/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* This file contains codegen for the Mips ISA */ #include "codegen_mips.h" #include "dex/quick/mir_to_lir-inl.h" #include "entrypoints/quick/quick_entrypoints.h" #include "mips_lir.h" namespace art { void MipsMir2Lir::GenSpecialCase(BasicBlock* bb, MIR* mir, SpecialCaseHandler special_case) { // TODO } /* * The lack of pc-relative loads on Mips presents somewhat of a challenge * for our PIC switch table strategy. To materialize the current location * we'll do a dummy JAL and reference our tables using r_RA as the * base register. Note that r_RA will be used both as the base to * locate the switch table data and as the reference base for the switch * target offsets stored in the table. We'll use a special pseudo-instruction * to represent the jal and trigger the construction of the * switch table offsets (which will happen after final assembly and all * labels are fixed). * * The test loop will look something like: * * ori rEnd, r_ZERO, #table_size ; size in bytes * jal BaseLabel ; stores "return address" (BaseLabel) in r_RA * nop ; opportunistically fill * BaseLabel: * addiu rBase, r_RA, <table> - <BaseLabel> ; table relative to BaseLabel addu rEnd, rEnd, rBase ; end of table * lw r_val, [rSP, v_reg_off] ; Test Value * loop: * beq rBase, rEnd, done * lw r_key, 0(rBase) * addu rBase, 8 * bne r_val, r_key, loop * lw r_disp, -4(rBase) * addu r_RA, r_disp * jr r_RA * done: * */ void MipsMir2Lir::GenSparseSwitch(MIR* mir, uint32_t table_offset, RegLocation rl_src) { const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset; if (cu_->verbose) { DumpSparseSwitchTable(table); } // Add the table to the list - we'll process it later SwitchTable *tab_rec = static_cast<SwitchTable*>(arena_->Alloc(sizeof(SwitchTable), ArenaAllocator::kAllocData)); tab_rec->table = table; tab_rec->vaddr = current_dalvik_offset_; int elements = table[1]; tab_rec->targets = static_cast<LIR**>(arena_->Alloc(elements * sizeof(LIR*), ArenaAllocator::kAllocLIR)); switch_tables_.Insert(tab_rec); // The table is composed of 8-byte key/disp pairs int byte_size = elements * 8; int size_hi = byte_size >> 16; int size_lo = byte_size & 0xffff; int rEnd = AllocTemp(); if (size_hi) { NewLIR2(kMipsLui, rEnd, size_hi); } // Must prevent code motion for the curr pc pair GenBarrier(); // Scheduling barrier NewLIR0(kMipsCurrPC); // Really a jal to .+8 // Now, fill the branch delay slot if (size_hi) { NewLIR3(kMipsOri, rEnd, rEnd, size_lo); } else { NewLIR3(kMipsOri, rEnd, r_ZERO, size_lo); } GenBarrier(); // Scheduling barrier // Construct BaseLabel and set up table base register LIR* base_label = NewLIR0(kPseudoTargetLabel); // Remember base label so offsets can be computed later tab_rec->anchor = base_label; int rBase = AllocTemp(); NewLIR4(kMipsDelta, rBase, 0, reinterpret_cast<uintptr_t>(base_label), reinterpret_cast<uintptr_t>(tab_rec)); OpRegRegReg(kOpAdd, rEnd, rEnd, rBase); // Grab switch test value rl_src = LoadValue(rl_src, kCoreReg); // Test loop int r_key = AllocTemp(); LIR* loop_label = NewLIR0(kPseudoTargetLabel); LIR* exit_branch = OpCmpBranch(kCondEq, rBase, rEnd, NULL); LoadWordDisp(rBase, 0, r_key); OpRegImm(kOpAdd, rBase, 8); OpCmpBranch(kCondNe, rl_src.low_reg, r_key, loop_label); int r_disp = AllocTemp(); LoadWordDisp(rBase, -4, r_disp); OpRegRegReg(kOpAdd, r_RA, r_RA, r_disp); OpReg(kOpBx, r_RA); // Loop exit LIR* exit_label = NewLIR0(kPseudoTargetLabel); exit_branch->target = exit_label; } /* * Code pattern will look something like: * * lw r_val * jal BaseLabel ; stores "return address" (BaseLabel) in r_RA * nop ; opportunistically fill * [subiu r_val, bias] ; Remove bias if low_val != 0 * bound check -> done * lw r_disp, [r_RA, r_val] * addu r_RA, r_disp * jr r_RA * done: */ void MipsMir2Lir::GenPackedSwitch(MIR* mir, uint32_t