/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dex/compiler_ir.h" #include "dex_file-inl.h" #include "entrypoints/quick/quick_entrypoints.h" #include "invoke_type.h" #include "mirror/array.h" #include "mirror/string.h" #include "mir_to_lir-inl.h" #include "x86/codegen_x86.h" namespace art { /* * This source files contains "gen" codegen routines that should * be applicable to most targets. Only mid-level support utilities * and "op" calls may be used here. */ /* * To save scheduling time, helper calls are broken into two parts: generation of * the helper target address, and the actual call to the helper. Because x86 * has a memory call operation, part 1 is a NOP for x86. For other targets, * load arguments between the two parts. */ int Mir2Lir::CallHelperSetup(ThreadOffset helper_offset) { return (cu_->instruction_set == kX86) ? 0 : LoadHelper(helper_offset); } /* NOTE: if r_tgt is a temp, it will be freed following use */ LIR* Mir2Lir::CallHelper(int r_tgt, ThreadOffset helper_offset, bool safepoint_pc, bool use_link) { LIR* call_inst; OpKind op = use_link ? kOpBlx : kOpBx; if (cu_->instruction_set == kX86) { call_inst = OpThreadMem(op, helper_offset); } else { call_inst = OpReg(op, r_tgt); FreeTemp(r_tgt); } if (safepoint_pc) { MarkSafepointPC(call_inst); } return call_inst; } void Mir2Lir::CallRuntimeHelperImm(ThreadOffset helper_offset, int arg0, bool safepoint_pc) { int r_tgt = CallHelperSetup(helper_offset); LoadConstant(TargetReg(kArg0), arg0); ClobberCalleeSave(); CallHelper(r_tgt, helper_offset, safepoint_pc); } void Mir2Lir::CallRuntimeHelperReg(ThreadOffset helper_offset, int arg0, bool safepoint_pc) { int r_tgt = CallHelperSetup(helper_offset); OpRegCopy(TargetReg(kArg0), arg0); ClobberCalleeSave(); CallHelper(r_tgt, helper_offset, safepoint_pc); } void Mir2Lir::CallRuntimeHelperRegLocation(ThreadOffset helper_offset, RegLocation arg0, bool safepoint_pc) { int r_tgt = CallHelperSetup(helper_offset); if (arg0.wide == 0) { LoadValueDirectFixed(arg0, TargetReg(kArg0)); } else { LoadValueDirectWideFixed(arg0, TargetReg(kArg0), TargetReg(kArg1)); } ClobberCalleeSave(); CallHelper(r_tgt, helper_offset, safepoint_pc); } void Mir2Lir::CallRuntimeHelperImmImm(ThreadOffset helper_offset, int arg0, int arg1, bool safepoint_pc) { int r_tgt = CallHelperSetup(helper_offset); LoadConstant(TargetReg(kArg0), arg0); LoadConstant(TargetReg(kArg1), arg1); ClobberCalleeSave(); CallHelper(r_tgt, helper_offset, safepoint_pc); } void Mir2Lir::CallRuntimeHelperImmRegLocation(ThreadOffset helper_offset, int arg0, RegLocation arg1, bool safepoint_pc) { int r_tgt = CallHelperSetup(helper_offset); if (arg1.wide == 0) { LoadValueDirectFixed(arg1, TargetReg(kArg1)); } else { LoadValueDirectWideFixed(arg1, TargetReg(kArg1), TargetReg(kArg2)); } LoadConstant(TargetReg(kArg0), arg0); ClobberCalleeSave(); CallHelper(r_tgt, helper_offset, safepoint_pc); } void Mir2Lir::CallRuntimeHelperRegLocationImm(ThreadOffset helper_offset, RegLocation arg0, int arg1, bool safepoint_pc) { int r_tgt = CallHelperSetup(helper_offset); LoadValueDirectFixed(arg0, TargetReg(kArg0)); LoadConstant(TargetReg(kArg1), arg1); ClobberCalleeSave(); CallHelper(r_tgt, helper_offset, safepoint_pc); } void Mir2Lir::CallRuntimeHelperImmReg(ThreadOffset helper_offset, int arg0, int arg1, bool safepoint_pc) { int r_tgt = CallHelperSetup(helper_offset); OpRegCopy(TargetReg(kArg1), arg1); LoadConstant(TargetReg(kArg0), arg0); ClobberCalleeSave(); CallHelper(r_tgt, helper_offset, safepoint_pc); } void Mir2Lir::CallRuntimeHelperRegImm(ThreadOffset helper_offset, int arg0, int arg1, bool safepoint_pc) { int r_tgt = CallHelperSetup(helper_offset); OpRegCopy(TargetReg(kArg0), arg0); LoadConstant(TargetReg(kArg1), arg1); ClobberCalleeSave(); CallHelper(r_tgt, helper_offset, safepoint_pc); } void Mir2Lir::CallRuntimeHelperImmMethod(ThreadOffset helper_offset, int arg0, bool safepoint_pc) { int r_tgt = CallHelperSetup(helper_offset); LoadCurrMethodDirect(TargetReg(kArg1)); LoadConstant(TargetReg(kArg0), arg0); ClobberCalleeSave(); CallHelper(r_tgt, helper_offset, safepoint_pc); } void Mir2Lir::CallRuntimeHelperRegLocationRegLocation(ThreadOffset helper_offset, RegLocation arg0, RegLocation arg1, bool safepoint_pc) { int r_tgt = CallHelperSetup(helper_offset); if (arg0.wide == 0) { LoadValueDirectFixed(arg0, arg0.fp ? TargetReg(kFArg0) : TargetReg(kArg0)); if (arg1.wide == 0) { if (cu_->instruction_set == kMips) { LoadValueDirectFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg1)); } else { LoadValueDirectFixed(arg1, TargetReg(kArg1)); } } else { if (cu_->instruction_set == kMips) { LoadValueDirectWideFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg1), arg1.fp ? TargetReg(kFArg3) : TargetReg(kArg2)); } else { LoadValueDirectWideFixed(arg1, TargetReg(kArg1), TargetReg(kArg2)); } } } else { LoadValueDirectWideFixed(arg0, arg0.fp ? TargetReg(kFArg0) : TargetReg(kArg0), arg0.fp ? TargetReg(kFArg1) : TargetReg(kArg1)); if (arg1.wide == 0) { LoadValueDirectFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg2)); } else { LoadValueDirectWideFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg2), arg1.fp ? TargetReg(kFArg3) : TargetReg(kArg3)); } } ClobberCalleeSave(); CallHelper(r_tgt, helper_offset, safepoint_pc); } void Mir2Lir::CallRuntimeHelperRegReg(ThreadOffset helper_offset, int arg0, int arg1, bool safepoint_pc) { int r_tgt = CallHelperSetup(helper_offset); DCHECK_NE(TargetReg(kArg0), arg1); // check copy into arg0 won't clobber arg1 OpRegCopy(TargetReg(kArg0), arg0); OpRegCopy(TargetReg(kArg1), arg1); ClobberCalleeSave(); CallHelper(r_tgt, helper_offset, safepoint_pc); } void Mir2Lir::CallRuntimeHelperRegRegImm(ThreadOffset helper_offset, int arg0, int arg1, int arg2, bool safepoint_pc) { int r_tgt = CallHelperSetup(helper_offset); DCHECK_NE(TargetReg(kArg0), arg1); // check copy into arg0 won't clobber arg1 OpRegCopy(TargetReg(kArg0), arg0); OpRegCopy(TargetReg(kArg1), arg1); LoadConstant(TargetReg(kArg2), arg2); ClobberCalleeSave(); CallHelper(r_tgt, helper_offset, safepoint_pc); } void Mir2Lir::CallRuntimeHelperImmMethodRegLocation(ThreadOffset helper_offset, int arg0, RegLocation arg2, bool safepoint_pc) { int r_tgt = CallHelperSetup(helper_offset); LoadValueDirectFixed(arg2, TargetReg(kArg2)); LoadCurrMethodDirect(TargetReg(kArg1)); LoadConstant(TargetReg(kArg0), arg0); ClobberCalleeSave(); CallHelper(r_tgt, helper_offset, safepoint_pc); } void