/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "codegen_x86.h" #include "dex/quick/mir_to_lir-inl.h" #include "x86_lir.h" namespace art { #define MAX_ASSEMBLER_RETRIES 50 const X86EncodingMap X86Mir2Lir::EncodingMap[kX86Last] = { { kX8632BitData, kData, IS_UNARY_OP, { 0, 0, 0x00, 0, 0, 0, 0, 4 }, "data", "0x!0d" }, { kX86Bkpt, kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xCC, 0, 0, 0, 0, 0 }, "int 3", "" }, { kX86Nop, kNop, IS_UNARY_OP, { 0, 0, 0x90, 0, 0, 0, 0, 0 }, "nop", "" }, #define ENCODING_MAP(opname, mem_use, reg_def, uses_ccodes, \ rm8_r8, rm32_r32, \ r8_rm8, r32_rm32, \ ax8_i8, ax32_i32, \ rm8_i8, rm8_i8_modrm, \ rm32_i32, rm32_i32_modrm, \ rm32_i8, rm32_i8_modrm) \ { kX86 ## opname ## 8MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8MR", "[!0r+!1d],!2r" }, \ { kX86 ## opname ## 8AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8AR", "[!0r+!1r<<!2d+!3d],!4r" }, \ { kX86 ## opname ## 8TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8TR", "fs:[!0d],!1r" }, \ { kX86 ## opname ## 8RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RR", "!0r,!1r" }, \ { kX86 ## opname ## 8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RM", "!0r,[!1r+!2d]" }, \ { kX86 ## opname ## 8RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \ { kX86 ## opname ## 8RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RT", "!0r,fs:[!1d]" }, \ { kX86 ## opname ## 8RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, ax8_i8, 1 }, #opname "8RI", "!0r,!1d" }, \ { kX86 ## opname ## 8MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8MI", "[!0r+!1d],!2d" }, \ { kX86 ## opname ## 8AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \ { kX86 ## opname ## 8TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8TI", "fs:[!0d],!1d" }, \ \ { kX86 ## opname ## 16MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16MR", "[!0r+!1d],!2r" }, \ { kX86 ## opname ## 16AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16AR", "[!0r+!1r<<!2d+!3d],!4r" }, \ { kX86 ## opname ## 16TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16TR", "fs:[!0d],!1r" }, \ { kX86 ## opname ## 16RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RR", "!0r,!1r" }, \ { kX86 ## opname ## 16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RM", "!0r,[!1r+!2d]" }, \ { kX86 ## opname ## 16RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \ { kX86 ## opname ## 16RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RT", "!0r,fs:[!1d]" }, \ { kX86 ## opname ## 16RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 2 }, #opname "16RI", "!0r,!1d" }, \ { kX86 ## opname ## 16MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16MI", "[!0r+!1d],!2d" }, \ { kX86 ## opname ## 16AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \ { kX86 ## opname ## 16TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16TI", "fs:[!0d],!1d" }, \ { kX86 ## opname ## 16RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16RI8", "!0r,!1d" }, \ { kX86 ## opname ## 16MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16MI8", "[!0r+!1d],!2d" }, \ { kX86 ## opname ## 16AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \ { kX86 ## opname ## 16TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16TI8", "fs:[!0d],!1d" }, \ \ { kX86 ## opname ## 32MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32MR", "[!0r+!1d],!2r" }, \ { kX86 ## opname ## 32AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32AR", "[!0r+!1r<<!2d+!3d],!4r" }, \ { kX86 ## opname ## 32TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32TR", "fs:[!0d],!1r" }, \ { kX86 ## opname ## 32RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RR", "!0r,!1r" }, \ { kX86 ## opname ## 32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RM", "!0r,[!1r+!2d]" }, \ { kX86 ## opname ## 32RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \ { kX86 ## opname ## 32RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RT", "!0r,fs:[!1d]" }, \ { kX86 ## opname ## 32RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 4 }, #opname "32RI", "!0r,!1d" }, \ { kX86 ## opname ## 32MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32MI", "[!0r+!1d],!2d" }, \ { kX86 ## opname ## 32AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \ { kX86 ## opname ## 32TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32TI", "fs:[!0d],!1d" }, \ { kX86 ## opname ## 32RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32RI8", "!0r,!1d" }, \ { kX86 ## opname ## 32MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32MI8", "[!0r+!1d],!2d" }, \ { kX86 ## opname ## 32AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \ { kX86 ## opname ## 32TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32TI8", "fs:[!0d],!1d" } ENCODING_MAP(Add, IS_LOAD | IS_STORE, REG_DEF0, 0, 0x00 /* RegMem8/Reg8 */, 0x01 /* RegMem32/Reg32 */, 0x02 /* Reg8/RegMem8 */, 0x03 /* Reg32/RegMem32 */, 0x04 /* Rax8/imm8 opcode */, 0x05 /* Rax32/imm32 */, 0x80, 0x0 /* RegMem8/imm8 */, 0x81, 0x0 /* RegMem32/imm32 */, 0x83, 0x0 /* RegMem32/imm8 */), ENCODING_MAP(Or, IS_LOAD | IS_STORE, REG_DEF0, 0, 0x08 /* RegMem8/Reg8 */, 0x09 /* RegMem32/Reg32 */, 0x0A /* Reg8/RegMem8 */, 0x0B /* Reg32/RegMem32 */, 0x0C /* Rax8/imm8 opcode */, 0x0D /* Rax32/imm32 */, 0x80, 0x1 /* RegMem8/imm8 */, 0x81, 0x1 /* RegMem32/imm32 */, 0x83, 0x1 /* RegMem32/imm8 */), ENCODING_MAP(Adc, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES, 0x10 /* RegMem8/Reg8 */, 0x11 /* RegMem32/Reg32 */, 0x12 /* Reg8/RegMem8 */, 0x13 /* Reg32/RegMem32 */, 0x14 /* Rax8/imm8 opcode */, 0x15 /* Rax32/imm32 */, 0x80, 0x2 /* RegMem8/imm8 */, 0x81, 0x2 /* RegMem32/imm32 */, 0x83, 0x2 /* RegMem32/imm8 */), ENCODING_MAP(Sbb, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES, 0x18 /* RegMem8/Reg8 */, 0x19 /* RegMem32/Reg32 */, 0x1A /* Reg8/RegMem8 */, 0x1B /* Reg32/RegMem32 */, 0x1C /* Rax8/imm8 opcode */, 0x1D /* Rax32/imm32 */, 0x80, 0x3 /* RegMem8/imm8 */, 0x81, 0x3 /* RegMem32/imm32 */, 0x83, 0x3 /* RegMem32/imm8 */), ENCODING_MAP(And, IS_LOAD | IS_STORE, REG_DEF0, 0, 0x20 /* RegMem8/Reg8 */, 0x21 /* RegMem32/Reg32 */, 0x22 /* Reg8/RegMem8 */, 0x23 /* Reg32/RegMem32 */, 0x24 /* Rax8/imm8 opcode */, 0x25 /* Rax32/imm32 */, 0x80, 0x4 /* RegMem8/imm8 */, 0x81, 0x4 /* RegMem32/imm32 */, 0x83, 0x4 /* RegMem32/imm8 */), ENCODING_MAP(Sub, IS_LOAD | IS_STORE, REG_DEF0, 0, 0x28 /* RegMem8/Reg8 */, 0x29 /* RegMem32/Reg32 */, 0x2A /* Reg8/RegMem8 */, 0x2B /* Reg32/RegMem32 */, 0x2C /* Rax8/imm8 opcode */, 0x2D /* Rax32/imm32 */, 0x80, 0x5 /* RegMem8/imm8 */, 0x81, 0x5 /* RegMem32/imm32 */, 0x83, 0x5 /* RegMem32/imm8 */), ENCODING_MAP(Xor, IS_LOAD | IS_STORE, REG_DEF0, 0, 0x30 /* RegMem8/Reg8 */, 0x31 /* RegMem32/Reg32 */, 0x32 /* Reg8/RegMem8 */, 0x33 /* Reg32/RegMem32 */, 0x34 /* Rax8/imm8 opcode */, 0x35 /* Rax32/imm32 */, 0x80, 0x6 /* RegMem8/imm8 */, 0x81, 0x6 /* RegMem32/imm32 */, 0x83, 0x6 /* RegMem32/imm8 */), ENCODING_MAP(Cmp, IS_LOAD, 0, 0, 0x38 /* RegMem8/Reg8 */, 0x39 /* RegMem32/Reg32 */, 0x3A /* Reg8/RegMem8 */, 0x3B /* Reg32/RegMem32 */, 0x3C /* Rax8/imm8 opcode */, 0x3D /* Rax32/imm32 */, 0x80, 0x7 /* RegMem8/imm8 */, 0x81, 0x7 /* RegMem32/imm32 */, 0x83, 0x7 /* RegMem32/imm8 */), #undef ENCODING_MAP { kX86Imul16RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RRI", "!0r,!1r,!2d" }, { kX86Imul16RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RMI", "!0r,[!1r+!2d],!3d" }, { kX86Imul16RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" }, { kX86Imul32RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RRI", "!0r,!1r,!2d" }, { kX86Imul32RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RMI", "!0r,[!1r+!2d],!3d" }, { kX86Imul32RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" }, { kX86Imul32RRI8, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RRI8", "!0r,!1r,!2d" }, { kX86Imul32RMI8, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RMI8", "!0r,[!1r+!2d],!3d" }, { kX86Imul32RAI8, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RAI8", "!0r,[!1r+!2r<<!3d+!4d],!5d" }, { kX86Mov8MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8MR", "[!0r+!1d],!2r" }, { kX86Mov8AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8AR", "[!0r+!1r<<!2d+!3d],!4r" }, { kX86Mov8TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8TR", "fs:[!0d],!1r" }, { kX86Mov8RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RR", "!0r,!1r" }, { kX86Mov8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RM", "!0r,[!1r+!2d]" }, { kX86Mov8RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RA", "!0r,[!1r+!2r<<!3d+!4d]" }, { kX86Mov8RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RT", "!0r,fs:[!1d]" }, { kX86Mov8RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB0, 0, 0, 0, 0, 1 }, "Mov8RI", "!0r,!1d" }, { kX86Mov8MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8MI", "[!0r+!1d],!2d" }, { kX86Mov8AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8AI", "[!0r+!1r<<!2d+!3d],!4d" }, { kX86Mov8TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8TI", "fs:[!0d],!1d" }, { kX86Mov16MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov16MR", "[!0r+!1d],!2r" }, { kX86Mov16AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov16AR", "[!0r+!1r<<!2d+!3d],!4r" }, { kX86Mov16TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0x66, 0x89, 0, 0, 0, 0, 0 }, "Mov16TR", "fs:[!0d],!1r" }, { kX86Mov16RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RR", "!0r,!1r" }, { kX86Mov16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RM", "!0r,[!1r+!2d]" }, { kX86Mov16RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RA", "!0r,[!1r+!2r<<!3d+!4d]" }, { kX86Mov16RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0x66, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RT", "!0r,fs:[!1d]" }, { kX86Mov16RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0x66, 0, 0xB8, 0, 0, 0, 0, 2 }, "Mov16RI", "!0r,!1d" }, { kX86Mov16MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2 }, "Mov16MI", "[!0r+!1d],!2d" }, { kX86Mov16AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2 }, "Mov16AI", "[!0r+!1r<<!2d+!3d],!4d" }, { kX86Mov16TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0x66, 0xC7, 0, 0, 0, 0, 2 }, "Mov16TI", "fs:[!0d],!1d" }, { kX86Mov32MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32MR", "[!0r+!1d],!2r" }, { kX86Mov32AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32AR", "[!0r+!1r<<!2d+!3d],!4r" }, { kX86Mov32TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32TR", "fs:[!0d],!1r" }, { kX86Mov32RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RR", "!0r,!1r" }, { kX86Mov32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RM", "!0r,[!1r+!2d]" }, { kX86Mov32RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RA", "!0r,[!1r+!2r<<!3d+!4d]" }, { kX86Mov32RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RT", "!0r,fs:[!1d]" }, { kX86Mov32RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB8, 