/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dex/compiler_internals.h" #include "dex/dataflow_iterator-inl.h" #include "mir_to_lir-inl.h" #include "object_utils.h" namespace art { /* * Target-independent code generation. Use only high-level * load/store utilities here, or target-dependent genXX() handlers * when necessary. */ void Mir2Lir::CompileDalvikInstruction(MIR* mir, BasicBlock* bb, LIR* label_list) { RegLocation rl_src[3]; RegLocation rl_dest = mir_graph_->GetBadLoc(); RegLocation rl_result = mir_graph_->GetBadLoc(); Instruction::Code opcode = mir->dalvikInsn.opcode; int opt_flags = mir->optimization_flags; uint32_t vB = mir->dalvikInsn.vB; uint32_t vC = mir->dalvikInsn.vC; // Prep Src and Dest locations. int next_sreg = 0; int next_loc = 0; int attrs = mir_graph_->oat_data_flow_attributes_[opcode]; rl_src[0] = rl_src[1] = rl_src[2] = mir_graph_->GetBadLoc(); if (attrs & DF_UA) { if (attrs & DF_A_WIDE) { rl_src[next_loc++] = mir_graph_->GetSrcWide(mir, next_sreg); next_sreg+= 2; } else { rl_src[next_loc++] = mir_graph_->GetSrc(mir, next_sreg); next_sreg++; } } if (attrs & DF_UB) { if (attrs & DF_B_WIDE) { rl_src[next_loc++] = mir_graph_->GetSrcWide(mir, next_sreg); next_sreg+= 2; } else { rl_src[next_loc++] = mir_graph_->GetSrc(mir, next_sreg); next_sreg++; } } if (attrs & DF_UC) { if (attrs & DF_C_WIDE) { rl_src[next_loc++] = mir_graph_->GetSrcWide(mir, next_sreg); } else { rl_src[next_loc++] = mir_graph_->GetSrc(mir, next_sreg); } } if (attrs & DF_DA) { if (attrs & DF_A_WIDE) { rl_dest = mir_graph_->GetDestWide(mir); } else { rl_dest = mir_graph_->GetDest(mir); } } switch (opcode) { case Instruction::NOP: break; case Instruction::MOVE_EXCEPTION: GenMoveException(rl_dest); break; case Instruction::RETURN_VOID: if (((cu_->access_flags & kAccConstructor) != 0) && cu_->compiler_driver->RequiresConstructorBarrier(Thread::Current(), cu_->dex_file, cu_->class_def_idx)) { GenMemBarrier(kStoreStore); } if (!mir_graph_->MethodIsLeaf()) { GenSuspendTest(opt_flags); } break; case Instruction::RETURN: case Instruction::RETURN_OBJECT: if (!mir_graph_->MethodIsLeaf()) { GenSuspendTest(opt_flags); } StoreValue(GetReturn(cu_->shorty[0] == 'F'), rl_src[0]); break; case Instruction::RETURN_WIDE: if (!mir_graph_->MethodIsLeaf()) { GenSuspendTest(opt_flags); } StoreValueWide(GetReturnWide(cu_->shorty[0] == 'D'), rl_src[0]); break; case Instruction::MOVE_RESULT_WIDE: if (opt_flags & MIR_INLINED) break; // Nop - combined w/ previous invoke. StoreValueWide(rl_dest, GetReturnWide(rl_dest.fp)); break; case Instruction::MOVE_RESULT: case Instruction::MOVE_RESULT_OBJECT: if (opt_flags & MIR_INLINED) break; // Nop - combined w/ previous invoke. StoreValue(rl_dest, GetReturn(rl_dest.fp)); break; case Instruction::MOVE: case Instruction::MOVE_OBJECT: case Instruction::MOVE_16: case Instruction::MOVE_OBJECT_16: case Instruction::MOVE_FROM16: case Instruction::MOVE_OBJECT_FROM16: StoreValue(rl_dest, rl_src[0]); break; case Instruction::MOVE_WIDE: case Instruction::MOVE_WIDE_16: case Instruction::MOVE_WIDE_FROM16: StoreValueWide(rl_dest, rl_src[0]); break; case Instruction::CONST: case Instruction::CONST_4: case Instruction::CONST_16: rl_result = EvalLoc(rl_dest, kAnyReg, true); LoadConstantNoClobber(rl_result.low_reg, vB); StoreValue(rl_dest, rl_result); if (vB == 0) { Workaround7250540(rl_dest, rl_result.low_reg); } break; case Instruction::CONST_HIGH16: rl_result = EvalLoc(rl_dest, kAnyReg, true); LoadConstantNoClobber(rl_result.low_reg, vB << 16); StoreValue(rl_dest, rl_result); if (vB == 0) { Workaround7250540(rl_dest, rl_result.low_reg); } break; case Instruction::CONST_WIDE_16: case Instruction::CONST_WIDE_32: rl_result = EvalLoc(rl_dest, kAnyReg, true); LoadConstantWide(rl_result.low_reg, rl_result.high_reg, static_cast<int64_t>(static_cast<int32_t>(vB))); StoreValueWide(rl_dest, rl_result); break; case Instruction::CONST_WIDE: rl_result = EvalLoc(rl_dest, kAnyReg, true); LoadConstantWide(rl_result.low_reg, rl_result.high_reg, mir->dalvikInsn.vB_wide); StoreValueWide(rl_dest, rl_result); break; case Instruction::CONST_WIDE_HIGH16: rl_result = EvalLoc(rl_dest, kAnyReg, true); LoadConstantWide(rl_result.low_reg, rl_result.high_reg, static_cast<int64_t>(vB) << 48); StoreValueWide(rl_dest, rl_result); break; case Instruction::MONITOR_ENTER: GenMonitorEnter(opt_flags, rl_src[0]); break; case Instruction::MONITOR_EXIT: GenMonitorExit(opt_flags, rl_src[0]); break; case Instruction::CHECK_CAST: { GenCheckCast(mir->offset, vB, rl_src[0]); break; } case Instruction::INSTANCE_OF: GenInstanceof(vC, rl_dest, rl_src[0]); break; case Instruction::NEW_INSTANCE: GenNewInstance(vB, rl_dest); break; case Instruction::THROW: GenThrow(rl_src[0]); break; case Instruction::ARRAY_LENGTH: int len_offset; len_offset = mirror::Array::LengthOffset().Int32Value(); rl_src[0] = LoadValue(rl_src[0], kCoreReg); GenNullCheck(rl_src[0].s_reg_low, rl_src[0].low_reg, opt_flags); rl_result = EvalLoc(rl_dest, kCoreReg, true); LoadWordDisp(rl_src[0].low_reg, len_offset, rl_result.low_reg); StoreValue(rl_dest, rl_result); break; case Instruction::CONST_STRING: case Instruction::CONST_STRING_JUMBO: GenConstString(vB, rl_dest); break; case Instruction::CONST_CLASS: GenConstClass(vB, rl_dest); break; case Instruction::FILL_ARRAY_DATA: GenFillArrayData(vB, rl_src[0]); break; case Instruction::FILLED_NEW_ARRAY: GenFilledNewArray(mir_graph_->NewMemCallInfo(bb, mir, kStatic, false /* not range */)); break; case Instruction::FILLED_NEW_ARRAY_RANGE: GenFilledNewArray(mir_graph_->NewMemCallInfo(bb, mir, kStatic, true /* range */)); break; case Instruction::NEW_ARRAY: GenNewArray(vC, rl_dest, rl_src[0]); break; case Instruction::GOTO: case Instruction::GOTO_16: case Instruction::GOTO_32: if (mir_graph_->IsBackedge(bb, bb->taken)) { GenSuspendTestAndBranch(opt_flags, &label_list[bb->taken->id]); } else { OpUnconditionalBranch(&label_list[bb->taken->id]); } break; case Instruction::PACKED_SWITCH: GenPackedSwitch(mir, vB, rl_src[0]); break; case Instruction::SPARSE_SWITCH: GenSparseSwitch(mir, vB, rl_src[0]); break; case Instruction::CMPL_FLOAT: case Instruction::CMPG_FLOAT: case Instruction::CMPL_DOUBLE: case Instruction::CMPG_DOUBLE: GenCmpFP(opcode, rl_dest, rl_src[0], rl_src[1]); break; case Instruction::CMP_LONG: GenCmpLong(rl_dest, rl_src[0], rl_src[1]); break; case Instruction::IF_EQ: case Instruction::IF_NE: case Instruction::IF_LT: case Instruction::IF_GE: case Instruction::IF_GT: case Instruction::IF_LE: { LIR* taken = &label_list[bb->taken->id]; LIR* fall_through = &label_list[bb->fall_through->id]; // Result known at compile time? if (rl_src[0].is_const && rl_src[1].is_const) { bool is_taken = EvaluateBranch(opcode, mir_graph_->ConstantValue(rl_src[0].orig_sreg), mir_graph_->ConstantValue(rl_src[1].orig_sreg)); BasicBlock* target = is_taken ? bb->taken : bb->fall_through; if (mir_graph_->IsBackedge(bb, target)) { GenSuspendTest(opt_flags); } OpUnconditionalBranch(&label_list[target->id]); } else { if (mir_graph_->IsBackwardsBranch(bb)) { GenSuspendTest(opt_flags); } GenCompareAndBranch(opcode, rl_src[0], rl_src[1], taken, fall_through); } break; } case Instruction::IF_EQZ: case Instruction::IF_NEZ: case Instruction::IF_LTZ: case Instruction::IF_GEZ: case Instruction::IF_GTZ: case Instruction::IF_LEZ: { LIR* taken = &label_list[bb->taken->id]; LIR* fall_through = &label_list[bb->fall_through->id]; // Result known at compile time? if (rl_src[0].is_const) { bool is_taken = EvaluateBranch(opcode, mir_graph_->ConstantValue(rl_src[0].orig_sreg), 0); BasicBlock* target = is_taken ? bb->taken : bb->fall_through; if (mir_graph_->IsBackedge(bb, target)) { GenSuspendTest(opt_flags); } OpUnconditionalBranch(&label_list[target->id]); } else { if (mir_graph_->IsBackwardsBranch(bb)) { GenSuspendTest(opt_flags); } GenCompareZeroAndBranch(opcode, rl_src[0], taken, fall_through); } break; } case Instruction::AGET_WIDE: GenArrayGet(opt_flags, kLong, rl_src[0], rl_src[1], rl_dest, 3); break; case Instruction::AGET: case Instruction::AGET_OBJECT: GenArrayGet(opt_flags, kWord, rl_src[0], rl_src[1], rl_dest, 2); break; case Instruction::AGET_BOOLEAN: GenArrayGet(opt_flags, kUnsignedByte, rl_src[0], rl_src[1], rl_dest, 0); break; case Instruction::AGET_BYTE: GenArrayGet(opt_flags, kSignedByte, rl_src[0], rl_src[1], rl_dest, 0); break; case Instruction::AGET_CHAR: GenArrayGet(opt_flags, kUnsignedHalf, rl_src[0], rl_src[1], rl_dest, 1); break; case Instruction::AGET_SHORT: GenArrayGet(opt_flags, kSignedHalf, rl_src[0], rl_src[1], rl_dest, 1); break; case Instruction::APUT_WIDE: GenArrayPut(opt_flags, kLong, rl_src[1], rl_src[2], rl_src[0], 3); break; case Instruction::APUT: GenArrayPut(opt_flags, kWord, rl_src[1], rl_src[2], rl_src[0], 2); break; case Instruction::APUT_OBJECT: GenArrayObjPut(opt_flags, rl_src[1], rl_src[2], rl_src[0], 2); break; case Instruction::APUT_SHORT: case Instruction::APUT_CHAR: GenArrayPut(opt_flags, kUnsignedHalf, rl_src[1], rl_src[2], rl_src[0], 1); break; case Instruction::APUT_BYTE: case Instruction::APUT_BOOLEAN: GenArrayPut(opt_flags, kUnsignedByte, rl_src[1], rl_src[2], rl_src[0], 0); break; case Instruction::IGET_OBJECT: GenIGet(vC, opt_flags, kWord, rl_dest, rl_src[0], false, true); break; case Instruction::IGET_WIDE: GenIGet(vC, opt_flags, kLong, rl_dest, rl_src[0], true, false); break; case Instruction::IGET: GenIGet(vC, opt_flags, kWord, rl_dest, rl_src[0], false, false); break; case Instruction::IGET_CHAR: GenIGet(vC, opt_flags, kUnsignedHalf, rl_dest, rl_src[0], false, false); break; case Instruction::IGET_SHORT: GenIGet(vC, opt_flags, kSignedHalf, rl_dest, rl_src[0], false, false); break; case Instruction::IGET_BOOLEAN: case Instruction::IGET_BYTE: GenIGet(vC, opt_flags, kUnsignedByte, rl_dest, rl_src[0], false, false); break; case Instruction::IPUT_WIDE: GenIPut(vC, opt_flags, kLong, rl_src[0], rl_src[1], true, false); break; case Instruction::IPUT_OBJECT: GenIPut(vC, opt_flags, kWord, rl_src[0], rl_src[1], false, true); break; case Instruction::IPUT: GenIPut(vC, opt_flags, kWord, rl_src[0], rl_src[1], false, false); break; case Instruction::IPUT_BOOLEAN: case Instruction::IPUT_BYTE: GenIPut(vC, opt_flags, kUnsignedByte, rl_src[0], rl_src[1], false, false); break; case Instruction::IPUT_CHAR: GenIPut(vC, opt_flags, kUnsignedHalf, rl_src[0], rl_src[1], false, false); break; case Instruction::IPUT_SHORT: GenIPut(vC, opt_flags, kSignedHalf, rl_src[0], rl_src[1], false, false); break; case Instruction::SGET_OBJECT: GenSget(vB, rl_dest, false, true); break; case Instruction::SGET: case Instruction::SGET_BOOLEAN: case Instruction::SGET_BYTE: case Instruction::SGET_CHAR: case Instruction::SGET_SHORT: GenSget(vB, rl_dest, false, false); break; case Instruction::SGET_WIDE: GenSget(vB, rl_dest, true, false); break; case Instruction::SPUT_OBJECT: GenSput(vB, rl_src[0], false, true); break; case Instruction::SPUT: case Instruction::SPUT_BOOLEAN: case Instruction::SPUT_BYTE: case Instruction::SPUT_CHAR: case Instruction::SPUT_SHORT: GenSput(vB, rl_src[0], false, false); break; case Instruction::SPUT_WIDE: GenSput(vB, rl_src[0], true, false); break; case Instruction::INVOKE_STATIC_RANGE: GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kStatic, true)); break; case Instruction::INVOKE_STATIC: GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kStatic, false)); break; case Instruction::INVOKE_DIRECT: GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kDirect, false)); break; case Instruction::INVOKE_DIRECT_RANGE: GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kDirect, true)); break; case Instruction::INVOKE_VIRTUAL: GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kVirtual, false)); break; case Instruction::INVOKE_VIRTUAL_RANGE: GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kVirtual, true)); break; case Instruction::INVOKE_SUPER: GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kSuper, false)); break; case Instruction::INVOKE_SUPER_RANGE: GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kSuper, true)); break; case Instruction::INVOKE_INTERFACE: GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kInterface, false)); break; case Instruction::INVOKE_INTERFACE_RANGE: GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kInterface, true)); break; case Instruction::NEG_INT: case Instruction::NOT_INT: GenArithOpInt(opcode, rl_dest, rl_src[0], rl_src[0]); break; case Instruction::NEG_LONG: case Instruction::NOT_LONG: GenArithOpLong(opcode, rl_dest, rl_src[0], rl_src[0]); break; case Instruction::NEG_FLOAT: GenArithOpFloat(opcode, rl_dest, rl_src[0], rl_src[0]); break; case