Mir2Lir::CallRuntimeHelperImmMethodImm(ThreadOffset helper_offset, int arg0, int arg2, bool safepoint_pc) { int r_tgt = CallHelperSetup(helper_offset); LoadCurrMethodDirect(TargetReg(kArg1)); LoadConstant(TargetReg(kArg2), arg2); LoadConstant(TargetReg(kArg0), arg0); ClobberCalleeSave(); CallHelper(r_tgt, helper_offset, safepoint_pc); } void Mir2Lir::CallRuntimeHelperImmRegLocationRegLocation(ThreadOffset helper_offset, int arg0, RegLocation arg1, RegLocation arg2, bool safepoint_pc) { int r_tgt = CallHelperSetup(helper_offset); LoadValueDirectFixed(arg1, TargetReg(kArg1)); if (arg2.wide == 0) { LoadValueDirectFixed(arg2, TargetReg(kArg2)); } else { LoadValueDirectWideFixed(arg2, TargetReg(kArg2), TargetReg(kArg3)); } LoadConstant(TargetReg(kArg0), arg0); ClobberCalleeSave(); CallHelper(r_tgt, helper_offset, safepoint_pc); } /* * If there are any ins passed in registers that have not been promoted * to a callee-save register, flush them to the frame. Perform intial * assignment of promoted arguments. * * ArgLocs is an array of location records describing the incoming arguments * with one location record per word of argument. */ void Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) { /* * Dummy up a RegLocation for the incoming Method* * It will attempt to keep kArg0 live (or copy it to home location * if promoted). */ RegLocation rl_src = rl_method; rl_src.location = kLocPhysReg; rl_src.low_reg = TargetReg(kArg0); rl_src.home = false; MarkLive(rl_src.low_reg, rl_src.s_reg_low); StoreValue(rl_method, rl_src); // If Method* has been promoted, explicitly flush if (rl_method.location == kLocPhysReg) { StoreWordDisp(TargetReg(kSp), 0, TargetReg(kArg0)); } if (cu_->num_ins == 0) return; const int num_arg_regs = 3; static SpecialTargetRegister arg_regs[] = {kArg1, kArg2, kArg3}; int start_vreg = cu_->num_dalvik_registers - cu_->num_ins; /* * Copy incoming arguments to their proper home locations. * NOTE: an older version of dx had an issue in which * it would reuse static method argument registers. * This could result in the same Dalvik virtual register * being promoted to both core and fp regs. To account for this, * we only copy to the corresponding promoted physical register * if it matches the type of the SSA name for the incoming * argument. It is also possible that long and double arguments * end up half-promoted. In those cases, we must flush the promoted * half to memory as well. */ for (int i = 0; i < cu_->num_ins; i++) { PromotionMap* v_map = &promotion_map_[start_vreg + i]; if (i < num_arg_regs) { // If arriving in register bool need_flush = true; RegLocation* t_loc = &ArgLocs[i]; if ((v_map->core_location == kLocPhysReg) && !t_loc->fp) { OpRegCopy(v_map->core_reg, TargetReg(arg_regs[i])); need_flush = false; } else if ((v_map->fp_location == kLocPhysReg) && t_loc->fp) { OpRegCopy(v_map->FpReg, TargetReg(arg_regs[i])); need_flush = false; } else { need_flush = true; } // For wide args, force flush if not fully promoted if (t_loc->wide) { PromotionMap* p_map = v_map + (t_loc->high_word ? -1 : +1); // Is only half promoted? need_flush |= (p_map->core_location != v_map->core_location) || (p_map->fp_location != v_map->fp_location); if ((cu_->instruction_set == kThumb2) && t_loc->fp && !need_flush) { /* * In Arm, a double is represented as a pair of consecutive single float * registers starting at an even number. It's possible that both Dalvik vRegs * representing the incoming double were independently promoted as singles - but * not in a form usable as a double. If so, we need to flush - even though the * incoming arg appears fully in register. At this point in the code, both * halves of the double are promoted. Make sure they are in a usable form. */ int lowreg_index = start_vreg + i + (t_loc->high_word ? -1 : 0); int low_reg = promotion_map_[lowreg_index].FpReg; int high_reg = promotion_map_[lowreg_index + 1].FpReg; if (((low_reg & 0x1) != 0) || (high_reg != (low_reg + 1))) { need_flush = true; } } } if (need_flush) { StoreBaseDisp(TargetReg(kSp), SRegOffset(start_vreg + i), TargetReg(arg_regs[i]), kWord); } } else { // If arriving in frame & promoted if (v_map->core_location == kLocPhysReg) { LoadWordDisp(TargetReg(kSp), SRegOffset(start_vreg + i), v_map->core_reg); } if (v_map->fp_location == kLocPhysReg) { LoadWordDisp(TargetReg(kSp), SRegOffset(start_vreg + i), v_map->FpReg); } } } } /* * Bit of a hack here - in the absence of a real scheduling pass, * emit the next instruction in static & direct invoke sequences. */ static int NextSDCallInsn(CompilationUnit* cu, CallInfo* info, int state, const MethodReference& target_method, uint32_t unused, uintptr_t direct_code, uintptr_t direct_method, InvokeType type) { Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get()); if (cu->instruction_set != kThumb2) { // Disable sharpening direct_code = 0; direct_method = 0; } if (direct_code != 0 && direct_method != 0) { switch (state) { case 0: // Get the current Method* [sets kArg0] if (direct_code != static_cast<unsigned int>(-1)) { cg->LoadConstant(cg->TargetReg(kInvokeTgt), direct_code); } else { CHECK_EQ(cu->dex_file, target_method.dex_file); LIR* data_target = cg->ScanLiteralPool(cg->code_literal_list_, target_method.dex_method_index, 0); if (data_target == NULL) { data_target = cg->AddWordData(&cg->code_literal_list_, target_method.dex_method_index); data_target->operands[1] = type; } LIR* load_pc_rel = cg->OpPcRelLoad(cg->TargetReg(kInvokeTgt), data_target); cg->AppendLIR(load_pc_rel); DCHECK_EQ(cu->instruction_set, kThumb2) << reinterpret_cast<void*>(data_target); } if (direct_method != static_cast<unsigned int>(-1)) { cg->LoadConstant(cg->TargetReg(kArg0), direct_method); } else { CHECK_EQ(cu->dex_file, target_method.dex_file); LIR* data_target = cg->ScanLiteralPool(cg->method_literal_list_, target_method.dex_method_index, 0); if (data_target == NULL) { data_target = cg->AddWordData(&cg->method_literal_list_, target_method.dex_method_index); data_target->operands[1] = type; } LIR* load_pc_rel = cg->OpPcRelLoad(cg->TargetReg(kArg0), data_target); cg->AppendLIR(load_pc_rel); DCHECK_EQ(cu->instruction_set, kThumb2) << reinterpret_cast<void*>(data_target); } break; default: return -1; } } else { switch (state) { case 0: // Get the current Method* [sets kArg0] // TUNING: we can save a reg copy if Method* has been