset helper_offset = QUICK_ENTRYPOINT_OFFSET(pTestSuspend); for (int i = 0; i < num_elems; i++) { ResetRegPool(); ResetDefTracking(); LIR* lab = suspend_launchpads_.Get(i); LIR* resume_lab = reinterpret_cast<LIR*>(lab->operands[0]); current_dalvik_offset_ = lab->operands[1]; AppendLIR(lab); int r_tgt = CallHelperSetup(helper_offset); CallHelper(r_tgt, helper_offset, true /* MarkSafepointPC */); OpUnconditionalBranch(resume_lab); } } void Mir2Lir::HandleIntrinsicLaunchPads() { int num_elems = intrinsic_launchpads_.Size(); for (int i = 0; i < num_elems; i++) { ResetRegPool(); ResetDefTracking(); LIR* lab = intrinsic_launchpads_.Get(i); CallInfo* info = reinterpret_cast<CallInfo*>(lab->operands[0]); current_dalvik_offset_ = info->offset; AppendLIR(lab); // NOTE: GenInvoke handles MarkSafepointPC GenInvoke(info); LIR* resume_lab = reinterpret_cast<LIR*>(lab->operands[2]); if (resume_lab != NULL) { OpUnconditionalBranch(resume_lab); } } } void Mir2Lir::HandleThrowLaunchPads() { int num_elems = throw_launchpads_.Size(); for (int i = 0; i < num_elems; i++) { ResetRegPool(); ResetDefTracking(); LIR* lab = throw_launchpads_.Get(i); current_dalvik_offset_ = lab->operands[1]; AppendLIR(lab); ThreadOffset func_offset(-1); int v1 = lab->operands[2]; int v2 = lab->operands[3]; const bool target_x86 = cu_->instruction_set == kX86; const bool target_arm = cu_->instruction_set == kArm || cu_->instruction_set == kThumb2; const bool target_mips = cu_->instruction_set == kMips; switch (lab->operands[0]) { case kThrowNullPointer: func_offset = QUICK_ENTRYPOINT_OFFSET(pThrowNullPointer); break; case kThrowConstantArrayBounds: // v1 is length reg (for Arm/Mips), v2 constant index // v1 holds the constant array index. Mips/Arm uses v2 for length, x86 reloads. if (target_x86) { OpRegMem(kOpMov, TargetReg(kArg1), v1, mirror::Array::LengthOffset().Int32Value()); } else { OpRegCopy(TargetReg(kArg1), v1); } // Make sure the following LoadConstant doesn't mess with kArg1. LockTemp(TargetReg(kArg1)); LoadConstant(TargetReg(kArg0), v2); func_offset = QUICK_ENTRYPOINT_OFFSET(pThrowArrayBounds); break; case kThrowArrayBounds: // Move v1 (array index) to kArg0 and v2 (array length) to kArg1 if (v2 != TargetReg(kArg0)) { OpRegCopy(TargetReg(kArg0), v1); if (target_x86) { // x86 leaves the array pointer in v2, so load the array length that the handler expects OpRegMem(kOpMov, TargetReg(kArg1), v2, mirror::Array::LengthOffset().Int32Value()); } else { OpRegCopy(TargetReg(kArg1), v2); } } else { if (v1 == TargetReg(kArg1)) { // Swap v1 and v2, using kArg2 as a temp OpRegCopy(TargetReg(kArg2), v1); if (target_x86) { // x86 leaves the array pointer in v2; load the array length that the handler expects OpRegMem(kOpMov, TargetReg(kArg1), v2, mirror::Array::LengthOffset().Int32Value()); } else { OpRegCopy(TargetReg(kArg1), v2); } OpRegCopy(TargetReg(kArg0), TargetReg(kArg2)); } else { if (target_x86) { // x86 leaves the array pointer in v2; load the array length that the handler expects OpRegMem(kOpMov, TargetReg(kArg1), v2, mirror::Array::LengthOffset().Int32Value()); } else { OpRegCopy(TargetReg(kArg1), v2); } OpRegCopy(TargetReg(kArg0), v1); } } func_offset = QUICK_ENTRYPOINT_OFFSET(pThrowArrayBounds); break; case kThrowDivZero: func_offset = QUICK_ENTRYPOINT_OFFSET(pThrowDivZero); break; case kThrowNoSuchMethod: OpRegCopy(TargetReg(kArg0), v1); func_offset = QUICK_ENTRYPOINT_OFFSET(pThrowNoSuchMethod); break; case kThrowStackOverflow: { func_offset = QUICK_ENTRYPOINT_OFFSET(pThrowStackOverflow); // Restore stack alignment int r_tgt = 0; const int spill_size = (num_core_spills_ + num_fp_spills_) * 4; if (target_x86) { // - 4 to leave link register on stack. OpRegImm(kOpAdd, TargetReg(kSp), frame_size_ - 4); ClobberCalleeSave(); } else if (target_arm) { r_tgt = r12; LoadWordDisp(TargetReg(kSp), spill_size - 4, TargetReg(kLr)); OpRegImm(kOpAdd, TargetReg(kSp), spill_size); ClobberCalleeSave(); LoadWordDisp(rARM_SELF, func_offset.Int32Value(), r_tgt); } else { DCHECK(target_mips); DCHECK_EQ(num_fp_spills_, 0); // FP spills currently don't happen on mips. // LR is offset 0 since we push in reverse order. LoadWordDisp(TargetReg(kSp), 0, TargetReg(kLr)); OpRegImm(kOpAdd, TargetReg(kSp), spill_size); ClobberCalleeSave(); r_tgt = CallHelperSetup(func_offset); // Doesn't clobber LR. DCHECK_NE(r_tgt, TargetReg(kLr)); } CallHelper(r_tgt, func_offset, false /* MarkSafepointPC */, false /* UseLink */); continue; } default: LOG(FATAL) << "Unexpected throw kind: " << lab->operands[0]; } ClobberCalleeSave(); int r_tgt = CallHelperSetup(func_offset); CallHelper(r_tgt, func_offset, true /* MarkSafepointPC */, true /* UseLink */); } } void Mir2Lir::GenIGet(uint32_t field_idx, int opt_flags, OpSize size, RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double, bool is_object) { int field_offset; bool is_volatile; bool fast_path = FastInstance(field_idx, field_offset, is_volatile, false); if (fast_path && !SLOW_FIELD_PATH) { RegLocation rl_result; RegisterClass reg_class = oat_reg_class_by_size(size); DCHECK_GE(field_offset, 0); rl_obj = LoadValue(rl_obj, kCoreReg); if (is_long_or_double) { DCHECK(rl_dest.wide); GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, opt_flags); if (cu_->instruction_set == kX86) { rl_result = EvalLoc(rl_dest, reg_class, true); GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, opt_flags); LoadBaseDispWide(rl_obj.low_reg, field_offset, rl_result.low_reg, rl_result.high_reg, rl_obj.s_reg_low); if (is_volatile) { GenMemBarrier(kLoadLoad); } } else { int reg_ptr = AllocTemp(); OpRegRegImm(kOpAdd, reg_ptr, rl_obj.low_reg, field_offset); rl_result = EvalLoc(rl_dest, reg_class, true); LoadBaseDispWide(reg_ptr, 0, rl_result.low_reg, rl_result.high_reg, INVALID_SREG); if (is_volatile) { GenMemBarrier(kLoadLoad); } FreeTemp(reg_ptr); } StoreValueWide(rl_dest, rl_result); } else { rl_result = EvalLoc(rl_dest, reg_class, true); GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, opt_flags); LoadBaseDisp(rl_obj.low_reg, field_offset, rl_result.low_reg, kWord, rl_obj.s_reg_low); if (is_volatile) { GenMemBarrier(kLoadLoad); } StoreValue(rl_dest, rl_result); } } else { ThreadOffset getterOffset = is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(pGet64Instance) : (is_object ? QUICK_ENTRYPOINT_OFFSET(pGetObjInstance) : QUICK_ENTRYPOINT_OFFSET(pGet32Instance)); CallRuntimeHelperImmRegLocation(getterOffset, field_idx, rl_obj, true); if (is_long_or_double) { RegLocation rl_result = GetReturnWide(rl_dest.fp); StoreValueWide(rl_dest, rl_result); } else { RegLocation rl_result = GetReturn(rl_dest.fp); StoreValue(rl_dest, rl_result); } } } void Mir2Lir::GenIPut(uint32_t field_idx, int opt_flags, OpSize size, RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double, bool is_object) { int field_offset; bool is_volatile; bool fast_path = FastInstance(field_idx, field_offset, is_volatile, true); if (fast_path && !SLOW_FIELD_PATH) { RegisterClass reg_class = oat_reg_class_by_size(size); DCHECK_GE(field_offset, 0); rl_obj = LoadValue(rl_obj, kCoreReg); if (is_long_or_double) { int reg_ptr; rl_src = LoadValueWide(rl_src, kAnyReg); GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, opt_flags); reg_ptr = AllocTemp(); OpRegRegImm(kOpAdd, reg_ptr, rl_obj.low_reg, field_offset); if (is_volatile) { GenMemBarrier(kStoreStore); } StoreBaseDispWide(reg_ptr, 0, rl_src.low_reg, rl_src.high_reg); if (is_volatile) { GenMemBarrier(kLoadLoad); } FreeTemp(reg_ptr); } else { rl_src = LoadValue(rl_src, reg_class); GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, opt_flags); if (is_volatile) { GenMemBarrier(kStoreStore); } StoreBaseDisp(rl_obj.low_reg, field_offset, rl_src.low_reg, kWord); if (is_volatile) { GenMemBarrier(kLoadLoad); } if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) { MarkGCCard(rl_src.low_reg, rl_obj.low_reg); } } } else { ThreadOffset setter_offset = is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(pSet64Instance) : (is_object ? QUICK_ENTRYPOINT_OFFSET(pSetObjInstance) : QUICK_ENTRYPOINT_OFFSET(pSet32Instance)); CallRuntimeHelperImmRegLocationRegLocation(setter_offset, field_idx, rl_obj, rl_src, true); } } void Mir2Lir::GenConstClass(uint32_t type_idx, RegLocation rl_dest) { RegLocation rl_method = LoadCurrMethod(); int res_reg = AllocTemp(); RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); if (!cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *cu_->dex_file, type_idx)) { // Call out to helper which resolves type and verifies access. // Resolved type returned in kRet0. CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccess), type_idx, rl_method.low_reg, true); RegLocation rl_result = GetReturn(false); StoreValue(rl_dest, rl_result); } else { // We're don't need access checks, load type from dex cache int32_t dex_cache_offset = mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(); LoadWordDisp(rl_method.low_reg, dex_cache_offset, res_reg); int32_t offset_of_type = mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + (sizeof(mirror::Class*) * type_idx); LoadWordDisp(res_reg, offset_of_type, rl_result.low_reg); if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx) || SLOW_TYPE_PATH) { // Slow path, at runtime test if type is null and if so initialize FlushAllRegs(); LIR* branch1 = OpCmpImmBranch(kCondEq, rl_result.low_reg, 0, NULL); // Resolved, store and hop over following code StoreValue(rl_dest, rl_result); /* * Because we have stores of the target value on two paths, * clobber temp tracking for the destination using the ssa name */ ClobberSReg(rl_dest.s_reg_low); LIR* branch2 = OpUnconditionalBranch(0); // TUNING: move slow path to end & remove unconditional branch LIR* target1 = NewLIR0(kPseudoTargetLabel); // Call out to helper, which will return resolved type in kArg0 CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(pInitializeType), type_idx, rl_method.low_reg, true); RegLocation rl_result = GetReturn(false); StoreValue(rl_dest, rl_result); /* * Because we have stores of the target value on two paths, * clobber temp tracking for the destination using the ssa name */ ClobberSReg(rl_dest.s_reg_low); // Rejoin code paths LIR* target2 = NewLIR0(kPseudoTargetLabel); branch1->target = target1; branch2->target = target2; } else { // Fast path, we're done - just store result StoreValue(rl_dest, rl_result); } } } void Mir2Lir::GenConstString(uint32_t string_idx, RegLocation rl_dest) { /* NOTE: Most strings should be