table_offset, RegLocation rl_src) { const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset; if (cu_->verbose) { DumpPackedSwitchTable(table); } // Add the table to the list - we'll process it later SwitchTable *tab_rec = static_cast<SwitchTable*>(arena_->Alloc(sizeof(SwitchTable), ArenaAllocator::kAllocData)); tab_rec->table = table; tab_rec->vaddr = current_dalvik_offset_; int size = table[1]; tab_rec->targets = static_cast<LIR**>(arena_->Alloc(size * sizeof(LIR*), ArenaAllocator::kAllocLIR)); switch_tables_.Insert(tab_rec); // Get the switch value rl_src = LoadValue(rl_src, kCoreReg); // Prepare the bias. If too big, handle 1st stage here int low_key = s4FromSwitchData(&table[2]); bool large_bias = false; int r_key; if (low_key == 0) { r_key = rl_src.low_reg; } else if ((low_key & 0xffff) != low_key) { r_key = AllocTemp(); LoadConstant(r_key, low_key); large_bias = true; } else { r_key = AllocTemp(); } // Must prevent code motion for the curr pc pair GenBarrier(); NewLIR0(kMipsCurrPC); // Really a jal to .+8 // Now, fill the branch delay slot with bias strip if (low_key == 0) { NewLIR0(kMipsNop); } else { if (large_bias) { OpRegRegReg(kOpSub, r_key, rl_src.low_reg, r_key); } else { OpRegRegImm(kOpSub, r_key, rl_src.low_reg, low_key); } } GenBarrier(); // Scheduling barrier // Construct BaseLabel and set up table base register LIR* base_label = NewLIR0(kPseudoTargetLabel); // Remember base label so offsets can be computed later tab_rec->anchor = base_label; // Bounds check - if < 0 or >= size continue following switch LIR* branch_over = OpCmpImmBranch(kCondHi, r_key, size-1, NULL); // Materialize the table base pointer int rBase = AllocTemp(); NewLIR4(kMipsDelta, rBase, 0, reinterpret_cast<uintptr_t>(base_label), reinterpret_cast<uintptr_t>(tab_rec)); // Load the displacement from the switch table int r_disp = AllocTemp(); LoadBaseIndexed(rBase, r_key, r_disp, 2, kWord); // Add to r_AP and go OpRegRegReg(kOpAdd, r_RA, r_RA, r_disp); OpReg(kOpBx, r_RA); /* branch_over target here */ LIR* target = NewLIR0(kPseudoTargetLabel); branch_over->target = target; } /* * Array data table format: * ushort ident = 0x0300 magic value * ushort width width of each element in the table * uint size number of elements in the table * ubyte data[size*width] table of data values (may contain a single-byte * padding at the end) * * Total size is 4+(width * size + 1)/2 16-bit code units. */ void MipsMir2Lir::GenFillArrayData(uint32_t table_offset, RegLocation rl_src) { const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset; // Add the table to the list - we'll process it later FillArrayData *tab_rec = reinterpret_cast<FillArrayData*>(arena_->Alloc(sizeof(FillArrayData), ArenaAllocator::kAllocData)); tab_rec->table = table; tab_rec->vaddr = current_dalvik_offset_; uint16_t width = tab_rec->table[1]; uint32_t size = tab_rec->table[2] | ((static_cast<uint32_t>(tab_rec->table[3])) << 16); tab_rec->size = (size * width) + 8; fill_array_data_.Insert(tab_rec); // Making a call - use explicit registers FlushAllRegs(); /* Everything to home location */ LockCallTemps(); LoadValueDirectFixed(rl_src, rMIPS_ARG0); // Must prevent code motion for the curr pc pair GenBarrier(); NewLIR0(kMipsCurrPC); // Really a jal to .+8 // Now, fill the branch delay slot with the helper load int r_tgt = LoadHelper(QUICK_ENTRYPOINT_OFFSET(pHandleFillArrayData)); GenBarrier(); // Scheduling barrier // Construct BaseLabel and set up table base register LIR* base_label = NewLIR0(kPseudoTargetLabel); // Materialize a pointer to the fill data image NewLIR4(kMipsDelta, rMIPS_ARG1, 0, reinterpret_cast<uintptr_t>(base_label), reinterpret_cast<uintptr_t>(tab_rec)); // And go... ClobberCalleeSave(); LIR* call_inst = OpReg(kOpBlx, r_tgt); // ( array*, fill_data* ) MarkSafepointPC(call_inst); } /* * TODO: implement fast path to