promoted. cg->LoadCurrMethodDirect(cg->TargetReg(kArg0)); break; case 1: // Get method->dex_cache_resolved_methods_ cg->LoadWordDisp(cg->TargetReg(kArg0), mirror::ArtMethod::DexCacheResolvedMethodsOffset().Int32Value(), cg->TargetReg(kArg0)); // Set up direct code if known. if (direct_code != 0) { if (direct_code != static_cast<unsigned int>(-1)) { cg->LoadConstant(cg->TargetReg(kInvokeTgt), direct_code); } else { CHECK_EQ(cu->dex_file, target_method.dex_file); LIR* data_target = cg->ScanLiteralPool(cg->code_literal_list_, target_method.dex_method_index, 0); if (data_target == NULL) { data_target = cg->AddWordData(&cg->code_literal_list_, target_method.dex_method_index); data_target->operands[1] = type; } LIR* load_pc_rel = cg->OpPcRelLoad(cg->TargetReg(kInvokeTgt), data_target); cg->AppendLIR(load_pc_rel); DCHECK_EQ(cu->instruction_set, kThumb2) << reinterpret_cast<void*>(data_target); } } break; case 2: // Grab target method* CHECK_EQ(cu->dex_file, target_method.dex_file); cg->LoadWordDisp(cg->TargetReg(kArg0), mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value() + (target_method.dex_method_index * 4), cg-> TargetReg(kArg0)); break; case 3: // Grab the code from the method* if (cu->instruction_set != kX86) { if (direct_code == 0) { cg->LoadWordDisp(cg->TargetReg(kArg0), mirror::ArtMethod::GetEntryPointFromCompiledCodeOffset().Int32Value(), cg->TargetReg(kInvokeTgt)); } break; } // Intentional fallthrough for x86 default: return -1; } } return state + 1; } /* * Bit of a hack here - in the absence of a real scheduling pass, * emit the next instruction in a virtual invoke sequence. * We can use kLr as a temp prior to target address loading * Note also that we'll load the first argument ("this") into * kArg1 here rather than the standard LoadArgRegs. */ static int NextVCallInsn(CompilationUnit* cu, CallInfo* info, int state, const MethodReference& target_method, uint32_t method_idx, uintptr_t unused, uintptr_t unused2, InvokeType unused3) { Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get()); /* * This is the fast path in which the target virtual method is * fully resolved at compile time. */ switch (state) { case 0: { // Get "this" [set kArg1] RegLocation rl_arg = info->args[0]; cg->LoadValueDirectFixed(rl_arg, cg->TargetReg(kArg1)); break; } case 1: // Is "this" null? [use kArg1] cg->GenNullCheck(info->args[0].s_reg_low, cg->TargetReg(kArg1), info->opt_flags); // get this->klass_ [use kArg1, set kInvokeTgt] cg->LoadWordDisp(cg->TargetReg(kArg1), mirror::Object::ClassOffset().Int32Value(), cg->TargetReg(kInvokeTgt)); break; case 2: // Get this->klass_->vtable [usr kInvokeTgt, set kInvokeTgt] cg->LoadWordDisp(cg->TargetReg(kInvokeTgt), mirror::Class::VTableOffset().Int32Value(), cg->TargetReg(kInvokeTgt)); break; case 3: // Get target method [use kInvokeTgt, set kArg0] cg->LoadWordDisp(cg->TargetReg(kInvokeTgt), (method_idx * 4) + mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value(), cg->TargetReg(kArg0)); break; case 4: // Get the compiled code address [uses kArg0, sets kInvokeTgt] if (cu->instruction_set != kX86) { cg->LoadWordDisp(cg->TargetReg(kArg0), mirror::ArtMethod::GetEntryPointFromCompiledCodeOffset().Int32Value(), cg->TargetReg(kInvokeTgt)); break; } // Intentional fallthrough for X86 default: return -1; } return state + 1; } /* * All invoke-interface calls bounce off of art_quick_invoke_interface_trampoline, * which will locate the target and continue on via a tail call. */ static int NextInterfaceCallInsn(CompilationUnit* cu, CallInfo* info, int state, const MethodReference& target_method, uint32_t unused, uintptr_t unused2, uintptr_t direct_method, InvokeType unused4) { Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get()); if (cu->instruction_set != kThumb2) { // Disable sharpening direct_method = 0; } ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeInterfaceTrampoline); if (direct_method != 0) { switch (state) { case 0: // Load the trampoline target [sets kInvokeTgt]. if (cu->instruction_set != kX86) { cg->LoadWordDisp(cg->TargetReg(kSelf), trampoline.Int32Value(), cg->TargetReg(kInvokeTgt)); } // Get the interface Method* [sets kArg0] if (direct_method != static_cast<unsigned int>(-1)) { cg->LoadConstant(cg->TargetReg(kArg0), direct_method); } else { CHECK_EQ(cu->dex_file, target_method.dex_file); LIR* data_target = cg->ScanLiteralPool(cg->method_literal_list_, target_method.dex_method_index, 0); if (data_target == NULL) { data_target = cg->AddWordData(&cg->method_literal_list_, target_method.dex_method_index); data_target->operands[1] = kInterface; } LIR* load_pc_rel = cg->OpPcRelLoad(cg->TargetReg(kArg0), data_target); cg->AppendLIR(load_pc_rel); DCHECK_EQ(cu->instruction_set, kThumb2) << reinterpret_cast<void*>(data_target); } break; default: return -1; } } else { switch (state) { case 0: // Get the current Method* [sets kArg0] - TUNING: remove copy of method if it is promoted. cg->LoadCurrMethodDirect(cg->TargetReg(kArg0)); // Load the trampoline target [sets kInvokeTgt]. if (cu->instruction_set != kX86) { cg->LoadWordDisp(cg->TargetReg(kSelf), trampoline.Int32Value(), cg->TargetReg(kInvokeTgt)); } break; case 1: // Get method->dex_cache_resolved_methods_ [set/use kArg0] cg->LoadWordDisp(cg->TargetReg(kArg0), mirror::ArtMethod::DexCacheResolvedMethodsOffset().Int32Value(), cg->TargetReg(kArg0)); break; case 2: // Grab target method* [set/use kArg0] CHECK_EQ(cu->dex_file, target_method.dex_file); cg->LoadWordDisp(cg->TargetReg(kArg0), mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value() + (target_method.dex_method_index * 4), cg->TargetReg(kArg0)); break; default: return -1; } } return state + 1; } static int NextInvokeInsnSP(CompilationUnit* cu, CallInfo* info, ThreadOffset trampoline, int state, const MethodReference& target_method, uint32_t method_idx) { Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get()); /* * This handles the case in which the base method is not fully * resolved at compile time, we bail to a runtime helper. */ if (state == 0) { if (cu->instruction_set != kX86) { // Load trampoline target cg->LoadWordDisp(cg->TargetReg(kSelf), trampoline.Int32Value(), cg->TargetReg(kInvokeTgt)); } // Load kArg0 with method index CHECK_EQ(cu->dex_file, target_method.dex_file); cg->LoadConstant(cg->TargetReg(kArg0), target_method.dex_method_index); return 1; } return -1; } static int