/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "codegen_mips.h" #include "dex/compiler_internals.h" #include "dex/quick/mir_to_lir-inl.h" #include "mips_lir.h" #include <string> namespace art { static int core_regs[] = {r_ZERO, r_AT, r_V0, r_V1, r_A0, r_A1, r_A2, r_A3, r_T0, r_T1, r_T2, r_T3, r_T4, r_T5, r_T6, r_T7, r_S0, r_S1, r_S2, r_S3, r_S4, r_S5, r_S6, r_S7, r_T8, r_T9, r_K0, r_K1, r_GP, r_SP, r_FP, r_RA}; static int ReservedRegs[] = {r_ZERO, r_AT, r_S0, r_S1, r_K0, r_K1, r_GP, r_SP, r_RA}; static int core_temps[] = {r_V0, r_V1, r_A0, r_A1, r_A2, r_A3, r_T0, r_T1, r_T2, r_T3, r_T4, r_T5, r_T6, r_T7, r_T8}; static int FpRegs[] = {r_F0, r_F1, r_F2, r_F3, r_F4, r_F5, r_F6, r_F7, r_F8, r_F9, r_F10, r_F11, r_F12, r_F13, r_F14, r_F15}; static int fp_temps[] = {r_F0, r_F1, r_F2, r_F3, r_F4, r_F5, r_F6, r_F7, r_F8, r_F9, r_F10, r_F11, r_F12, r_F13, r_F14, r_F15}; RegLocation MipsMir2Lir::LocCReturn() { RegLocation res = MIPS_LOC_C_RETURN; return res; } RegLocation MipsMir2Lir::LocCReturnWide() { RegLocation res = MIPS_LOC_C_RETURN_WIDE; return res; } RegLocation MipsMir2Lir::LocCReturnFloat() { RegLocation res = MIPS_LOC_C_RETURN_FLOAT; return res; } RegLocation MipsMir2Lir::LocCReturnDouble() { RegLocation res = MIPS_LOC_C_RETURN_DOUBLE; return res; } // Return a target-dependent special register. int MipsMir2Lir::TargetReg(SpecialTargetRegister reg) { int res = INVALID_REG; switch (reg) { case kSelf: res = rMIPS_SELF; break; case kSuspend: res = rMIPS_SUSPEND; break; case kLr: res = rMIPS_LR; break; case kPc: res = rMIPS_PC; break; case kSp: res = rMIPS_SP; break; case kArg0: res = rMIPS_ARG0; break; case kArg1: res = rMIPS_ARG1; break; case kArg2: res = rMIPS_ARG2; break; case kArg3: res = rMIPS_ARG3; break; case kFArg0: res = rMIPS_FARG0; break; case kFArg1: res = rMIPS_FARG1; break; case kFArg2: res = rMIPS_FARG2; break; case kFArg3: res = rMIPS_FARG3; break; case kRet0: res = rMIPS_RET0; break; case kRet1: res = rMIPS_RET1; break; case kInvokeTgt: res = rMIPS_INVOKE_TGT; break; case kCount: res = rMIPS_COUNT; break; } return res; } // Create a double from a pair of singles. int MipsMir2Lir::S2d(int low_reg, int high_reg) { return MIPS_S2D(low_reg, high_reg); } // Return mask to strip off fp reg flags and bias. uint32_t MipsMir2Lir::FpRegMask() { return MIPS_FP_REG_MASK; } // True if both regs single, both core or both double. bool MipsMir2Lir::SameRegType(int reg1, int reg2) { return (MIPS_REGTYPE(reg1) == MIPS_REGTYPE(reg2)); } /* * Decode the register id. */ uint64_t MipsMir2Lir::GetRegMaskCommon(int reg) { uint64_t seed; int shift; int reg_id; reg_id = reg & 0x1f; /* Each double register is equal to a pair of single-precision FP registers */ seed = MIPS_DOUBLEREG(reg) ? 3 : 1; /* FP register starts at bit position 16 */ shift = MIPS_FPREG(reg) ? kMipsFPReg0 : 0; /* Expand the double register id into single offset */ shift += reg_id; return (seed << shift); } uint64_t MipsMir2Lir::GetPCUseDefEncoding() { return ENCODE_MIPS_REG_PC; } void MipsMir2Lir::SetupTargetResourceMasks(LIR* lir) { DCHECK_EQ(cu_->instruction_set, kMips); // Mips-specific resource map setup here. uint64_t flags = MipsMir2Lir::EncodingMap[lir->opcode].flags; if (flags & REG_DEF_SP) { lir->def_mask |= ENCODE_MIPS_REG_SP; } if (flags & REG_USE_SP) { lir->use_mask |= ENCODE_MIPS_REG_SP; } if (flags & REG_DEF_LR) { lir->def_mask |= ENCODE_MIPS_REG_LR; } } /* For dumping instructions */ #define MIPS_REG_COUNT 32 static const char *mips_reg_name[MIPS_REG_COUNT] = { "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", "t8", "t9", "k0", "k1", "gp", "sp", "fp", "ra" }; /* * Interpret a format string and build a string no longer than size * See format key in Assemble.c. */ std::string MipsMir2Lir::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr) { std::string buf; int i; const char *fmt_end = &fmt[strlen(fmt)]; char tbuf[256]; char nc; while (fmt < fmt_end) { int operand; if (*fmt == '!') { fmt++; DCHECK_LT(fmt, fmt_end); nc = *fmt++; if (nc == '!') { strcpy(tbuf, "!"); } else { DCHECK_LT(fmt, fmt_end); DCHECK_LT(static_cast<unsigned>(nc-'0'), 4u); operand = lir->operands[nc-'0']; switch (*fmt++) { case 'b': strcpy(tbuf, "0000"); for (i = 3; i >= 0; i--) { tbuf[i] += operand & 1; operand >>= 1; } break; case 's': sprintf(tbuf, "$f%d", operand & MIPS_FP_REG_MASK); break; case 'S': DCHECK_EQ(((operand & MIPS_FP_REG_MASK) & 1), 0); sprintf(tbuf, "$f%d", operand & MIPS_FP_REG_MASK); break; case 'h': sprintf(tbuf, "%04x", operand); break; case 'M': case 'd': sprintf(tbuf, "%d", operand); break; case 'D': sprintf(tbuf, "%d", operand+1); break; case 'E': sprintf(tbuf, "%d", operand*4); break; case 'F': sprintf(tbuf, "%d", operand*2); break; case 't': sprintf(tbuf, "0x%08x (L%p)", reinterpret_cast<uintptr_t>(base_addr) + lir->offset + 4 + (operand << 2), lir->target); break; case 'T': sprintf(tbuf, "0x%08x", operand << 2); break; case 'u': { int offset_1 = lir->operands[0]; int offset_2 = NEXT_LIR(lir)->operands[0]; uintptr_t target = (((reinterpret_cast<uintptr_t>(base_addr) + lir->offset + 4) & ~3) + (offset_1 << 21 >> 9) + (offset_2 << 1)) & 0xfffffffc; sprintf(tbuf, "%p", reinterpret_cast<void*>(target)); break; } /* Nothing to print for BLX_2 */ case 'v': strcpy(tbuf, "see above"); break; case 'r': DCHECK(operand >= 0 && operand < MIPS_REG_COUNT); strcpy(tbuf, mips_reg_name[operand]); break; case 'N': // Placeholder for delay slot handling strcpy(tbuf, "; nop"); break; default: strcpy(tbuf, "DecodeError"); break; } buf += tbuf; } } else { buf += *fmt++; } } return buf; } // FIXME: need to redo resource maps for MIPS - fix this at that time void MipsMir2Lir::DumpResourceMask(LIR *mips_lir, uint64_t mask, const char *prefix) { char buf[256]; buf[0] = 0; if (mask == ENCODE_ALL) { strcpy(buf, "all"); } else { char num[8]; int i; for (i = 0; i < kMipsRegEnd; i++) { if (mask & (1ULL << i)) { sprintf(num, "%d ", i); strcat(buf, num); } } if (mask & ENCODE_CCODE) { strcat(buf, "cc "); } if (mask & ENCODE_FP_STATUS) { strcat(buf, "fpcc "); } /* Memory bits */ if (mips_lir && (mask & ENCODE_DALVIK_REG)) { sprintf(buf + strlen(buf), "dr%d%s", mips_lir->alias_info & 0xffff, (mips_lir->alias_info & 0x80000000) ? "(+1)" : ""); } if (mask & ENCODE_LITERAL) { strcat(buf, "lit "); } if (mask & ENCODE_HEAP_REF) { strcat(buf, "heap "); } if (mask & ENCODE_MUST_NOT_ALIAS) { strcat(buf, "noalias "); } } if (buf[0]) { LOG(INFO) << prefix << ": " << buf; } } /* * TUNING: is true leaf? Can't just use METHOD_IS_LEAF to determine as some * instructions might call out to C/assembly helper functions. Until * machinery is in place, always spill lr. */ void MipsMir2Lir::AdjustSpillMask() { core_spill_mask_ |= (1 << r_RA); num_core_spills_++; } /* * Mark a callee-save fp register as promoted. Note that * vpush/vpop uses contiguous register lists so we must * include any holes in the mask. Associate holes with * Dalvik register INVALID_VREG (0xFFFFU). */ void MipsMir2Lir::MarkPreservedSingle(int s_reg, int reg) { LOG(FATAL) << "No support yet for promoted FP regs"; } void MipsMir2Lir::FlushRegWide(int reg1, int reg2) { RegisterInfo* info1 = GetRegInfo(reg1); RegisterInfo* info2 = GetRegInfo(reg2); DCHECK(info1 && info2 && info1->pair && info2->pair && (info1->partner == info2->reg) && (info2->partner == info1->reg)); if ((info1->live && info1->dirty) || (info2->live && info2->dirty)) { if (!