0, 0, 0, 0, 4 }, "Mov32RI", "!0r,!1d" }, { kX86Mov32MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32MI", "[!0r+!1d],!2d" }, { kX86Mov32AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32AI", "[!0r+!1r<<!2d+!3d],!4d" }, { kX86Mov32TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32TI", "fs:[!0d],!1d" }, { kX86Lea32RA, kRegArray, IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8D, 0, 0, 0, 0, 0 }, "Lea32RA", "!0r,[!1r+!2r<<!3d+!4d]" }, #define SHIFT_ENCODING_MAP(opname, modrm_opcode) \ { kX86 ## opname ## 8RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8RI", "!0r,!1d" }, \ { kX86 ## opname ## 8MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8MI", "[!0r+!1d],!2d" }, \ { kX86 ## opname ## 8AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \ { kX86 ## opname ## 8RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8RC", "!0r,cl" }, \ { kX86 ## opname ## 8MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8MC", "[!0r+!1d],cl" }, \ { kX86 ## opname ## 8AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8AC", "[!0r+!1r<<!2d+!3d],cl" }, \ \ { kX86 ## opname ## 16RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16RI", "!0r,!1d" }, \ { kX86 ## opname ## 16MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16MI", "[!0r+!1d],!2d" }, \ { kX86 ## opname ## 16AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \ { kX86 ## opname ## 16RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16RC", "!0r,cl" }, \ { kX86 ## opname ## 16MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16MC", "[!0r+!1d],cl" }, \ { kX86 ## opname ## 16AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16AC", "[!0r+!1r<<!2d+!3d],cl" }, \ \ { kX86 ## opname ## 32RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32RI", "!0r,!1d" }, \ { kX86 ## opname ## 32MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32MI", "[!0r+!1d],!2d" }, \ { kX86 ## opname ## 32AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \ { kX86 ## opname ## 32RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32RC", "!0r,cl" }, \ { kX86 ## opname ## 32MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32MC", "[!0r+!1d],cl" }, \ { kX86 ## opname ## 32AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32AC", "[!0r+!1r<<!2d+!3d],cl" } SHIFT_ENCODING_MAP(Rol, 0x0), SHIFT_ENCODING_MAP(Ror, 0x1), SHIFT_ENCODING_MAP(Rcl, 0x2), SHIFT_ENCODING_MAP(Rcr, 0x3), SHIFT_ENCODING_MAP(Sal, 0x4), SHIFT_ENCODING_MAP(Shr, 0x5), SHIFT_ENCODING_MAP(Sar, 0x7), #undef SHIFT_ENCODING_MAP { kX86Cmc, kNullary, NO_OPERAND, { 0, 0, 0xF5, 0, 0, 0, 0, 0}, "Cmc", "" }, { kX86Test8RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8RI", "!0r,!1d" }, { kX86Test8MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8MI", "[!0r+!1d],!2d" }, { kX86Test8AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8AI", "[!0r+!1r<<!2d+!3d],!4d" }, { kX86Test16RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16RI", "!0r,!1d" }, { kX86Test16MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16MI", "[!0r+!1d],!2d" }, { kX86Test16AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16AI", "[!0r+!1r<<!2d+!3d],!4d" }, { kX86Test32RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32RI", "!0r,!1d" }, { kX86Test32MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32MI", "[!0r+!1d],!2d" }, { kX86Test32AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32AI", "[!0r+!1r<<!2d+!3d],!4d" }, { kX86Test32RR, kRegReg, IS_BINARY_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0x85, 0, 0, 0, 0, 0}, "Test32RR", "!0r,!1r" }, #define