available at compile time */ int32_t offset_of_string = mirror::Array::DataOffset(sizeof(mirror::String*)).Int32Value() + (sizeof(mirror::String*) * string_idx); if (!cu_->compiler_driver->CanAssumeStringIsPresentInDexCache( *cu_->dex_file, string_idx) || SLOW_STRING_PATH) { // slow path, resolve string if not in dex cache FlushAllRegs(); LockCallTemps(); // Using explicit registers LoadCurrMethodDirect(TargetReg(kArg2)); LoadWordDisp(TargetReg(kArg2), mirror::ArtMethod::DexCacheStringsOffset().Int32Value(), TargetReg(kArg0)); // Might call out to helper, which will return resolved string in kRet0 int r_tgt = CallHelperSetup(QUICK_ENTRYPOINT_OFFSET(pResolveString)); LoadWordDisp(TargetReg(kArg0), offset_of_string, TargetReg(kRet0)); LoadConstant(TargetReg(kArg1), string_idx); if (cu_->instruction_set == kThumb2) { OpRegImm(kOpCmp, TargetReg(kRet0), 0); // Is resolved? GenBarrier(); // For testing, always force through helper if (!EXERCISE_SLOWEST_STRING_PATH) { OpIT(kCondEq, "T"); } OpRegCopy(TargetReg(kArg0), TargetReg(kArg2)); // .eq LIR* call_inst = OpReg(kOpBlx, r_tgt); // .eq, helper(Method*, string_idx) MarkSafepointPC(call_inst); FreeTemp(r_tgt); } else if (cu_->instruction_set == kMips) { LIR* branch = OpCmpImmBranch(kCondNe, TargetReg(kRet0), 0, NULL); OpRegCopy(TargetReg(kArg0), TargetReg(kArg2)); // .eq LIR* call_inst = OpReg(kOpBlx, r_tgt); MarkSafepointPC(call_inst); FreeTemp(r_tgt); LIR* target = NewLIR0(kPseudoTargetLabel); branch->target = target; } else { DCHECK_EQ(cu_->instruction_set, kX86); CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(pResolveString), TargetReg(kArg2), TargetReg(kArg1), true); } GenBarrier(); StoreValue(rl_dest, GetReturn(false)); } else { RegLocation rl_method = LoadCurrMethod(); int res_reg = AllocTemp(); RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); LoadWordDisp(rl_method.low_reg, mirror::ArtMethod::DexCacheStringsOffset().Int32Value(), res_reg); LoadWordDisp(res_reg, offset_of_string, rl_result.low_reg); StoreValue(rl_dest, rl_result); } } /* * Let helper function take care of everything. Will * call Class::NewInstanceFromCode(type_idx, method); */ void Mir2Lir::GenNewInstance(uint32_t type_idx, RegLocation rl_dest) { FlushAllRegs(); /* Everything to home location */ // alloc will always check for resolution, do we also need to verify // access because the verifier was unable to? ThreadOffset func_offset(-1); if (cu_->compiler_driver->CanAccessInstantiableTypeWithoutChecks( cu_->method_idx, *cu_->dex_file, type_idx)) { func_offset = QUICK_ENTRYPOINT_OFFSET(pAllocObject); } else { func_offset = QUICK_ENTRYPOINT_OFFSET(pAllocObjectWithAccessCheck); } CallRuntimeHelperImmMethod(func_offset, type_idx, true); RegLocation rl_result = GetReturn(false); StoreValue(rl_dest, rl_result); } void Mir2Lir::GenThrow(RegLocation rl_src) { FlushAllRegs(); CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(pDeliverException), rl_src, true); } // For final classes there are no sub-classes to check and so we can answer the instance-of // question with simple comparisons. void Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src) { RegLocation object = LoadValue(rl_src, kCoreReg); RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); int result_reg = rl_result.low_reg; if (result_reg == object.low_reg) { result_reg = AllocTypedTemp(false, kCoreReg); } LoadConstant(result_reg, 0); // assume false LIR* null_branchover = OpCmpImmBranch(kCondEq, object.low_reg, 0, NULL); int check_class = AllocTypedTemp(false, kCoreReg); int object_class = AllocTypedTemp(false, kCoreReg); LoadCurrMethodDirect(check_class); if (use_declaring_class) { LoadWordDisp(check_class, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), check_class); LoadWordDisp(object.low_reg, mirror::Object::ClassOffset().Int32Value(), object_class); } else { LoadWordDisp(check_class, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), check_class); LoadWordDisp(object.low_reg, mirror::Object::ClassOffset().Int32Value(), object_class); int32_t offset_of_type = mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + (sizeof(mirror::Class*) * type_idx); LoadWordDisp(check_class, offset_of_type, check_class); } LIR* ne_branchover = NULL; if (cu_->instruction_set == kThumb2) { OpRegReg(kOpCmp, check_class, object_class); // Same? OpIT(kCondEq, ""); // if-convert the test LoadConstant(result_reg, 1); // .eq case - load true } else { ne_branchover = OpCmpBranch(kCondNe, check_class, object_class, NULL); LoadConstant(result_reg, 1); // eq case - load true } LIR* target = NewLIR0(kPseudoTargetLabel); null_branchover->target = target; if (ne_branchover != NULL) { ne_branchover->target = target; } FreeTemp(object_class); FreeTemp(check_class); if (IsTemp(result_reg)) { OpRegCopy(rl_result.low_reg, result_reg); FreeTemp(result_reg); } StoreValue(rl_dest, rl_result); } void Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final, bool type_known_abstract, bool use_declaring_class, bool can_assume_type_is_in_dex_cache, uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src) { FlushAllRegs(); // May generate a call - use explicit registers LockCallTemps(); LoadCurrMethodDirect(TargetReg(kArg1)); // kArg1 <= current Method* int