(info1->is_temp && info2->is_temp)) { /* Should not happen. If it does, there's a problem in eval_loc */ LOG(FATAL) << "Long half-temp, half-promoted"; } info1->dirty = false; info2->dirty = false; if (mir_graph_->SRegToVReg(info2->s_reg) < mir_graph_->SRegToVReg(info1->s_reg)) info1 = info2; int v_reg = mir_graph_->SRegToVReg(info1->s_reg); StoreBaseDispWide(rMIPS_SP, VRegOffset(v_reg), info1->reg, info1->partner); } } void MipsMir2Lir::FlushReg(int reg) { RegisterInfo* info = GetRegInfo(reg); if (info->live && info->dirty) { info->dirty = false; int v_reg = mir_graph_->SRegToVReg(info->s_reg); StoreBaseDisp(rMIPS_SP, VRegOffset(v_reg), reg, kWord); } } /* Give access to the target-dependent FP register encoding to common code */ bool MipsMir2Lir::IsFpReg(int reg) { return MIPS_FPREG(reg); } /* Clobber all regs that might be used by an external C call */ void MipsMir2Lir::ClobberCalleeSave() { Clobber(r_ZERO); Clobber(r_AT); Clobber(r_V0); Clobber(r_V1); Clobber(r_A0); Clobber(r_A1); Clobber(r_A2); Clobber(r_A3); Clobber(r_T0); Clobber(r_T1); Clobber(r_T2); Clobber(r_T3); Clobber(r_T4); Clobber(r_T5); Clobber(r_T6); Clobber(r_T7); Clobber(r_T8); Clobber(r_T9); Clobber(r_K0); Clobber(r_K1); Clobber(r_GP); Clobber(r_FP); Clobber(r_RA); Clobber(r_F0); Clobber(r_F1); Clobber(r_F2); Clobber(r_F3); Clobber(r_F4); Clobber(r_F5); Clobber(r_F6); Clobber(r_F7); Clobber(r_F8); Clobber(r_F9); Clobber(r_F10); Clobber(r_F11); Clobber(r_F12); Clobber(r_F13); Clobber(r_F14); Clobber(r_F15); } RegLocation MipsMir2Lir::GetReturnWideAlt() { UNIMPLEMENTED(FATAL) << "No GetReturnWideAlt for MIPS"; RegLocation res = LocCReturnWide(); return res; } RegLocation MipsMir2Lir::GetReturnAlt() { UNIMPLEMENTED(FATAL) << "No GetReturnAlt for MIPS"; RegLocation res = LocCReturn(); return res; } MipsMir2Lir::RegisterInfo* MipsMir2Lir::GetRegInfo(int reg) { return MIPS_FPREG(reg) ? ®_pool_->FPRegs[reg & MIPS_FP_REG_MASK] : ®_pool_->core_regs[reg]; } /* To be used when explicitly managing register use */ void MipsMir2Lir::LockCallTemps() { LockTemp(rMIPS_ARG0); LockTemp(rMIPS_ARG1); LockTemp(rMIPS_ARG2); LockTemp(rMIPS_ARG3); } /* To be used when explicitly managing register use */ void MipsMir2Lir::FreeCallTemps() { FreeTemp(rMIPS_ARG0); FreeTemp(rMIPS_ARG1); FreeTemp(rMIPS_ARG2); FreeTemp(rMIPS_ARG3); } void MipsMir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) { #if ANDROID_SMP != 0 NewLIR1(kMipsSync, 0 /* Only stype currently supported */); #endif } /* * Alloc a pair of core registers, or a double. Low reg in low byte, * high reg in next byte. */ int MipsMir2Lir::AllocTypedTempPair(bool fp_hint, int reg_class) { int high_reg; int low_reg; int res = 0; if (((reg_class == kAnyReg) && fp_hint) || (reg_class == kFPReg)) { low_reg = AllocTempDouble(); high_reg = low_reg + 1; res = (low_reg & 0xff) | ((high_reg & 0xff) << 8); return res; } low_reg = AllocTemp(); high_reg = AllocTemp(); res = (low_reg & 0xff) | ((high_reg & 0xff) << 8); return res; } int MipsMir2Lir::AllocTypedTemp(bool fp_hint, int reg_class) { if (((reg_class == kAnyReg) && fp_hint) || (reg_class == kFPReg)) { return AllocTempFloat(); } return AllocTemp(); } void MipsMir2Lir::CompilerInitializeRegAlloc() { int