UNARY_ENCODING_MAP(opname, modrm, is_store, sets_ccodes, \ reg, reg_kind, reg_flags, \ mem, mem_kind, mem_flags, \ arr, arr_kind, arr_flags, imm, \ b_flags, hw_flags, w_flags, \ b_format, hw_format, w_format) \ { kX86 ## opname ## 8 ## reg, reg_kind, reg_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #reg, #b_format "!0r" }, \ { kX86 ## opname ## 8 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #mem, #b_format "[!0r+!1d]" }, \ { kX86 ## opname ## 8 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #arr, #b_format "[!0r+!1r<<!2d+!3d]" }, \ { kX86 ## opname ## 16 ## reg, reg_kind, reg_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #reg, #hw_format "!0r" }, \ { kX86 ## opname ## 16 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #mem, #hw_format "[!0r+!1d]" }, \ { kX86 ## opname ## 16 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #arr, #hw_format "[!0r+!1r<<!2d+!3d]" }, \ { kX86 ## opname ## 32 ## reg, reg_kind, reg_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #reg, #w_format "!0r" }, \ { kX86 ## opname ## 32 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #mem, #w_format "[!0r+!1d]" }, \ { kX86 ## opname ## 32 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #arr, #w_format "[!0r+!1r<<!2d+!3d]" } UNARY_ENCODING_MAP(Not, 0x2, IS_STORE, 0, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""), UNARY_ENCODING_MAP(Neg, 0x3, IS_STORE, SETS_CCODES, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""), UNARY_ENCODING_MAP(Mul, 0x4, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA, REG_DEFAD_USEA, "ax,al,", "dx:ax,ax,", "edx:eax,eax,"), UNARY_ENCODING_MAP(Imul, 0x5, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA, REG_DEFAD_USEA, "ax,al,", "dx:ax,ax,", "edx:eax,eax,"), UNARY_ENCODING_MAP(Divmod, 0x6, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"), UNARY_ENCODING_MAP(Idivmod, 0x7, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"), #undef UNARY_ENCODING_MAP #define EXT_0F_ENCODING_MAP(opname, prefix, opcode, reg_def) \ { kX86 ## opname ## RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RR", "!0r,!1r" }, \ { kX86 ## opname ## RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RM", "!0r,[!1r+!2d]" }, \ { kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" } EXT_0F_ENCODING_MAP(Movsd, 0xF2, 0x10, REG_DEF0), { kX86MovsdMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdMR", "[!0r+!1d],!2r" }, { kX86MovsdAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdAR", "[!0r+!1r<<!2d+!3d],!4r" }, EXT_0F_ENCODING_MAP(Movss, 0xF3, 0x10, REG_DEF0), { kX86MovssMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssMR", "[!0r+!1d],!2r" }, { kX86MovssAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssAR", "[!0r+!1r<<!2d+!3d],!4r" }, EXT_0F_ENCODING_MAP(Cvtsi2sd, 0xF2, 0x2A, REG_DEF0), EXT_0F_ENCODING_MAP(Cvtsi2ss, 0xF3, 0x2A, REG_DEF0), EXT_0F_ENCODING_MAP(Cvttsd2si, 0xF2, 0x2C, REG_DEF0), EXT_0F_ENCODING_MAP(Cvttss2si, 0xF3, 0x2C, REG_DEF0), EXT_0F_ENCODING_MAP(Cvtsd2si, 0xF2, 0x2D, REG_DEF0), EXT_0F_ENCODING_MAP(Cvtss2si, 0xF3, 0x2D, REG_DEF0), EXT_0F_ENCODING_MAP(Ucomisd, 0x66, 0x2E, SETS_CCODES), EXT_0F_ENCODING_MAP(Ucomiss, 0x00, 0x2E, SETS_CCODES), EXT_0F_ENCODING_MAP(Comisd, 0x66, 0x2F, SETS_CCODES), EXT_0F_ENCODING_MAP(Comiss, 0x00, 0x2F, SETS_CCODES), EXT_0F_ENCODING_MAP(Orps, 0x00, 0x56, REG_DEF0), EXT_0F_ENCODING_MAP(Xorps, 0x00, 0x57, REG_DEF0), EXT_0F_ENCODING_MAP(Addsd, 0xF2, 0x58, REG_DEF0), EXT_0F_ENCODING_MAP(Addss, 0xF3, 0x58, REG_DEF0), EXT_0F_ENCODING_MAP(Mulsd, 0xF2, 0x59, REG_DEF0), EXT_0F_ENCODING_MAP(Mulss, 0xF3, 0x59, REG_DEF0), EXT_0F_ENCODING_MAP(Cvtsd2ss, 0xF2, 0x5A, REG_DEF0), EXT_0F_ENCODING_MAP(Cvtss2sd, 