class_reg = TargetReg(kArg2); // kArg2 will hold the Class* if (needs_access_check) { // Check we have access to type_idx and if not throw IllegalAccessError, // returns Class* in kArg0 CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccess), type_idx, true); OpRegCopy(class_reg, TargetReg(kRet0)); // Align usage with fast path LoadValueDirectFixed(rl_src, TargetReg(kArg0)); // kArg0 <= ref } else if (use_declaring_class) { LoadValueDirectFixed(rl_src, TargetReg(kArg0)); // kArg0 <= ref LoadWordDisp(TargetReg(kArg1), mirror::ArtMethod::DeclaringClassOffset().Int32Value(), class_reg); } else { // Load dex cache entry into class_reg (kArg2) LoadValueDirectFixed(rl_src, TargetReg(kArg0)); // kArg0 <= ref LoadWordDisp(TargetReg(kArg1), mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), class_reg); int32_t offset_of_type = mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + (sizeof(mirror::Class*) * type_idx); LoadWordDisp(class_reg, offset_of_type, class_reg); if (!can_assume_type_is_in_dex_cache) { // Need to test presence of type in dex cache at runtime LIR* hop_branch = OpCmpImmBranch(kCondNe, class_reg, 0, NULL); // Not resolved // Call out to helper, which will return resolved type in kRet0 CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeType), type_idx, true); OpRegCopy(TargetReg(kArg2), TargetReg(kRet0)); // Align usage with fast path LoadValueDirectFixed(rl_src, TargetReg(kArg0)); /* reload Ref */ // Rejoin code paths LIR* hop_target = NewLIR0(kPseudoTargetLabel); hop_branch->target = hop_target; } } /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result */ RegLocation rl_result = GetReturn(false); if (cu_->instruction_set == kMips) { // On MIPS rArg0 != rl_result, place false in result if branch is taken. LoadConstant(rl_result.low_reg, 0); } LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL); /* load object->klass_ */ DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0); LoadWordDisp(TargetReg(kArg0), mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1)); /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class */ LIR* branchover = NULL; if (type_known_final) { // rl_result == ref == null == 0. if (cu_->instruction_set == kThumb2) { OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2)); // Same? OpIT(kCondEq, "E"); // if-convert the test LoadConstant(rl_result.low_reg, 1); // .eq case - load true LoadConstant(rl_result.low_reg, 0); // .ne case - load false } else { LoadConstant(rl_result.low_reg, 0); // ne case - load false branchover = OpCmpBranch(kCondNe, TargetReg(kArg1), TargetReg(kArg2), NULL); LoadConstant(rl_result.low_reg, 1); // eq case - load true } } else { if (cu_->instruction_set == kThumb2) { int r_tgt = LoadHelper(QUICK_ENTRYPOINT_OFFSET(pInstanceofNonTrivial)); if (!type_known_abstract) { /* Uses conditional nullification */ OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2)); // Same? OpIT(kCondEq, "EE"); // if-convert the test LoadConstant(TargetReg(kArg0), 1); // .eq case - load true } OpRegCopy(TargetReg(kArg0), TargetReg(kArg2)); // .ne case - arg0 <= class OpReg(kOpBlx, r_tgt); // .ne case: helper(class, ref->class) FreeTemp(r_tgt); } else { if (!type_known_abstract) { /* Uses branchovers */ LoadConstant(rl_result.low_reg, 1); // assume true branchover = OpCmpBranch(kCondEq, TargetReg(kArg1), TargetReg(kArg2), NULL); } if (cu_->instruction_set != kX86) { int r_tgt = LoadHelper(QUICK_ENTRYPOINT_OFFSET(pInstanceofNonTrivial)); OpRegCopy(TargetReg(kArg0), TargetReg(kArg2)); // .ne case - arg0 <= class OpReg(kOpBlx, r_tgt); // .ne case: helper(class, ref->class) FreeTemp(r_tgt); } else { OpRegCopy(TargetReg(kArg0), TargetReg(kArg2)); OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(pInstanceofNonTrivial)); } } } // TODO: only clobber when type isn't final? ClobberCalleeSave(); /* branch targets here */ LIR* target = NewLIR0(kPseudoTargetLabel); StoreValue(rl_dest, rl_result); branch1->target = target; if (branchover != NULL) { branchover->target = target; } } void Mir2Lir::GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src) { bool type_known_final, type_known_abstract, use_declaring_class; bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *cu_->dex_file, type_idx, &type_known_final, &type_known_abstract, &use_declaring_class); bool can_assume_type_is_in_dex_cache = !needs_access_check && cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx); if ((use_declaring_class || can_assume_type_is_in_dex_cache) && type_known_final) { GenInstanceofFinal(use_declaring_class, type_idx, rl_dest, rl_src); } else { GenInstanceofCallingHelper(needs_access_check, type_known_final, type_known_abstract, use_declaring_class, can_assume_type_is_in_dex_cache, type_idx, rl_dest, rl_src); } } void Mir2Lir::GenCheckCast(uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src) { bool type_known_final, type_known_abstract, use_declaring_class; bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *cu_->dex_file, type_idx, &type_known_final, &type_known_abstract, &use_declaring_class); // Note: currently type_known_final is unused, as optimizing will only improve the performance // of the exception throw path. DexCompilationUnit* cu = mir_graph_->GetCurrentDexCompilationUnit(); const MethodReference mr(cu->GetDexFile(), cu->GetDexMethodIndex()); if (!needs_access_check && cu_->compiler_driver->IsSafeCast(mr, insn_idx)) { // Verifier type analysis proved this check cast would never cause an exception. return; } FlushAllRegs(); // May generate a call - use explicit registers LockCallTemps(); LoadCurrMethodDirect(TargetReg(kArg1)); // kArg1 <= current Method* int class_reg = TargetReg(kArg2); // kArg2 will hold the Class* if (needs_access_check) { // Check we have access to type_idx and if not throw IllegalAccessError, // returns Class* in kRet0 // InitializeTypeAndVerifyAccess(idx, method) CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccess), type_idx, TargetReg(kArg1), true); OpRegCopy(class_reg, TargetReg(kRet0)); // Align usage with fast path } else if (use_declaring_class) { LoadWordDisp(TargetReg(kArg1), mirror::ArtMethod::DeclaringClassOffset().Int32Value(), class_reg); } else { // Load dex cache entry into class_reg (kArg2) LoadWordDisp(TargetReg(kArg1), mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), class_reg); int32_t offset_of_type = mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + (sizeof(mirror::Class*) * type_idx); LoadWordDisp(class_reg, offset_of_type, class_reg); if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx)) { // Need to test presence of type in dex cache at runtime LIR* hop_branch = OpCmpImmBranch(kCondNe, class_reg, 0, NULL); // Not resolved // Call out to helper, which will return resolved type in kArg0 // InitializeTypeFromCode(idx, method) CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(pInitializeType), type_idx, TargetReg(kArg1), true); OpRegCopy(class_reg, TargetReg(kRet0)); // Align usage with fast path // Rejoin code paths LIR* hop_target = NewLIR0(kPseudoTargetLabel); hop_branch->target = hop_target; } } // At this point, class_reg (kArg2) has class LoadValueDirectFixed(rl_src, TargetReg(kArg0)); // kArg0 <= ref /* Null is OK - continue */ LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL); /* load object->klass_ */ DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0); LoadWordDisp(TargetReg(kArg0), mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1)); /* kArg1 now contains object->klass_ */ LIR* branch2 = NULL; if (!type_known_abstract) { branch2 = OpCmpBranch(kCondEq, TargetReg(kArg1), class_reg, NULL); } CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(pCheckCast), TargetReg(kArg1), TargetReg(kArg2), true); /* branch target here */ LIR* target = NewLIR0(kPseudoTargetLabel); branch1->target = target; if (branch2 != NULL) { branch2->target = target; } } void Mir2Lir::GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) { RegLocation rl_result; if (cu_->instruction_set == kThumb2) { /* * NOTE: This is the one place in the code in which we might have * as many as six live temporary registers. There are 5 in the normal * set for Arm. Until we have spill capabilities, temporarily add * lr to the temp set. It is safe to do this locally, but note that * lr is used explicitly elsewhere in the code generator and cannot * normally be used as a general temp register. */ MarkTemp(TargetReg(kLr)); // Add lr to the temp pool FreeTemp(TargetReg(kLr)); // and make it available } rl_src1 = LoadValueWide(rl_src1, kCoreReg); rl_src2 = LoadValueWide(rl_src2, kCoreReg); rl_result = EvalLoc(rl_dest, kCoreReg, true); // The longs may overlap - use intermediate temp if so if ((rl_result.low_reg == rl_src1.high_reg) || (rl_result.low_reg == rl_src2.high_reg)) { int t_reg = AllocTemp(); OpRegRegReg(first_op, t_reg, rl_src1.low_reg, rl_src2.low_reg); OpRegRegReg(second_op, rl_result.high_reg, rl_src1.high_reg, rl_src2.high_reg); OpRegCopy(rl_result.low_reg, t_reg); FreeTemp(t_reg); } else { OpRegRegReg(first_op, rl_result.low_reg, rl_src1.low_reg, rl_src2.low_reg); OpRegRegReg(second_op, rl_result.high_reg, rl_src1.high_reg, rl_src2.high_reg); } /* * NOTE: If rl_dest refers to a frame variable in a large frame, the * following StoreValueWide might need to allocate a temp register. * To further work around the lack of a spill capability, explicitly * free any temps from rl_src1 & rl_src2 that aren't still live in rl_result. * Remove when spill is functional. */ FreeRegLocTemps(rl_result, rl_src1); FreeRegLocTemps(rl_result, rl_src2); StoreValueWide(rl_dest, rl_result); if (cu_->instruction_set == kThumb2) { Clobber(TargetReg(kLr)); UnmarkTemp(TargetReg(kLr)); // Remove lr from the temp pool } } void Mir2Lir::GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_shift) { ThreadOffset func_offset(-1); switch (opcode) { case Instruction::SHL_LONG: case Instruction::SHL_LONG_2ADDR: func_offset = QUICK_ENTRYPOINT_OFFSET(pShlLong); break; case Instruction::SHR_LONG: case Instruction::SHR_LONG_2ADDR: func_offset = QUICK_ENTRYPOINT_OFFSET(pShrLong); break; case Instruction::USHR_LONG: case Instruction::USHR_LONG_2ADDR: func_offset = QUICK_ENTRYPOINT_OFFSET(pUshrLong); break; default: LOG(FATAL) << "Unexpected case"; } FlushAllRegs(); /* Send everything to home location */ CallRuntimeHelperRegLocationRegLocation(func_offset, rl_src1, rl_shift, false); RegLocation rl_result = GetReturnWide(false); StoreValueWide(rl_dest, rl_result); } void Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) { OpKind op = kOpBkpt; bool is_div_rem = false; bool check_zero = false; bool unary = false; RegLocation rl_result; bool shift_op = false; switch (opcode) { case Instruction::NEG_INT: op = kOpNeg; unary = true; break; case Instruction::NOT_INT: op = kOpMvn; unary = true; break; case Instruction::ADD_INT: case Instruction::ADD_INT_2ADDR: op = kOpAdd; break; case Instruction::SUB_INT: case Instruction::SUB_INT_2ADDR: op = kOpSub; break; case Instruction::MUL_INT: case Instruction::MUL_INT_2ADDR: op = kOpMul; break; case Instruction::DIV_INT: case Instruction::DIV_INT_2ADDR: check_zero = true; op = kOpDiv; is_div_rem = true; break; /* NOTE: returns in kArg1 */ case Instruction::REM_INT: case Instruction::REM_INT_2ADDR: check_zero = true; op = kOpRem; is_div_rem = true; break; case Instruction::AND_INT: case Instruction::AND_INT_2ADDR: op = kOpAnd; break; case Instruction::OR_INT: case Instruction::OR_INT_2ADDR: op = kOpOr; break; case Instruction::XOR_INT: case Instruction::XOR_INT_2ADDR: op = kOpXor; break; case Instruction::SHL_INT: case Instruction::SHL_INT_2ADDR: shift_op = true; op = kOpLsl; break; case Instruction::SHR_INT: case Instruction::SHR_INT_2ADDR: shift_op = true; op = kOpAsr; break; case Instruction::USHR_INT: case Instruction::USHR_INT_2ADDR: shift_op = true; op = kOpLsr; break; default: LOG(FATAL) << "Invalid word arith op: " << opcode; } if (!is_div_rem) { if (unary) { rl_src1 = LoadValue(rl_src1, kCoreReg); rl_result = EvalLoc(rl_dest, kCoreReg, true); OpRegReg(op, rl_result.low_reg, rl_src1.low_reg); } else { if (shift_op) { int t_reg = INVALID_REG; if (cu_->instruction_set == kX86) { // X86 doesn't require masking and must use ECX t_reg = TargetReg(kCount); // rCX LoadValueDirectFixed(rl_src2, t_reg); } else { rl_src2 = LoadValue(rl_src2, kCoreReg); t_reg = AllocTemp(); OpRegRegImm(kOpAnd, t_reg, rl_src2.low_reg, 31); } rl_src1 = LoadValue(rl_src1, kCoreReg); rl_result = EvalLoc(rl_dest, kCoreReg, true); OpRegRegReg(op, rl_result.low_reg, rl_src1.low_reg, t_reg); FreeTemp(t_reg); } else { rl_src1 = LoadValue(rl_src1, kCoreReg); rl_src2 = LoadValue(rl_src2, kCoreReg); rl_result = EvalLoc(rl_dest, kCoreReg, true); OpRegRegReg(op, rl_result.low_reg, rl_src1.low_reg, rl_src2.low_reg); } } StoreValue(rl_dest, rl_result); } else { if (cu_->instruction_set == kMips) { rl_src1 = LoadValue(rl_src1, kCoreReg); rl_src2 = LoadValue(rl_src2, kCoreReg); if (check_zero) { GenImmedCheck(kCondEq, rl_src2.low_reg, 0, kThrowDivZero); } rl_result = GenDivRem(rl_dest, rl_src1.low_reg, rl_src2.low_reg, op == kOpDiv); } else { ThreadOffset func_offset = QUICK_ENTRYPOINT_OFFSET(pIdivmod); FlushAllRegs(); /* Send everything to home location */ LoadValueDirectFixed(rl_src2, TargetReg(kArg1)); int r_tgt = CallHelperSetup(func_offset); LoadValueDirectFixed(rl_src1, TargetReg(kArg0)); if (check_zero) { GenImmedCheck(kCondEq, TargetReg(kArg1), 0, kThrowDivZero); } // NOTE: callout here is not a safepoint CallHelper(r_tgt, func_offset, false /* not a safepoint */); if (op == kOpDiv) rl_result = GetReturn(false); else rl_result = GetReturnAlt(); } StoreValue(rl_dest, rl_result); } } /* * The following are the first-level codegen routines that analyze the format * of each bytecode then either dispatch special purpose codegen routines * or produce corresponding Thumb instructions directly. */ static bool IsPowerOfTwo(int x) { return (x & (x - 1)) == 0; } // Returns true if no more than two bits are set in 'x'. static bool IsPopCountLE2(unsigned int x) { x &= x - 1; return (x & (x - 1)) == 0; } // Returns the index of the lowest set bit in 'x'. static int LowestSetBit(unsigned int x) { int bit_posn = 0; while ((x & 0xf) == 0) { bit_posn += 4; x >>= 4; } while ((x & 1) == 0) { bit_posn++; x >>= 1; } return bit_posn; } // Returns true if it added instructions to 'cu' to divide 'rl_src' by 'lit' // and store the result in 'rl_dest'. bool Mir2Lir::HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div, RegLocation rl_src, RegLocation rl_dest, int lit) { if ((lit < 2) || ((cu_->instruction_set != kThumb2) && !IsPowerOfTwo(lit))) { return false; } // No divide instruction for Arm, so check for more special cases if ((cu_->instruction_set == kThumb2) && !IsPowerOfTwo(lit)) { return SmallLiteralDivRem(dalvik_opcode, is_div, rl_src, rl_dest, lit); } int k = LowestSetBit(lit); if (k >= 30) { // Avoid special cases. return false; } rl_src = LoadValue(rl_src, kCoreReg); RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); if (is_div) { int t_reg = AllocTemp(); if (lit == 2) { // Division by 2 is by far the most common division by constant. OpRegRegImm(kOpLsr, t_reg, rl_src.low_reg, 32 - k); OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.low_reg); OpRegRegImm(kOpAsr, rl_result.low_reg, t_reg, k); } else { OpRegRegImm(kOpAsr, t_reg, rl_src.low_reg, 31); OpRegRegImm(kOpLsr, t_reg, t_reg, 32 - k); OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.low_reg); OpRegRegImm(kOpAsr, rl_result.low_reg, t_reg, k); } } else { int t_reg1 = AllocTemp(); int t_reg2 = AllocTemp(); if (lit == 2) { OpRegRegImm(kOpLsr, t_reg1, rl_src.low_reg, 32 - k); OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.low_reg); OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit -1); OpRegRegReg(kOpSub, rl_result.low_reg, t_reg2, t_reg1); } else { OpRegRegImm(kOpAsr, t_reg1, rl_src.low_reg, 31); OpRegRegImm(kOpLsr, t_reg1, t_reg1, 32 - k); OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.low_reg); OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit - 1); OpRegRegReg(kOpSub, rl_result.low_reg, t_reg2, t_reg1); } } StoreValue(rl_dest, rl_result); return true; } // Returns true if it added instructions to 'cu' to multiply 'rl_src' by 'lit' // and store the result in 'rl_dest'. bool Mir2Lir::HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) { // Can we simplify this multiplication? bool power_of_two = false; bool pop_count_le2 = false; bool power_of_two_minus_one = false; if (lit < 2) { // Avoid special cases. return false; } else if (IsPowerOfTwo(lit)) { power_of_two = true; } else if (IsPopCountLE2(lit)) { pop_count_le2 = true; } else if (IsPowerOfTwo(lit + 1)) { power_of_two_minus_one = true; } else { return false; } rl_src = LoadValue(rl_src, kCoreReg); RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); if (power_of_two) { // Shift. OpRegRegImm(kOpLsl, rl_result.low_reg, rl_src.low_reg, LowestSetBit(lit)); } else if (pop_count_le2) { // Shift and add and shift. int first_bit = LowestSetBit(lit); int second_bit = LowestSetBit(lit ^ (1 << first_bit)); GenMultiplyByTwoBitMultiplier(rl_src, rl_result, lit, first_bit, second_bit); } else { // Reverse subtract: (src << (shift + 1)) - src. DCHECK(power_of_two_minus_one); // TUNING: rsb dst, src, src lsl#LowestSetBit(lit + 1) int t_reg = AllocTemp(); OpRegRegImm(kOpLsl, t_reg, rl_src.low_reg, LowestSetBit(lit + 1)); OpRegRegReg(kOpSub, rl_result.low_reg, t_reg, rl_src.low_reg); } StoreValue(rl_dest, rl_result); return true; } void Mir2Lir::GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src, int lit) { RegLocation rl_result; OpKind op = static_cast<OpKind>(0); /* Make gcc happy */ int shift_op = false; bool is_div = false; switch (opcode) { case Instruction::RSUB_INT_LIT8: case Instruction::RSUB_INT: { rl_src = LoadValue(rl_src, kCoreReg); rl_result = EvalLoc(rl_dest, kCoreReg, true); if (cu_->instruction_set == kThumb2) { OpRegRegImm(kOpRsub, rl_result.low_reg, rl_src.low_reg, lit); } else { OpRegReg(kOpNeg, rl_result.low_reg, rl_src.low_reg); OpRegImm(kOpAdd, rl_result.low_reg, lit); } StoreValue(rl_dest, rl_result); return; } case Instruction::SUB_INT: case Instruction::SUB_INT_2ADDR: lit = -lit; // Intended fallthrough case Instruction::ADD_INT: case Instruction::ADD_INT_2ADDR: case Instruction::ADD_INT_LIT8: case Instruction::ADD_INT_LIT16: op = kOpAdd; break; case Instruction::MUL_INT: case Instruction::MUL_INT_2ADDR: case Instruction::MUL_INT_LIT8: case Instruction::MUL_INT_LIT16: { if (HandleEasyMultiply(rl_src, rl_dest, lit)) { return; } op = kOpMul; break; } case Instruction::AND_INT: case Instruction::AND_INT_2ADDR: case Instruction::AND_INT_LIT8: case Instruction::AND_INT_LIT16: op = kOpAnd; break; case Instruction::OR_INT: case Instruction::OR_INT_2ADDR: case Instruction::OR_INT_LIT8: case Instruction::OR_INT_LIT16: op = kOpOr; break; case Instruction::XOR_INT: case Instruction::XOR_INT_2ADDR: case Instruction::XOR_INT_LIT8: case Instruction::XOR_INT_LIT16: op = kOpXor; break; case Instruction::SHL_INT_LIT8: case Instruction::SHL_INT: case Instruction::SHL_INT_2ADDR: lit &= 31; shift_op = true; op = kOpLsl; break; case Instruction::SHR_INT_LIT8: case Instruction::SHR_INT: case Instruction::SHR_INT_2ADDR: lit &= 31; shift_op = true; op = kOpAsr; break; case Instruction::USHR_INT_LIT8: case Instruction::USHR_INT: case Instruction::USHR_INT_2ADDR: lit &= 31; shift_op = true; op = kOpLsr; break; case Instruction::DIV_INT: case Instruction::DIV_INT_2ADDR: case Instruction::DIV_INT_LIT8: case Instruction::DIV_INT_LIT16: case Instruction::REM_INT: case Instruction::REM_INT_2ADDR: case Instruction::REM_INT_LIT8: case Instruction::REM_INT_LIT16: { if (lit == 0) { GenImmedCheck(kCondAl, 0, 0, kThrowDivZero); return; } if ((opcode == Instruction::DIV_INT) || (opcode == Instruction::DIV_INT_2ADDR) || (opcode == Instruction::DIV_INT_LIT8) || (opcode == Instruction::DIV_INT_LIT16)) { is_div = true; } else { is_div = false; } if (HandleEasyDivRem(opcode, is_div, rl_src, rl_dest, lit)) { return; } if (cu_->instruction_set == kMips) { rl_src = LoadValue(rl_src, kCoreReg); rl_result = GenDivRemLit(rl_dest, rl_src.low_reg, lit, is_div); } else { FlushAllRegs(); /* Everything to home location */ LoadValueDirectFixed(rl_src, TargetReg(kArg0)); Clobber(TargetReg(kArg0)); ThreadOffset func_offset = QUICK_ENTRYPOINT_OFFSET(pIdivmod); CallRuntimeHelperRegImm(func_offset, TargetReg(kArg0), lit, false); if (is_div) rl_result = GetReturn(false); else rl_result = GetReturnAlt(); } StoreValue(rl_dest, rl_result); return; } default: LOG(FATAL) << "Unexpected opcode " << opcode; } rl_src = LoadValue(rl_src, kCoreReg); rl_result = EvalLoc(rl_dest, kCoreReg, true); // Avoid shifts by literal 0 - no support in Thumb. Change to copy if (shift_op && (lit == 0)) { OpRegCopy(rl_result.low_reg, rl_src.low_reg); } else { OpRegRegImm(op, rl_result.low_reg, rl_src.low_reg, lit); } StoreValue(rl_dest, rl_result); } void Mir2Lir::GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) { RegLocation rl_result; OpKind first_op = kOpBkpt; OpKind second_op = kOpBkpt; bool call_out = false; bool check_zero = false; ThreadOffset func_offset(-1); int ret_reg = TargetReg(kRet0); switch (opcode) { case Instruction::NOT_LONG: rl_src2 = LoadValueWide(rl_src2, kCoreReg); rl_result = EvalLoc(rl_dest, kCoreReg, true); // Check for destructive overlap if (rl_result.low_reg == rl_src2.high_reg) { int t_reg = AllocTemp(); OpRegCopy(t_reg, rl_src2.high_reg); OpRegReg(kOpMvn, rl_result.low_reg, rl_src2.low_reg); OpRegReg(kOpMvn, rl_result.high_reg, t_reg); FreeTemp(t_reg); } else { OpRegReg(kOpMvn, rl_result.low_reg, rl_src2.low_reg); OpRegReg(kOpMvn, rl_result.high_reg, rl_src2.high_reg); } StoreValueWide(rl_dest, rl_result); return; case Instruction::ADD_LONG: case Instruction::ADD_LONG_2ADDR: if (cu_->instruction_set != kThumb2) { GenAddLong(rl_dest, rl_src1, rl_src2); return; } first_op = kOpAdd; second_op = kOpAdc; break; case Instruction::SUB_LONG: case Instruction::SUB_LONG_2ADDR: if (cu_->instruction_set != kThumb2) { GenSubLong(rl_dest, rl_src1, rl_src2); return; } first_op = kOpSub; second_op = kOpSbc; break; case Instruction::MUL_LONG: case Instruction::MUL_LONG_2ADDR: if (cu_->instruction_set == kThumb2) { GenMulLong(rl_dest, rl_src1, rl_src2); return; } else { call_out = true; ret_reg = TargetReg(kRet0); func_offset = QUICK_ENTRYPOINT_OFFSET(pLmul); } break; case Instruction::DIV_LONG: case Instruction::DIV_LONG_2ADDR: call_out = true; check_zero = true; ret_reg = TargetReg(kRet0); func_offset = QUICK_ENTRYPOINT_OFFSET(pLdiv); break; case Instruction::REM_LONG: case Instruction::REM_LONG_2ADDR: call_out = true; check_zero = true; func_offset = QUICK_ENTRYPOINT_OFFSET(pLdivmod); /* NOTE - for Arm, result is in kArg2/kArg3 instead of kRet0/kRet1 */ ret_reg = (cu_->instruction_set == kThumb2) ? TargetReg(kArg2) : TargetReg(kRet0); break; case Instruction::AND_LONG_2ADDR: case Instruction::AND_LONG: if (cu_->instruction_set == kX86) { return GenAndLong(rl_dest, rl_src1, rl_src2); } first_op = kOpAnd; second_op = kOpAnd; break; case Instruction::OR_LONG: case Instruction::OR_LONG_2ADDR: if (cu_->instruction_set == kX86) { GenOrLong(rl_dest, rl_src1, rl_src2); return; } first_op = kOpOr; second_op = kOpOr; break; case Instruction::XOR_LONG: case Instruction::XOR_LONG_2ADDR: if (cu_->instruction_set == kX86) { GenXorLong(rl_dest, rl_src1, rl_src2); return; } first_op = kOpXor; second_op = kOpXor; break; case Instruction::NEG_LONG: { GenNegLong(rl_dest, rl_src2); return; } default: LOG(FATAL) << "Invalid long arith op"; } if (!call_out) { GenLong3Addr(first_op, second_op, rl_dest, rl_src1, rl_src2); } else { FlushAllRegs(); /* Send everything to home location */ if (check_zero) { LoadValueDirectWideFixed(rl_src2, TargetReg(kArg2), TargetReg(kArg3)); int r_tgt = CallHelperSetup(func_offset); GenDivZeroCheck(TargetReg(kArg2), TargetReg(kArg3)); LoadValueDirectWideFixed(rl_src1, TargetReg(kArg0), TargetReg(kArg1)); // NOTE: callout here is not a safepoint CallHelper(r_tgt, func_offset, false /* not safepoint */); } else { CallRuntimeHelperRegLocationRegLocation(func_offset, rl_src1, rl_src2, false); } // Adjust return regs in to handle case of rem returning kArg2/kArg3 if (ret_reg == TargetReg(kRet0)) rl_result = GetReturnWide(false); else rl_result = GetReturnWideAlt(); StoreValueWide(rl_dest, rl_result); } } void Mir2Lir::GenConversionCall(ThreadOffset func_offset, RegLocation rl_dest, RegLocation rl_src) { /* * Don't optimize the register usage since it calls out to support * functions */ FlushAllRegs(); /* Send everything to home location */ if (rl_src.wide) { LoadValueDirectWideFixed(rl_src, rl_src.fp ? TargetReg(kFArg0) : TargetReg(kArg0), rl_src.fp ? TargetReg(kFArg1) : TargetReg(kArg1)); } else { LoadValueDirectFixed(rl_src, rl_src.fp ? TargetReg(kFArg0) : TargetReg(kArg0)); } CallRuntimeHelperRegLocation(func_offset, rl_src, false); if (rl_dest.wide) { RegLocation rl_result; rl_result = GetReturnWide(rl_dest.fp); StoreValueWide(rl_dest, rl_result); } else { RegLocation rl_result; rl_result = GetReturn(rl_dest.fp); StoreValue(rl_dest, rl_result); } } /* Check if we need to check for pending suspend request */ void Mir2Lir::GenSuspendTest(int opt_flags) { if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) { return; } FlushAllRegs(); LIR* branch = OpTestSuspend(NULL); LIR* ret_lab = NewLIR0(kPseudoTargetLabel); LIR* target = RawLIR(current_dalvik_offset_, kPseudoSuspendTarget, reinterpret_cast<uintptr_t>(ret_lab), current_dalvik_offset_); branch->target = target; suspend_launchpads_.Insert(target); } /* Check if we need to check for pending suspend request */ void Mir2Lir::GenSuspendTestAndBranch(int opt_flags, LIR* target) { if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) { OpUnconditionalBranch(target); return; } OpTestSuspend(target); LIR* launch_pad = RawLIR(current_dalvik_offset_, kPseudoSuspendTarget, reinterpret_cast<uintptr_t>(target), current_dalvik_offset_); FlushAllRegs(); OpUnconditionalBranch(launch_pad); suspend_launchpads_.Insert(launch_pad); } } // namespace art