num_regs = sizeof(core_regs)/sizeof(*core_regs); int num_reserved = sizeof(ReservedRegs)/sizeof(*ReservedRegs); int num_temps = sizeof(core_temps)/sizeof(*core_temps); int num_fp_regs = sizeof(FpRegs)/sizeof(*FpRegs); int num_fp_temps = sizeof(fp_temps)/sizeof(*fp_temps); reg_pool_ = static_cast<RegisterPool*>(arena_->Alloc(sizeof(*reg_pool_), ArenaAllocator::kAllocRegAlloc)); reg_pool_->num_core_regs = num_regs; reg_pool_->core_regs = static_cast<RegisterInfo*> (arena_->Alloc(num_regs * sizeof(*reg_pool_->core_regs), ArenaAllocator::kAllocRegAlloc)); reg_pool_->num_fp_regs = num_fp_regs; reg_pool_->FPRegs = static_cast<RegisterInfo*> (arena_->Alloc(num_fp_regs * sizeof(*reg_pool_->FPRegs), ArenaAllocator::kAllocRegAlloc)); CompilerInitPool(reg_pool_->core_regs, core_regs, reg_pool_->num_core_regs); CompilerInitPool(reg_pool_->FPRegs, FpRegs, reg_pool_->num_fp_regs); // Keep special registers from being allocated for (int i = 0; i < num_reserved; i++) { if (NO_SUSPEND && (ReservedRegs[i] == rMIPS_SUSPEND)) { // To measure cost of suspend check continue; } MarkInUse(ReservedRegs[i]); } // Mark temp regs - all others not in use can be used for promotion for (int i = 0; i < num_temps; i++) { MarkTemp(core_temps[i]); } for (int i = 0; i < num_fp_temps; i++) { MarkTemp(fp_temps[i]); } } void MipsMir2Lir::FreeRegLocTemps(RegLocation rl_keep, RegLocation rl_free) { if ((rl_free.low_reg != rl_keep.low_reg) && (rl_free.low_reg != rl_keep.high_reg) && (rl_free.high_reg != rl_keep.low_reg) && (rl_free.high_reg != rl_keep.high_reg)) { // No overlap, free both FreeTemp(rl_free.low_reg); FreeTemp(rl_free.high_reg); } } /* * In the Arm code a it is typical to use the link register * to hold the target address. However, for Mips we must * ensure that all branch instructions can be restarted if * there is a trap in the shadow. Allocate a temp register. */ int MipsMir2Lir::LoadHelper(ThreadOffset offset) { LoadWordDisp(rMIPS_SELF, offset.Int32Value(), r_T9); return r_T9; } void MipsMir2Lir::SpillCoreRegs() { if (num_core_spills_ == 0) { return; } uint32_t mask = core_spill_mask_; int offset = num_core_spills_ * 4; OpRegImm(kOpSub, rMIPS_SP, offset); for (int reg = 0; mask; mask >>= 1, reg++) { if (mask & 0x1) { offset -= 4; StoreWordDisp(rMIPS_SP, offset, reg); } } } void MipsMir2Lir::UnSpillCoreRegs() { if (num_core_spills_ == 0) { return; } uint32_t mask = core_spill_mask_; int offset = frame_size_; for (int reg = 0; mask; mask >>= 1, reg++) { if (mask & 0x1) { offset -= 4; LoadWordDisp(rMIPS_SP, offset, reg); } } OpRegImm(kOpAdd, rMIPS_SP, frame_size_); } bool MipsMir2Lir::IsUnconditionalBranch(LIR* lir) { return (lir->opcode == kMipsB); } MipsMir2Lir::MipsMir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena) : Mir2Lir(cu, mir_graph, arena) { for (int i = 0; i < kMipsLast; i++) { if (MipsMir2Lir::EncodingMap[i].opcode != i) { LOG(FATAL) << "Encoding order for " << MipsMir2Lir::EncodingMap[i].name << " is wrong: expecting " << i << ", seeing " << static_cast<int>(MipsMir2Lir::EncodingMap[i].opcode); } } } Mir2Lir* MipsCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph, ArenaAllocator* const arena) { return new MipsMir2Lir(cu, mir_graph, arena); } uint64_t MipsMir2Lir::GetTargetInstFlags(int opcode) { return MipsMir2Lir::EncodingMap[opcode].flags; } const char* MipsMir2Lir::GetTargetInstName(int opcode) { return MipsMir2Lir::EncodingMap[opcode].name; } const char* MipsMir2Lir::GetTargetInstFmt(int opcode) { return MipsMir2Lir::EncodingMap[opcode].fmt; } } // namespace art