0xF3, 0x5A, REG_DEF0), EXT_0F_ENCODING_MAP(Subsd, 0xF2, 0x5C, REG_DEF0), EXT_0F_ENCODING_MAP(Subss, 0xF3, 0x5C, REG_DEF0), EXT_0F_ENCODING_MAP(Divsd, 0xF2, 0x5E, REG_DEF0), EXT_0F_ENCODING_MAP(Divss, 0xF3, 0x5E, REG_DEF0), { kX86PsrlqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 2, 0, 1 }, "PsrlqRI", "!0r,!1d" }, { kX86PsllqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 6, 0, 1 }, "PsllqRI", "!0r,!1d" }, EXT_0F_ENCODING_MAP(Movdxr, 0x66, 0x6E, REG_DEF0), { kX86MovdrxRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxRR", "!0r,!1r" }, { kX86MovdrxMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxMR", "[!0r+!1d],!2r" }, { kX86MovdrxAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxAR", "[!0r+!1r<<!2d+!3d],!4r" }, { kX86Set8R, kRegCond, IS_BINARY_OP | REG_DEF0 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8R", "!1c !0r" }, { kX86Set8M, kMemCond, IS_STORE | IS_TERTIARY_OP | REG_USE0 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8M", "!2c [!0r+!1d]" }, { kX86Set8A, kArrayCond, IS_STORE | IS_QUIN_OP | REG_USE01 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8A", "!4c [!0r+!1r<<!2d+!3d]" }, // TODO: load/store? // Encode the modrm opcode as an extra opcode byte to avoid computation during assembly. { kX86Mfence, kReg, NO_OPERAND, { 0, 0, 0x0F, 0xAE, 0, 6, 0, 0 }, "Mfence", "" }, EXT_0F_ENCODING_MAP(Imul16, 0x66, 0xAF, REG_DEF0 | SETS_CCODES), EXT_0F_ENCODING_MAP(Imul32, 0x00, 0xAF, REG_DEF0 | SETS_CCODES), { kX86CmpxchgRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "!0r,!1r" }, { kX86CmpxchgMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1d],!2r" }, { kX86CmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" }, { kX86LockCmpxchgRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "!0r,!1r" }, { kX86LockCmpxchgMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1d],!2r" }, { kX86LockCmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" }, EXT_0F_ENCODING_MAP(Movzx8, 0x00, 0xB6, REG_DEF0), EXT_0F_ENCODING_MAP(Movzx16, 0x00, 0xB7, REG_DEF0), EXT_0F_ENCODING_MAP(Movsx8, 0x00, 0xBE, REG_DEF0), EXT_0F_ENCODING_MAP(Movsx16, 0x00, 0xBF, REG_DEF0), #undef EXT_0F_ENCODING_MAP { kX86Jcc8, kJcc, IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0, 0, 0x70, 0, 0, 0, 0, 0 }, "Jcc8", "!1c !0t" }, { kX86Jcc32, kJcc, IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0, 0, 0x0F, 0x80, 0, 0, 0, 0 }, "Jcc32", "!1c !0t" }, { kX86Jmp8, kJmp, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0xEB, 0, 0, 0, 0, 0 }, "Jmp8", "!0t" }, { kX86Jmp32, kJmp, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0xE9, 0, 0, 0, 0, 0 }, "Jmp32", "!0t" }, { kX86JmpR, kJmp, IS_UNARY_OP | IS_BRANCH | REG_USE0, { 0, 0, 0xFF, 0, 0, 4, 0, 0 }, "JmpR", "!0r" }, { kX86JmpT, kJmp, IS_UNARY_OP | IS_BRANCH | IS_LOAD, { THREAD_PREFIX, 0, 0xFF, 0, 0, 4, 0, 0 }, "JmpT", "fs:[!0d]" }, { kX86CallR, kCall, IS_UNARY_OP | IS_BRANCH | REG_USE0, { 0, 0, 0xE8, 0, 0, 0, 0, 0 }, "CallR", "!0r" }, { kX86CallM, kCall, IS_BINARY_OP | IS_BRANCH | IS_LOAD | REG_USE0, { 0, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallM", "[!0r+!1d]" }, { kX86CallA, kCall, IS_QUAD_OP | IS_BRANCH | IS_LOAD | REG_USE01, { 0, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallA", "[!0r+!1r<<!2d+!3d]" }, { kX86CallT, kCall, IS_UNARY_OP | IS_BRANCH | IS_LOAD, { THREAD_PREFIX, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallT", "fs:[!0d]" }, { kX86Ret, kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xC3, 0, 0, 0, 0, 0 }, "Ret", "" }, { kX86StartOfMethod, kMacro, IS_UNARY_OP | SETS_CCODES, { 0, 0, 0, 0, 0, 0, 0, 0 }, "StartOfMethod", "!0r" }, { kX86PcRelLoadRA, kPcRel, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "PcRelLoadRA", "!0r,[!1r+!2r<<!3d+!4p]" }, { kX86PcRelAdr, kPcRel, IS_LOAD | IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB8, 0, 0, 0, 0, 4 }, "PcRelAdr", "!0r,!1d" }, }; static size_t ComputeSize(const X86EncodingMap* entry, int base, int displacement, bool has_sib) { size_t size = 0; if (entry->skeleton.prefix1 > 0) { ++size; if (entry->skeleton.prefix2 > 0) { ++size; } } ++size; // opcode if (entry->skeleton.opcode == 0x0F) { ++size; if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) { ++size; } } ++size; // modrm if (has_sib || base == rX86_SP) { // SP requires a SIB byte. ++size; } if (displacement != 0 || base == rBP) { // BP requires an explicit displacement, even when it's 0. if (entry->opcode != kX86Lea32RA) { DCHECK_NE(entry->flags & (IS_LOAD | IS_STORE), 0ULL) << entry->name; } size += IS_SIMM8(displacement) ? 1 : 4; } size += entry->skeleton.immediate_bytes; return size; } int X86Mir2Lir::GetInsnSize(LIR* lir) { const X86EncodingMap* entry = &X86Mir2Lir::EncodingMap[lir->opcode]; switch (entry->kind) { case kData: return 4; // 4 bytes of data case kNop: return lir->operands[0]; // length of nop is sole operand case kNullary: return 1; // 1 byte of opcode case kReg: // lir operands - 0: reg return ComputeSize(entry, 0, 0, false); case kMem: // lir operands - 0: base, 1: disp return ComputeSize(entry, lir->operands[0], lir->operands[1], false); case kArray: // lir operands - 0: base, 1: index, 2: scale, 3: disp return ComputeSize(entry, lir->operands[0], lir->operands[3], true); case kMemReg: // lir operands - 0: base, 1: disp, 2: reg return ComputeSize(entry, lir->operands[0], lir->operands[1], false); case kArrayReg: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg return ComputeSize(entry, lir->operands[0], lir->operands[3], true); case kThreadReg: // lir operands - 0: disp, 1: reg return ComputeSize(entry, 0, lir->operands[0], false); case kRegReg: return ComputeSize(entry, 0, 0, false); case kRegRegStore: return ComputeSize(entry, 0, 0, false); case kRegMem: // lir operands - 0: reg, 1: base, 2: disp return ComputeSize(entry, lir->operands[1], lir->operands[2], false); case kRegArray: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp return ComputeSize(entry, lir->operands[1], lir->operands[4], true); case kRegThread: // lir operands - 0: reg, 1: disp return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit case kRegImm: { // lir operands - 0: reg, 1: immediate size_t size = ComputeSize(entry, 0, 0, false); if (entry->skeleton.ax_opcode == 0) { return size; } else { // AX opcodes don't require the modrm byte. int reg = lir->operands[0]; return size - (reg == rAX ? 1 : 0); } } case kMemImm: // lir operands - 0: base, 1: disp, 2: immediate return ComputeSize(entry, lir->operands[0], lir->operands[1], false); case kArrayImm: // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate return ComputeSize(entry, lir->operands[0], lir->operands[3], true); case kThreadImm: // lir operands - 0: disp, 1: imm return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit case kRegRegImm: // lir operands - 0: reg, 1: reg, 2: imm return ComputeSize(entry, 0, 0, false); case kRegMemImm: // lir operands - 0: reg, 1: base, 2: disp, 3: imm return ComputeSize(entry, lir->operands[1], lir->operands[2], false); case kRegArrayImm: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp, 5: imm return ComputeSize(entry, lir->operands[1], lir->operands[4], true); case kMovRegImm: // lir operands - 0: reg, 1: immediate return 1 + entry->skeleton.immediate_bytes; case kShiftRegImm: // lir operands - 0: reg, 1: immediate // Shift by immediate one has a shorter opcode. return ComputeSize(entry, 0, 0, false) - (lir->operands[1] == 1 ? 