NextStaticCallInsnSP(CompilationUnit* cu, CallInfo* info, int state, const MethodReference& target_method, uint32_t method_idx, uintptr_t unused, uintptr_t unused2, InvokeType unused3) { ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeStaticTrampolineWithAccessCheck); return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0); } static int NextDirectCallInsnSP(CompilationUnit* cu, CallInfo* info, int state, const MethodReference& target_method, uint32_t method_idx, uintptr_t unused, uintptr_t unused2, InvokeType unused3) { ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeDirectTrampolineWithAccessCheck); return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0); } static int NextSuperCallInsnSP(CompilationUnit* cu, CallInfo* info, int state, const MethodReference& target_method, uint32_t method_idx, uintptr_t unused, uintptr_t unused2, InvokeType unused3) { ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeSuperTrampolineWithAccessCheck); return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0); } static int NextVCallInsnSP(CompilationUnit* cu, CallInfo* info, int state, const MethodReference& target_method, uint32_t method_idx, uintptr_t unused, uintptr_t unused2, InvokeType unused3) { ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeVirtualTrampolineWithAccessCheck); return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0); } static int NextInterfaceCallInsnWithAccessCheck(CompilationUnit* cu, CallInfo* info, int state, const MethodReference& target_method, uint32_t unused, uintptr_t unused2, uintptr_t unused3, InvokeType unused4) { ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeInterfaceTrampolineWithAccessCheck); return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0); } int Mir2Lir::LoadArgRegs(CallInfo* info, int call_state, NextCallInsn next_call_insn, const MethodReference& target_method, uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method, InvokeType type, bool skip_this) { int last_arg_reg = TargetReg(kArg3); int next_reg = TargetReg(kArg1); int next_arg = 0; if (skip_this) { next_reg++; next_arg++; } for (; (next_reg <= last_arg_reg) && (next_arg < info->num_arg_words); next_reg++) { RegLocation rl_arg = info->args[next_arg++]; rl_arg = UpdateRawLoc(rl_arg); if (rl_arg.wide && (next_reg <= TargetReg(kArg2))) { LoadValueDirectWideFixed(rl_arg, next_reg, next_reg + 1); next_reg++; next_arg++; } else { if (rl_arg.wide) { rl_arg.wide = false; rl_arg.is_const = false; } LoadValueDirectFixed(rl_arg, next_reg); } call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, direct_code, direct_method, type); } return call_state; } /* * Load up to 5 arguments, the first three of which will be in * kArg1 .. kArg3. On entry kArg0 contains the current method pointer, * and as part of the load sequence, it must be replaced with * the target method pointer. Note, this may also be called * for "range" variants if the number of arguments is 5 or fewer. */ int Mir2Lir::GenDalvikArgsNoRange(CallInfo* info, int call_state, LIR** pcrLabel, NextCallInsn next_call_insn, const MethodReference& target_method, uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method, InvokeType type, bool skip_this) { RegLocation rl_arg; /* If no arguments, just return */ if (info->num_arg_words == 0) return call_state; call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, direct_code, direct_method, type); DCHECK_LE(info->num_arg_words, 5); if (info->num_arg_words > 3) { int32_t next_use = 3; // Detect special case of wide arg spanning arg3/arg4 RegLocation rl_use0 = info->args[0]; RegLocation rl_use1 = info->args[1]; RegLocation rl_use2 = info->args[2]; if (((!rl_use0.wide && !rl_use1.wide) || rl_use0.wide) && rl_use2.wide) { int reg = -1; // Wide spans, we need the 2nd half of uses[2]. rl_arg = UpdateLocWide(rl_use2); if (rl_arg.location == kLocPhysReg) { reg = rl_arg.high_reg; } else { // kArg2 & rArg3 can safely be used here reg = TargetReg(kArg3); LoadWordDisp(TargetReg(kSp), SRegOffset(rl_arg.s_reg_low) + 4, reg); call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, direct_code, direct_method, type); } StoreBaseDisp(TargetReg(kSp), (next_use + 1) * 4, reg, kWord); StoreBaseDisp(TargetReg(kSp), 16 /* (3+1)*4 */, reg, kWord); call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, direct_code, direct_method, type); next_use++; } // Loop through the rest while (next_use < info->num_arg_words) { int low_reg; int high_reg = -1; rl_arg = info->args[next_use]; rl_arg = UpdateRawLoc(rl_arg); if (rl_arg.location == kLocPhysReg) { low_reg = rl_arg.low_reg; high_reg = rl_arg.high_reg; } else { low_reg = TargetReg(kArg2); if (rl_arg.wide) { high_reg = TargetReg(kArg3); LoadValueDirectWideFixed(rl_arg, low_reg, high_reg); } else { LoadValueDirectFixed(rl_arg, low_reg); } call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, direct_code, direct_method, type); } int outs_offset = (next_use + 1) * 4; if (rl_arg.wide) { StoreBaseDispWide(TargetReg(kSp), outs_offset, low_reg, high_reg); next_use += 2; } else { StoreWordDisp(TargetReg(kSp), outs_offset, low_reg); next_use++; } call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, direct_code, direct_method, type); } } call_state = LoadArgRegs(info, call_state, next_call_insn, target_method, vtable_idx, direct_code, direct_method, type, skip_this); if (pcrLabel) { *pcrLabel = GenNullCheck(info->args[0].s_reg_low, TargetReg(kArg1), info->opt_flags); } return call_state; } /* * May have 0+ arguments (also used for jumbo). Note that * source virtual registers may be in physical registers, so may * need to be flushed to home location before copying. This * applies to arg3 and above (see below). * * Two general strategies: * If < 20 arguments * Pass args 3-18 using vldm/vstm block copy * Pass arg0, arg1 & arg2 in kArg1-kArg3 * If 20+ arguments * Pass args arg19+ using memcpy block copy * Pass arg0, arg1 & arg2 in kArg1-kArg3 * */ int Mir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state, LIR** pcrLabel, NextCallInsn next_call_insn, const MethodReference& target_method, uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method, InvokeType type, bool skip_this) { // If we can treat it as non-range (Jumbo ops will use range form) if (info->num_arg_words <= 5) return GenDalvikArgsNoRange(info, call_state, pcrLabel, next_call_insn, target_method, vtable_idx, direct_code, direct_method, type, skip_this); /* * First