short-circuit thin-lock case */ void MipsMir2Lir::GenMonitorEnter(int opt_flags, RegLocation rl_src) { FlushAllRegs(); LoadValueDirectFixed(rl_src, rMIPS_ARG0); // Get obj LockCallTemps(); // Prepare for explicit register usage GenNullCheck(rl_src.s_reg_low, rMIPS_ARG0, opt_flags); // Go expensive route - artLockObjectFromCode(self, obj); int r_tgt = LoadHelper(QUICK_ENTRYPOINT_OFFSET(pLockObject)); ClobberCalleeSave(); LIR* call_inst = OpReg(kOpBlx, r_tgt); MarkSafepointPC(call_inst); } /* * TODO: implement fast path to short-circuit thin-lock case */ void MipsMir2Lir::GenMonitorExit(int opt_flags, RegLocation rl_src) { FlushAllRegs(); LoadValueDirectFixed(rl_src, rMIPS_ARG0); // Get obj LockCallTemps(); // Prepare for explicit register usage GenNullCheck(rl_src.s_reg_low, rMIPS_ARG0, opt_flags); // Go expensive route - UnlockObjectFromCode(obj); int r_tgt = LoadHelper(QUICK_ENTRYPOINT_OFFSET(pUnlockObject)); ClobberCalleeSave(); LIR* call_inst = OpReg(kOpBlx, r_tgt); MarkSafepointPC(call_inst); } void MipsMir2Lir::GenMoveException(RegLocation rl_dest) { int ex_offset = Thread::ExceptionOffset().Int32Value(); RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); int reset_reg = AllocTemp(); LoadWordDisp(rMIPS_SELF, ex_offset, rl_result.low_reg); LoadConstant(reset_reg, 0); StoreWordDisp(rMIPS_SELF, ex_offset, reset_reg); FreeTemp(reset_reg); StoreValue(rl_dest, rl_result); } /* * Mark garbage collection card. Skip if the value we're storing is null. */ void MipsMir2Lir::MarkGCCard(int val_reg, int tgt_addr_reg) { int reg_card_base = AllocTemp(); int reg_card_no = AllocTemp(); LIR* branch_over = OpCmpImmBranch(kCondEq, val_reg, 0, NULL); LoadWordDisp(rMIPS_SELF, Thread::CardTableOffset().Int32Value(), reg_card_base); OpRegRegImm(kOpLsr, reg_card_no, tgt_addr_reg, gc::accounting::CardTable::kCardShift); StoreBaseIndexed(reg_card_base, reg_card_no, reg_card_base, 0, kUnsignedByte); LIR* target = NewLIR0(kPseudoTargetLabel); branch_over->target = target; FreeTemp(reg_card_base); FreeTemp(reg_card_no); } void MipsMir2Lir::GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) { int spill_count = num_core_spills_ + num_fp_spills_; /* * On entry, rMIPS_ARG0, rMIPS_ARG1, rMIPS_ARG2 & rMIPS_ARG3 are live. Let the register * allocation mechanism know so it doesn't try to use any of them when * expanding the frame or flushing. This leaves the utility * code with a single temp: r12. This should be enough. */ LockTemp(rMIPS_ARG0); LockTemp(rMIPS_ARG1); LockTemp(rMIPS_ARG2); LockTemp(rMIPS_ARG3); /* * We can safely skip the stack overflow check if we're * a leaf *and* our frame size < fudge factor. */ bool skip_overflow_check = (mir_graph_->MethodIsLeaf() && (static_cast<size_t>(frame_size_) < Thread::kStackOverflowReservedBytes)); NewLIR0(kPseudoMethodEntry); int check_reg = AllocTemp(); int new_sp = AllocTemp(); if (!skip_overflow_check) { /* Load stack limit */ LoadWordDisp(rMIPS_SELF, Thread::StackEndOffset().Int32Value(), check_reg); } /* Spill core callee saves */ SpillCoreRegs(); /* NOTE: promotion of FP regs currently unsupported, thus no FP spill */ DCHECK_EQ(num_fp_spills_, 0); if (!skip_overflow_check) { OpRegRegImm(kOpSub, new_sp, rMIPS_SP, frame_size_ - (spill_count * 4)); GenRegRegCheck(kCondCc, new_sp, check_reg, kThrowStackOverflow); OpRegCopy(rMIPS_SP, new_sp); // Establish stack } else { OpRegImm(kOpSub, rMIPS_SP, frame_size_ - (spill_count * 4)); } FlushIns(ArgLocs, rl_method); FreeTemp(rMIPS_ARG0); FreeTemp(rMIPS_ARG1); FreeTemp(rMIPS_ARG2); FreeTemp(rMIPS_ARG3); } void MipsMir2Lir::GenExitSequence() { /* * In the exit path, rMIPS_RET0/rMIPS_RET1 are live - make sure they aren't * allocated by the register utilities as temps. */ LockTemp(rMIPS_RET0); LockTemp(rMIPS_RET1); NewLIR0(kPseudoMethodExit); UnSpillCoreRegs(); OpReg(kOpBx, r_RA); } } // namespace art