Instruction::NEG_DOUBLE: GenArithOpDouble(opcode, rl_dest, rl_src[0], rl_src[0]); break; case Instruction::INT_TO_LONG: GenIntToLong(rl_dest, rl_src[0]); break; case Instruction::LONG_TO_INT: rl_src[0] = UpdateLocWide(rl_src[0]); rl_src[0] = WideToNarrow(rl_src[0]); StoreValue(rl_dest, rl_src[0]); break; case Instruction::INT_TO_BYTE: case Instruction::INT_TO_SHORT: case Instruction::INT_TO_CHAR: GenIntNarrowing(opcode, rl_dest, rl_src[0]); break; case Instruction::INT_TO_FLOAT: case Instruction::INT_TO_DOUBLE: case Instruction::LONG_TO_FLOAT: case Instruction::LONG_TO_DOUBLE: case Instruction::FLOAT_TO_INT: case Instruction::FLOAT_TO_LONG: case Instruction::FLOAT_TO_DOUBLE: case Instruction::DOUBLE_TO_INT: case Instruction::DOUBLE_TO_LONG: case Instruction::DOUBLE_TO_FLOAT: GenConversion(opcode, rl_dest, rl_src[0]); break; case Instruction::ADD_INT: case Instruction::ADD_INT_2ADDR: case Instruction::MUL_INT: case Instruction::MUL_INT_2ADDR: case Instruction::AND_INT: case Instruction::AND_INT_2ADDR: case Instruction::OR_INT: case Instruction::OR_INT_2ADDR: case Instruction::XOR_INT: case Instruction::XOR_INT_2ADDR: if (rl_src[0].is_const && InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src[0]))) { GenArithOpIntLit(opcode, rl_dest, rl_src[1], mir_graph_->ConstantValue(rl_src[0].orig_sreg)); } else if (rl_src[1].is_const && InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src[1]))) { GenArithOpIntLit(opcode, rl_dest, rl_src[0], mir_graph_->ConstantValue(rl_src[1].orig_sreg)); } else { GenArithOpInt(opcode, rl_dest, rl_src[0], rl_src[1]); } break; case Instruction::SUB_INT: case Instruction::SUB_INT_2ADDR: case Instruction::DIV_INT: case Instruction::DIV_INT_2ADDR: case Instruction::REM_INT: case Instruction::REM_INT_2ADDR: case Instruction::SHL_INT: case Instruction::SHL_INT_2ADDR: case Instruction::SHR_INT: case Instruction::SHR_INT_2ADDR: case Instruction::USHR_INT: case Instruction::USHR_INT_2ADDR: if (rl_src[1].is_const && InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src[1]))) { GenArithOpIntLit(opcode, rl_dest, rl_src[0], mir_graph_->ConstantValue(rl_src[1])); } else { GenArithOpInt(opcode, rl_dest, rl_src[0], rl_src[1]); } break; case Instruction::ADD_LONG: case Instruction::SUB_LONG: case Instruction::AND_LONG: case Instruction::OR_LONG: case Instruction::XOR_LONG: case Instruction::ADD_LONG_2ADDR: case Instruction::SUB_LONG_2ADDR: case Instruction::AND_LONG_2ADDR: case Instruction::OR_LONG_2ADDR: case Instruction::XOR_LONG_2ADDR: if (rl_src[0].is_const || rl_src[1].is_const) { GenArithImmOpLong(opcode, rl_dest, rl_src[0], rl_src[1]); break; } // Note: intentional fallthrough. case Instruction::MUL_LONG: case Instruction::DIV_LONG: case Instruction::REM_LONG: case Instruction::MUL_LONG_2ADDR: case Instruction::DIV_LONG_2ADDR: case Instruction::REM_LONG_2ADDR: GenArithOpLong(opcode, rl_dest, rl_src[0], rl_src[1]); break; case Instruction::SHL_LONG: case Instruction::SHR_LONG: case Instruction::USHR_LONG: case Instruction::SHL_LONG_2ADDR: case Instruction::SHR_LONG_2ADDR: case Instruction::USHR_LONG_2ADDR: if (rl_src[1].is_const) { GenShiftImmOpLong(opcode, rl_dest, rl_src[0], rl_src[1]); } else { GenShiftOpLong(opcode, rl_dest, rl_src[0], rl_src[1]); } break; case Instruction::ADD_FLOAT: case Instruction::SUB_FLOAT: case Instruction::MUL_FLOAT: case Instruction::DIV_FLOAT: case Instruction::REM_FLOAT: case Instruction::ADD_FLOAT_2ADDR: case Instruction::SUB_FLOAT_2ADDR: case Instruction::MUL_FLOAT_2ADDR: case Instruction::DIV_FLOAT_2ADDR: case Instruction::REM_FLOAT_2ADDR: GenArithOpFloat(opcode, rl_dest, rl_src[0], rl_src[1]); break; case Instruction::ADD_DOUBLE: case Instruction::SUB_DOUBLE: case Instruction::MUL_DOUBLE: case Instruction::DIV_DOUBLE: case Instruction::REM_DOUBLE: case Instruction::ADD_DOUBLE_2ADDR: case Instruction::SUB_DOUBLE_2ADDR: case Instruction::MUL_DOUBLE_2ADDR: case Instruction::DIV_DOUBLE_2ADDR: case Instruction::REM_DOUBLE_2ADDR: GenArithOpDouble(opcode, rl_dest, rl_src[0], rl_src[1]); break; case Instruction::RSUB_INT: case Instruction::ADD_INT_LIT16: case Instruction::MUL_INT_LIT16: case Instruction::DIV_INT_LIT16: case Instruction::REM_INT_LIT16: case Instruction::AND_INT_LIT16: case Instruction::OR_INT_LIT16: case Instruction::XOR_INT_LIT16: case Instruction::ADD_INT_LIT8: case Instruction::RSUB_INT_LIT8: case Instruction::MUL_INT_LIT8: case Instruction::DIV_INT_LIT8: case Instruction::REM_INT_LIT8: case Instruction::AND_INT_LIT8: case Instruction::OR_INT_LIT8: case Instruction::XOR_INT_LIT8: case Instruction::SHL_INT_LIT8: case Instruction::SHR_INT_LIT8: case Instruction::USHR_INT_LIT8: GenArithOpIntLit(opcode, rl_dest, rl_src[0], vC); break; default: LOG(FATAL) << "Unexpected opcode: " << opcode; } } // NOLINT(readability/fn_size) // Process extended MIR instructions void Mir2Lir::HandleExtendedMethodMIR(BasicBlock* bb, MIR* mir) { switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) { case kMirOpCopy: { RegLocation rl_src = mir_graph_->GetSrc(mir, 0); RegLocation rl_dest = mir_graph_->GetDest(mir); StoreValue(rl_dest, rl_src); break; } case kMirOpFusedCmplFloat: GenFusedFPCmpBranch(bb, mir, false /*gt bias*/, false /*double*/); break; case kMirOpFusedCmpgFloat: GenFusedFPCmpBranch(bb, mir, true /*gt bias*/, false /*double*/); break; case kMirOpFusedCmplDouble: GenFusedFPCmpBranch(bb, mir, false /*gt bias*/, true /*double*/); break; case kMirOpFusedCmpgDouble: GenFusedFPCmpBranch(bb, mir, true /*gt bias*/, true /*double*/); break; case kMirOpFusedCmpLong: GenFusedLongCmpBranch(bb, mir); break; case kMirOpSelect: GenSelect(bb, mir); break; default: break; } } // Handle the content in each basic block. bool Mir2Lir::MethodBlockCodeGen(BasicBlock* bb) { if (bb->block_type == kDead) return false; current_dalvik_offset_ = bb->start_offset; MIR* mir; int block_id = bb->id; block_label_list_[block_id].operands[0] = bb->start_offset; // Insert the block label. block_label_list_[block_id].opcode = kPseudoNormalBlockLabel; AppendLIR(&block_label_list_[block_id]); LIR* head_lir = NULL; // If this is a catch block, export the start address. if (bb->catch_entry) { head_lir = NewLIR0(kPseudoExportedPC); } // Free temp registers and reset redundant store tracking. ResetRegPool(); ResetDefTracking(); ClobberAllRegs(); if (bb->block_type == kEntryBlock) { int start_vreg = cu_->num_dalvik_registers - cu_->num_ins; GenEntrySequence(&mir_graph_->reg_location_[start_vreg], mir_graph_->reg_location_[mir_graph_->GetMethodSReg()]); } else if (bb->block_type == kExitBlock) { GenExitSequence(); } for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) { ResetRegPool(); if (cu_->disable_opt & (1 << kTrackLiveTemps)) { ClobberAllRegs(); } if (cu_->disable_opt & (1 << kSuppressLoads)) { ResetDefTracking(); } // Reset temp tracking sanity check. if (kIsDebugBuild) { live_sreg_ = INVALID_SREG; } current_dalvik_offset_ = mir->offset; int opcode = mir->dalvikInsn.opcode; LIR* boundary_lir; // Mark the beginning of a Dalvik instruction for line tracking. char* inst_str = cu_->verbose ? mir_graph_->GetDalvikDisassembly(mir) : NULL; boundary_lir = MarkBoundary(mir->offset, inst_str); // Remember the first LIR for this block. if (head_lir == NULL) { head_lir = boundary_lir; // Set the first boundary_lir as a scheduling barrier. head_lir->def_mask = ENCODE_ALL; } if (opcode == kMirOpCheck) { // Combine check and work halves of throwing instruction. MIR* work_half = mir->meta.throw_insn; mir->dalvikInsn.opcode = work_half->dalvikInsn.opcode; opcode = work_half->dalvikInsn.opcode; SSARepresentation* ssa_rep = work_half->ssa_rep; work_half->ssa_rep = mir->ssa_rep; mir->ssa_rep = ssa_rep; work_half->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpCheckPart2); } if (opcode >= kMirOpFirst) { HandleExtendedMethodMIR(bb, mir); continue; } CompileDalvikInstruction(mir, bb, block_label_list_); } if (head_lir) { // Eliminate redundant loads/stores and delay stores into later slots. ApplyLocalOptimizations(head_lir, last_lir_insn_); // Generate an unconditional branch to the fallthrough block. if (bb->fall_through) { OpUnconditionalBranch(&block_label_list_[bb->fall_through->id]); } } return false; } void Mir2Lir::SpecialMIR2LIR(SpecialCaseHandler special_case) { // Find the first DalvikByteCode block. int num_reachable_blocks = mir_graph_->GetNumReachableBlocks(); BasicBlock*bb = NULL; for (int idx = 0; idx < num_reachable_blocks; idx++) { // TODO: no direct access of growable lists. int dfs_index = mir_graph_->GetDfsOrder()->Get(idx); bb = mir_graph_->GetBasicBlock(dfs_index); if (bb->block_type == kDalvikByteCode) { break; } } if (bb == NULL) { return; } DCHECK_EQ(bb->start_offset, 0); DCHECK(bb->first_mir_insn != NULL); // Get the first instruction. MIR* mir = bb->first_mir_insn; // Free temp registers and reset redundant store tracking. ResetRegPool(); ResetDefTracking(); ClobberAllRegs(); GenSpecialCase(bb, mir, special_case); } void Mir2Lir::MethodMIR2LIR() { // Hold the labels of each block. block_label_list_ = static_cast<LIR*>(arena_->Alloc(sizeof(LIR) * mir_graph_->GetNumBlocks(), ArenaAllocator::kAllocLIR)); PreOrderDfsIterator iter(mir_graph_, false /* not iterative */); for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) { MethodBlockCodeGen(bb); } HandleSuspendLaunchPads(); HandleThrowLaunchPads(); HandleIntrinsicLaunchPads(); if (!(cu_->disable_opt & (1 << kSafeOptimizations))) { RemoveRedundantBranches(); } } } // namespace art