load the non-register arguments. Both forms expect all * of the source arguments to be in their home frame location, so * scan the s_reg names and flush any that have been promoted to * frame backing storage. */ // Scan the rest of the args - if in phys_reg flush to memory for (int next_arg = 0; next_arg < info->num_arg_words;) { RegLocation loc = info->args[next_arg]; if (loc.wide) { loc = UpdateLocWide(loc); if ((next_arg >= 2) && (loc.location == kLocPhysReg)) { StoreBaseDispWide(TargetReg(kSp), SRegOffset(loc.s_reg_low), loc.low_reg, loc.high_reg); } next_arg += 2; } else { loc = UpdateLoc(loc); if ((next_arg >= 3) && (loc.location == kLocPhysReg)) { StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low), loc.low_reg, kWord); } next_arg++; } } int start_offset = SRegOffset(info->args[3].s_reg_low); int outs_offset = 4 /* Method* */ + (3 * 4); if (cu_->instruction_set != kThumb2) { // Generate memcpy OpRegRegImm(kOpAdd, TargetReg(kArg0), TargetReg(kSp), outs_offset); OpRegRegImm(kOpAdd, TargetReg(kArg1), TargetReg(kSp), start_offset); CallRuntimeHelperRegRegImm(QUICK_ENTRYPOINT_OFFSET(pMemcpy), TargetReg(kArg0), TargetReg(kArg1), (info->num_arg_words - 3) * 4, false); } else { if (info->num_arg_words >= 20) { // Generate memcpy OpRegRegImm(kOpAdd, TargetReg(kArg0), TargetReg(kSp), outs_offset); OpRegRegImm(kOpAdd, TargetReg(kArg1), TargetReg(kSp), start_offset); CallRuntimeHelperRegRegImm(QUICK_ENTRYPOINT_OFFSET(pMemcpy), TargetReg(kArg0), TargetReg(kArg1), (info->num_arg_words - 3) * 4, false); } else { // Use vldm/vstm pair using kArg3 as a temp int regs_left = std::min(info->num_arg_words - 3, 16); call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, direct_code, direct_method, type); OpRegRegImm(kOpAdd, TargetReg(kArg3), TargetReg(kSp), start_offset); LIR* ld = OpVldm(TargetReg(kArg3), regs_left); // TUNING: loosen barrier ld->def_mask = ENCODE_ALL; SetMemRefType(ld, true /* is_load */, kDalvikReg); call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, direct_code, direct_method, type); OpRegRegImm(kOpAdd, TargetReg(kArg3), TargetReg(kSp), 4 /* Method* */ + (3 * 4)); call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, direct_code, direct_method, type); LIR* st = OpVstm(TargetReg(kArg3), regs_left); SetMemRefType(st, false /* is_load */, kDalvikReg); st->def_mask = ENCODE_ALL; call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, direct_code, direct_method, type); } } call_state = LoadArgRegs(info, call_state, next_call_insn, target_method, vtable_idx, direct_code, direct_method, type, skip_this); call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, direct_code, direct_method, type); if (pcrLabel) { *pcrLabel = GenNullCheck(info->args[0].s_reg_low, TargetReg(kArg1), info->opt_flags); } return call_state; } RegLocation Mir2Lir::InlineTarget(CallInfo* info) { RegLocation res; if (info->result.location == kLocInvalid) { res = GetReturn(false); } else { res = info->result; } return res; } RegLocation Mir2Lir::InlineTargetWide(CallInfo* info) { RegLocation res; if (info->result.location == kLocInvalid) { res = GetReturnWide(false); } else { res = info->result; } return res; } bool Mir2Lir::GenInlinedCharAt(CallInfo* info) { if (cu_->instruction_set == kMips) { // TODO - add Mips implementation return false; } // Location of reference to data array int value_offset = mirror::String::ValueOffset().Int32Value(); // Location of count int count_offset = mirror::String::CountOffset().Int32Value(); // Starting offset within data array int offset_offset = mirror::String::OffsetOffset().Int32Value(); // Start of char data with array_ int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value(); RegLocation rl_obj = info->args[0]; RegLocation rl_idx = info->args[1]; rl_obj = LoadValue(rl_obj, kCoreReg); rl_idx = LoadValue(rl_idx, kCoreReg); int reg_max; GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, info->opt_flags); bool range_check = (!(info->opt_flags & MIR_IGNORE_RANGE_CHECK)); LIR* launch_pad = NULL; int reg_off = INVALID_REG; int reg_ptr = INVALID_REG; if (cu_->instruction_set != kX86) { reg_off = AllocTemp(); reg_ptr = AllocTemp(); if (range_check) { reg_max = AllocTemp(); LoadWordDisp(rl_obj.low_reg, count_offset, reg_max); } LoadWordDisp(rl_obj.low_reg, offset_offset, reg_off); LoadWordDisp(rl_obj.low_reg, value_offset, reg_ptr); if (range_check) { // Set up a launch pad to allow retry in case of bounds violation */ launch_pad = RawLIR(0, kPseudoIntrinsicRetry, reinterpret_cast<uintptr_t>(info)); intrinsic_launchpads_.Insert(launch_pad); OpRegReg(kOpCmp, rl_idx.low_reg, reg_max); FreeTemp(reg_max); OpCondBranch(kCondCs, launch_pad); } } else { if (range_check) { reg_max = AllocTemp(); LoadWordDisp(rl_obj.low_reg, count_offset, reg_max); // Set up a launch pad to allow retry in case of bounds violation */ launch_pad = RawLIR(0, kPseudoIntrinsicRetry, reinterpret_cast<uintptr_t>(info)); intrinsic_launchpads_.Insert(launch_pad); OpRegReg(kOpCmp, rl_idx.low_reg, reg_max); FreeTemp(reg_max); OpCondBranch(kCondCc, launch_pad); } reg_off = AllocTemp(); reg_ptr = AllocTemp(); LoadWordDisp(rl_obj.low_reg, offset_offset, reg_off); LoadWordDisp(rl_obj.low_reg, value_offset, reg_ptr); } OpRegImm(kOpAdd, reg_ptr, data_offset); OpRegReg(kOpAdd, reg_off, rl_idx.low_reg); FreeTemp(rl_obj.low_reg); FreeTemp(rl_idx.low_reg); RegLocation rl_dest = InlineTarget(info); RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); LoadBaseIndexed(reg_ptr, reg_off, rl_result.low_reg, 1, kUnsignedHalf); FreeTemp(reg_off); FreeTemp(reg_ptr); StoreValue(rl_dest, rl_result); if (range_check) { launch_pad->operands[2] = 0; // no resumption } // Record that we've already inlined & null checked info->opt_flags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK); return true; } // Generates an inlined String.is_empty or String.length. bool Mir2Lir::GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty) { if (cu_->instruction_set == kMips) { // TODO - add Mips implementation return false; } // dst = src.length(); RegLocation rl_obj = info->args[0]; rl_obj = LoadValue(rl_obj, kCoreReg); RegLocation rl_dest = InlineTarget(info); RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, info->opt_flags); LoadWordDisp(rl_obj.low_reg, mirror::String::CountOffset().Int32Value(), rl_result.low_reg); if (is_empty) { // dst = (dst == 0); if (cu_->instruction_set == kThumb2) { int t_reg = AllocTemp(); OpRegReg(kOpNeg, t_reg, rl_result.low_reg); OpRegRegReg(kOpAdc, rl_result.low_reg, rl_result.low_reg, t_reg); } else { DCHECK_EQ(cu_->instruction_set, kX86); OpRegImm(kOpSub, rl_result.low_reg, 1); OpRegImm(kOpLsr, rl_result.low_reg, 31); } } StoreValue(rl_dest, rl_result); return true; } bool Mir2Lir::GenInlinedAbsInt(CallInfo* info) { if (cu_->instruction_set == kMips) { // TODO - add Mips implementation return false; } RegLocation rl_src = info->args[0]; rl_src = LoadValue(rl_src, kCoreReg); RegLocation rl_dest = InlineTarget(info); RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); int sign_reg = AllocTemp(); // abs(x) = y<=x>>31, (x+y)^y. OpRegRegImm(kOpAsr, sign_reg, rl_src.low_reg, 31); OpRegRegReg(kOpAdd, rl_result.low_reg, rl_src.low_reg, sign_reg); OpRegReg(kOpXor, rl_result.low_reg, sign_reg); StoreValue(rl_dest, rl_result); return true; } bool Mir2Lir::GenInlinedAbsLong(CallInfo* info) { if (cu_->instruction_set == kMips) { // TODO - add Mips implementation return false; } if (cu_->instruction_set == kThumb2) { RegLocation rl_src = info->args[0]; rl_src = LoadValueWide(rl_src, kCoreReg); RegLocation rl_dest = InlineTargetWide(info); RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); int sign_reg = AllocTemp(); // abs(x) = y<=x>>31, (x+y)^y. OpRegRegImm(kOpAsr, sign_reg, rl_src.high_reg, 31); OpRegRegReg(kOpAdd, rl_result.low_reg, rl_src.low_reg, sign_reg); OpRegRegReg(kOpAdc, rl_result.high_reg, rl_src.high_reg, sign_reg); OpRegReg(kOpXor, rl_result.low_reg, sign_reg); OpRegReg(kOpXor, rl_result.high_reg, sign_reg); StoreValueWide(rl_dest, rl_result); return true; } else { DCHECK_EQ(cu_->instruction_set, kX86); // Reuse source registers to avoid running out of temps RegLocation rl_src = info->args[0]; rl_src = LoadValueWide(rl_src, kCoreReg); RegLocation rl_dest = InlineTargetWide(info); RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); OpRegCopyWide(rl_result.low_reg, rl_result.high_reg, rl_src.low_reg, rl_src.high_reg); FreeTemp(rl_src.low_reg); FreeTemp(rl_src.high_reg); int sign_reg = AllocTemp(); // abs(x) = y<=x>>31, (x+y)^y. OpRegRegImm(kOpAsr, sign_reg, rl_result.high_reg, 31); OpRegReg(kOpAdd, rl_result.low_reg, sign_reg); OpRegReg(kOpAdc, rl_result.high_reg, sign_reg); OpRegReg(kOpXor, rl_result.low_reg, sign_reg); OpRegReg(kOpXor, rl_result.high_reg, sign_reg); StoreValueWide(rl_dest, rl_result); return true; } } bool Mir2Lir::GenInlinedFloatCvt(CallInfo* info) { if (cu_->instruction_set == kMips) { // TODO - add Mips implementation return false; } RegLocation rl_src = info->args[0]; RegLocation rl_dest = InlineTarget(info); StoreValue(rl_dest, rl_src); return true; } bool Mir2Lir::GenInlinedDoubleCvt(CallInfo* info) { if (cu_->instruction_set == kMips) { // TODO - add Mips implementation return false; } RegLocation rl_src = info->args[0]; RegLocation rl_dest = InlineTargetWide(info); StoreValueWide(rl_dest, rl_src); return true; } /* * Fast string.index_of(I) & (II). Tests for simple case of char <= 0xffff, * otherwise bails to standard library code. */ bool Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) { if (cu_->instruction_set == kMips) { // TODO - add Mips implementation return false; } ClobberCalleeSave(); LockCallTemps(); // Using fixed registers int reg_ptr = TargetReg(kArg0); int reg_char = TargetReg(kArg1); int reg_start = TargetReg(kArg2); RegLocation rl_obj = info->args[0]; RegLocation rl_char = info->args[1]; RegLocation rl_start = info->args[2]; LoadValueDirectFixed(rl_obj, reg_ptr); LoadValueDirectFixed(rl_char, reg_char); if (zero_based) { LoadConstant(reg_start, 0); } else { LoadValueDirectFixed(rl_start, reg_start); } int r_tgt = (cu_->instruction_set != kX86) ? LoadHelper(QUICK_ENTRYPOINT_OFFSET(pIndexOf)) : 0; GenNullCheck(rl_obj.s_reg_low, reg_ptr, info->opt_flags); LIR* launch_pad = RawLIR(0, kPseudoIntrinsicRetry, reinterpret_cast<uintptr_t>(info)); intrinsic_launchpads_.Insert(launch_pad); OpCmpImmBranch(kCondGt, reg_char, 0xFFFF, launch_pad); // NOTE: not a safepoint if (cu_->instruction_set != kX86) { OpReg(kOpBlx, r_tgt); } else { OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(pIndexOf)); } LIR* resume_tgt = NewLIR0(kPseudoTargetLabel); launch_pad->operands[2] = reinterpret_cast<uintptr_t>(resume_tgt); // Record that we've already inlined & null checked info->opt_flags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK); RegLocation rl_return = GetReturn(false); RegLocation rl_dest = InlineTarget(info); StoreValue(rl_dest, rl_return); return true; } /* Fast string.compareTo(Ljava/lang/string;)I. */ bool Mir2Lir::GenInlinedStringCompareTo(CallInfo* info) { if (cu_->instruction_set == kMips) { // TODO - add Mips implementation return false; } ClobberCalleeSave(); LockCallTemps(); // Using fixed registers int reg_this = TargetReg(kArg0); int reg_cmp = TargetReg(kArg1); RegLocation rl_this = info->args[0]; RegLocation rl_cmp = info->args[1]; LoadValueDirectFixed(rl_this, reg_this); LoadValueDirectFixed(rl_cmp, reg_cmp); int r_tgt = (cu_->instruction_set != kX86) ? LoadHelper(QUICK_ENTRYPOINT_OFFSET(pStringCompareTo)) : 0; GenNullCheck(rl_this.s_reg_low, reg_this, info->opt_flags); // TUNING: check if rl_cmp.s_reg_low is already null checked LIR* launch_pad = RawLIR(0, kPseudoIntrinsicRetry, reinterpret_cast<uintptr_t>(info)); intrinsic_launchpads_.Insert(launch_pad); OpCmpImmBranch(kCondEq, reg_cmp, 0, launch_pad); // NOTE: not a safepoint if (cu_->instruction_set != kX86) { OpReg(kOpBlx, r_tgt); } else { OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(pStringCompareTo)); } launch_pad->operands[2] = 0; // No return possible // Record that we've already inlined & null checked info->opt_flags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK); RegLocation rl_return = GetReturn(false); RegLocation rl_dest = InlineTarget(info); StoreValue(rl_dest, rl_return); return true; } bool Mir2Lir::GenInlinedCurrentThread(CallInfo* info) { RegLocation rl_dest = InlineTarget(info); RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); ThreadOffset offset = Thread::PeerOffset(); if (cu_->instruction_set == kThumb2 || cu_->instruction_set == kMips) { LoadWordDisp(TargetReg(kSelf), offset.Int32Value(), rl_result.low_reg); } else { CHECK(cu_->instruction_set == kX86); reinterpret_cast<X86Mir2Lir*>(this)->OpRegThreadMem(kOpMov, rl_result.low_reg, offset); } StoreValue(rl_dest, rl_result); return true; } bool Mir2Lir::GenInlinedUnsafeGet(CallInfo* info, bool is_long, bool is_volatile) { if (cu_->instruction_set == kMips) { // TODO - add Mips implementation return false; } // Unused - RegLocation rl_src_unsafe = info->args[0]; RegLocation rl_src_obj = info->args[1]; // Object RegLocation rl_src_offset = info->args[2]; // long low rl_src_offset.wide = 0; // ignore high half in info->args[3] RegLocation rl_dest = InlineTarget(info); // result reg if (is_volatile) { GenMemBarrier(kLoadLoad); } RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg); RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg); RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); if (is_long) { OpRegReg(kOpAdd, rl_object.low_reg, rl_offset.low_reg); LoadBaseDispWide(rl_object.low_reg, 0, rl_result.low_reg, rl_result.high_reg, INVALID_SREG); StoreValueWide(rl_dest, rl_result); } else { LoadBaseIndexed(rl_object.low_reg, rl_offset.low_reg, rl_result.low_reg, 0, kWord); StoreValue(rl_dest, rl_result); } return true; } bool Mir2Lir::GenInlinedUnsafePut(CallInfo* info, bool is_long, bool is_object, bool is_volatile, bool is_ordered) { if (cu_->instruction_set == kMips) { // TODO - add Mips implementation return false; } if (cu_->instruction_set == kX86 && is_object) { // TODO: fix X86, it exhausts registers for card marking. return false; } // Unused - RegLocation rl_src_unsafe = info->args[0]; RegLocation rl_src_obj = info->args[1]; // Object RegLocation rl_src_offset = info->args[2]; // long low rl_src_offset.wide = 0; // ignore high half in info->args[3] RegLocation rl_src_value = info->args[4]; // value to store if (is_volatile || is_ordered) { GenMemBarrier(kStoreStore); } RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg); RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg); RegLocation rl_value; if (is_long) { rl_value = LoadValueWide(rl_src_value, kCoreReg); OpRegReg(kOpAdd, rl_object.low_reg, rl_offset.low_reg); StoreBaseDispWide(rl_object.low_reg, 0, rl_value.low_reg, rl_value.high_reg); } else { rl_value = LoadValue(rl_src_value, kCoreReg); StoreBaseIndexed(rl_object.low_reg, rl_offset.low_reg, rl_value.low_reg, 0, kWord); } if (is_volatile) { GenMemBarrier(kStoreLoad); } if (is_object) { MarkGCCard(rl_value.low_reg, rl_object.low_reg); } return true; } bool Mir2Lir::GenIntrinsic(CallInfo* info) { if (info->opt_flags & MIR_INLINED) { return false; } /* * TODO: move these to a target-specific structured constant array * and use a generic match function. The list of intrinsics may be * slightly different depending on target. * TODO: Fold this into a matching function that runs during * basic block building. This should be part of the action for * small method inlining and recognition of the special object init * method. By doing this during basic block construction, we can also * take advantage of/generate new useful dataflow info. */ StringPiece tgt_methods_declaring_class( cu_->dex_file->GetMethodDeclaringClassDescriptor(cu_->dex_file->GetMethodId(info->index))); if (tgt_methods_declaring_class.starts_with("Ljava/lang/Double;")) { std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file)); if (tgt_method == "long java.lang.Double.doubleToRawLongBits(double)") { return GenInlinedDoubleCvt(info); } if (tgt_method == "double java.lang.Double.longBitsToDouble(long)") { return GenInlinedDoubleCvt(info); } } else if (tgt_methods_declaring_class.starts_with("Ljava/lang/Float;")) { std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file)); if (tgt_method == "int java.lang.Float.float_to_raw_int_bits(float)") { return GenInlinedFloatCvt(info); } if (tgt_method == "float java.lang.Float.intBitsToFloat(int)") { return GenInlinedFloatCvt(info); } } else if (tgt_methods_declaring_class.starts_with("Ljava/lang/Math;") || tgt_methods_declaring_class.starts_with("Ljava/lang/StrictMath;")) { std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file)); if (tgt_method == "int java.lang.Math.abs(int)" || tgt_method == "int java.lang.StrictMath.abs(int)") { return GenInlinedAbsInt(info); } if (tgt_method == "long java.lang.Math.abs(long)" || tgt_method == "long java.lang.StrictMath.abs(long)") { return GenInlinedAbsLong(info); } if (tgt_method == "int java.lang.Math.max(int, int)" || tgt_method == "int java.lang.StrictMath.max(int, int)") { return GenInlinedMinMaxInt(info, false /* is_min */); } if (tgt_method == "int java.lang.Math.min(int, int)" || tgt_method == "int java.lang.StrictMath.min(int, int)") { return GenInlinedMinMaxInt(info, true /* is_min */); } if (tgt_method == "double java.lang.Math.sqrt(double)" || tgt_method == "double java.lang.StrictMath.sqrt(double)") { return GenInlinedSqrt(info); } } else if (tgt_methods_declaring_class.starts_with("Ljava/lang/String;")) { std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file)); if (tgt_method == "char java.lang.String.charAt(int)") { return GenInlinedCharAt(info); } if (tgt_method == "int java.lang.String.compareTo(java.lang.String)") { return GenInlinedStringCompareTo(info); } if (tgt_method == "boolean java.lang.String.is_empty()") { return GenInlinedStringIsEmptyOrLength(info, true /* is_empty */); } if (tgt_method == "int java.lang.String.index_of(int, int)") { return GenInlinedIndexOf(info, false /* base 0 */); } if (tgt_method == "int java.lang.String.index_of(int)") { return GenInlinedIndexOf(info, true /* base 0 */); } if (tgt_method == "int java.lang.String.length()") { return GenInlinedStringIsEmptyOrLength(info, false /* is_empty */); } } else if (tgt_methods_declaring_class.starts_with("Ljava/lang/Thread;")) { std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file)); if (tgt_method == "java.lang.Thread java.lang.Thread.currentThread()") { return GenInlinedCurrentThread(info); } } else if (tgt_methods_declaring_class.starts_with("Lsun/misc/Unsafe;")) { std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file)); if (tgt_method == "boolean sun.misc.Unsafe.compareAndSwapInt(java.lang.Object, long, int, int)") { return GenInlinedCas32(info, false); } if (tgt_method == "boolean sun.misc.Unsafe.compareAndSwapObject(java.lang.Object, long, java.lang.Object, java.lang.Object)") { return GenInlinedCas32(info, true); } if (tgt_method == "int sun.misc.Unsafe.getInt(java.lang.Object, long)") { return GenInlinedUnsafeGet(info, false /* is_long */, false /* is_volatile */); } if (tgt_method == "int sun.misc.Unsafe.getIntVolatile(java.lang.Object, long)") { return GenInlinedUnsafeGet(info, false /* is_long */, true /* is_volatile */); } if (tgt_method == "void sun.misc.Unsafe.putInt(java.lang.Object, long, int)") { return GenInlinedUnsafePut(info, false /* is_long */, false /* is_object */, false /* is_volatile */, false /* is_ordered */); } if (tgt_method == "void sun.misc.Unsafe.putIntVolatile(java.lang.Object, long, int)") { return GenInlinedUnsafePut(info, false /* is_long */, false /* is_object */, true /* is_volatile */, false /* is_ordered */); } if (tgt_method == "void sun.misc.Unsafe.putOrderedInt(java.lang.Object, long, int)") { return GenInlinedUnsafePut(info, false /* is_long */, false /* is_object */, false /* is_volatile */, true /* is_ordered */); } if (tgt_method == "long sun.misc.Unsafe.getLong(java.lang.Object, long)") { return GenInlinedUnsafeGet(info, true /* is_long */, false /* is_volatile */); } if (tgt_method == "long sun.misc.Unsafe.getLongVolatile(java.lang.Object, long)") { return GenInlinedUnsafeGet(info, true /* is_long */, true /* is_volatile */); } if (tgt_method == "void sun.misc.Unsafe.putLong(java.lang.Object, long, long)") { return GenInlinedUnsafePut(info, true /* is_long */, false /* is_object */, false /* is_volatile */, false /* is_ordered */); } if (tgt_method == "void sun.misc.Unsafe.putLongVolatile(java.lang.Object, long, long)") { return GenInlinedUnsafePut(info, true /* is_long */, false /* is_object */, true /* is_volatile */, false /* is_ordered */); } if (tgt_method == "void sun.misc.Unsafe.putOrderedLong(java.lang.Object, long, long)") { return GenInlinedUnsafePut(info, true /* is_long */, false /* is_object */, false /* is_volatile */, true /* is_ordered */); } if (tgt_method == "java.lang.Object sun.misc.Unsafe.getObject(java.lang.Object, long)") { return GenInlinedUnsafeGet(info, false /* is_long */, false /* is_volatile */); } if (tgt_method == "java.lang.Object sun.misc.Unsafe.getObjectVolatile(java.lang.Object, long)") { return GenInlinedUnsafeGet(info, false /* is_long */, true /* is_volatile */); } if (tgt_method == "void sun.misc.Unsafe.putObject(java.lang.Object, long, java.lang.Object)") { return GenInlinedUnsafePut(info, false /* is_long */, true /* is_object */, false /* is_volatile */, false /* is_ordered */); } if (tgt_method == "void sun.misc.Unsafe.putObjectVolatile(java.lang.Object, long, java.lang.Object)") { return GenInlinedUnsafePut(info, false /* is_long */, true /* is_object */, true /* is_volatile */, false /* is_ordered */); } if (tgt_method == "void sun.misc.Unsafe.putOrderedObject(java.lang.Object, long, java.lang.Object)") { return GenInlinedUnsafePut(info, false /* is_long */, true /* is_object */, false /* is_volatile */, true /* is_ordered */); } } return false; } void Mir2Lir::GenInvoke(CallInfo* info) { if (GenIntrinsic(info)) { return; } InvokeType original_type = info->type; // avoiding mutation by ComputeInvokeInfo int call_state = 0; LIR* null_ck; LIR** p_null_ck = NULL; NextCallInsn next_call_insn; FlushAllRegs(); /* Everything to home location */ // Explicit register usage LockCallTemps(); DexCompilationUnit* cUnit = mir_graph_->GetCurrentDexCompilationUnit(); MethodReference target_method(cUnit->GetDexFile(), info->index); int vtable_idx; uintptr_t direct_code; uintptr_t direct_method; bool skip_this; bool fast_path = cu_->compiler_driver->ComputeInvokeInfo(mir_graph_->GetCurrentDexCompilationUnit(), current_dalvik_offset_, info->type, target_method, vtable_idx, direct_code, direct_method, true) && !SLOW_INVOKE_PATH; if (info->type == kInterface) { if (fast_path) { p_null_ck = &null_ck; } next_call_insn = fast_path ? NextInterfaceCallInsn : NextInterfaceCallInsnWithAccessCheck; skip_this = false; } else if (info->type == kDirect) { if (fast_path) { p_null_ck = &null_ck; } next_call_insn = fast_path ? NextSDCallInsn : NextDirectCallInsnSP; skip_this = false; } else if (info->type == kStatic) { next_call_insn = fast_path ? NextSDCallInsn : NextStaticCallInsnSP; skip_this = false; } else if (info->type == kSuper) { DCHECK(!fast_path); // Fast path is a direct call. next_call_insn = NextSuperCallInsnSP; skip_this = false; } else { DCHECK_EQ(info->type, kVirtual); next_call_insn = fast_path ? NextVCallInsn : NextVCallInsnSP; skip_this = fast_path; } if (!info->is_range) { call_state = GenDalvikArgsNoRange(info, call_state, p_null_ck, next_call_insn, target_method, vtable_idx, direct_code, direct_method, original_type, skip_this); } else { call_state = GenDalvikArgsRange(info, call_state, p_null_ck, next_call_insn, target_method, vtable_idx, direct_code, direct_method, original_type, skip_this); } // Finish up any of the call sequence not interleaved in arg loading while (call_state >= 0) { call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, direct_code, direct_method, original_type); } LIR* call_inst; if (cu_->instruction_set != kX86) { call_inst = OpReg(kOpBlx, TargetReg(kInvokeTgt)); } else { if (fast_path && info->type != kInterface) { call_inst = OpMem(kOpBlx, TargetReg(kArg0), mirror::ArtMethod::GetEntryPointFromCompiledCodeOffset().Int32Value()); } else { ThreadOffset trampoline(-1); switch (info->type) { case kInterface: trampoline = fast_path ? QUICK_ENTRYPOINT_OFFSET(pInvokeInterfaceTrampoline) : QUICK_ENTRYPOINT_OFFSET(pInvokeInterfaceTrampolineWithAccessCheck); break; case kDirect: trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeDirectTrampolineWithAccessCheck); break; case kStatic: trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeStaticTrampolineWithAccessCheck); break; case kSuper: trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeSuperTrampolineWithAccessCheck); break; case kVirtual: trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeVirtualTrampolineWithAccessCheck); break; default: LOG(FATAL) << "Unexpected invoke type"; } call_inst = OpThreadMem(kOpBlx, trampoline); } } MarkSafepointPC(call_inst); ClobberCalleeSave(); if (info->result.location != kLocInvalid) { // We have a following MOVE_RESULT - do it now. if (info->result.wide) { RegLocation ret_loc = GetReturnWide(info->result.fp); StoreValueWide(info->result, ret_loc); } else { RegLocation ret_loc = GetReturn(info->result.fp); StoreValue(info->result, ret_loc); } } } } // namespace art