1 : 0); case kShiftMemImm: // lir operands - 0: base, 1: disp, 2: immediate // Shift by immediate one has a shorter opcode. return ComputeSize(entry, lir->operands[0], lir->operands[1], false) - (lir->operands[2] == 1 ? 1 : 0); case kShiftArrayImm: // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate // Shift by immediate one has a shorter opcode. return ComputeSize(entry, lir->operands[0], lir->operands[3], true) - (lir->operands[4] == 1 ? 1 : 0); case kShiftRegCl: return ComputeSize(entry, 0, 0, false); case kShiftMemCl: // lir operands - 0: base, 1: disp, 2: cl return ComputeSize(entry, lir->operands[0], lir->operands[1], false); case kShiftArrayCl: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg return ComputeSize(entry, lir->operands[0], lir->operands[3], true); case kRegCond: // lir operands - 0: reg, 1: cond return ComputeSize(entry, 0, 0, false); case kMemCond: // lir operands - 0: base, 1: disp, 2: cond return ComputeSize(entry, lir->operands[0], lir->operands[1], false); case kArrayCond: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: cond return ComputeSize(entry, lir->operands[0], lir->operands[3], true); case kJcc: if (lir->opcode == kX86Jcc8) { return 2; // opcode + rel8 } else { DCHECK(lir->opcode == kX86Jcc32); return 6; // 2 byte opcode + rel32 } case kJmp: if (lir->opcode == kX86Jmp8) { return 2; // opcode + rel8 } else if (lir->opcode == kX86Jmp32) { return 5; // opcode + rel32 } else if (lir->opcode == kX86JmpT) { return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit } else { DCHECK(lir->opcode == kX86JmpR); return 2; // opcode + modrm } case kCall: switch (lir->opcode) { case kX86CallR: return 2; // opcode modrm case kX86CallM: // lir operands - 0: base, 1: disp return ComputeSize(entry, lir->operands[0], lir->operands[1], false); case kX86CallA: // lir operands - 0: base, 1: index, 2: scale, 3: disp return ComputeSize(entry, lir->operands[0], lir->operands[3], true); case kX86CallT: // lir operands - 0: disp return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit default: break; } break; case kPcRel: if (entry->opcode == kX86PcRelLoadRA) { // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table return ComputeSize(entry, lir->operands[1], 0x12345678, true); } else { DCHECK(entry->opcode == kX86PcRelAdr); return 5; // opcode with reg + 4 byte immediate } case kMacro: DCHECK_EQ(lir->opcode, static_cast<int>(kX86StartOfMethod)); return 5 /* call opcode + 4 byte displacement */ + 1 /* pop reg */ + ComputeSize(&X86Mir2Lir::EncodingMap[kX86Sub32RI], 0, 0, false) - (lir->operands[0] == rAX ? 1 : 0); // shorter ax encoding default: break; } UNIMPLEMENTED(FATAL) << "Unimplemented size encoding for: " << entry->name; return 0; } static uint8_t ModrmForDisp(int base, int disp) { // BP requires an explicit disp, so do not omit it in the 0 case if (disp == 0 && base != rBP) { return 0; } else if (IS_SIMM8(disp)) { return 1; } else { return 2; } } void X86Mir2Lir::EmitDisp(int base, int disp) { // BP requires an explicit disp, so do not omit it in the 0 case if (disp == 0 && base != rBP) { return; } else if (IS_SIMM8(disp)) { code_buffer_.push_back(disp & 0xFF); } else { code_buffer_.push_back(disp & 0xFF); code_buffer_.push_back((disp >> 8) & 0xFF); code_buffer_.push_back((disp >> 16) & 0xFF); code_buffer_.push_back((disp >> 24) & 0xFF); } } void X86Mir2Lir::EmitOpReg(const X86EncodingMap* entry, uint8_t reg) { if (entry->skeleton.prefix1 != 0) { code_buffer_.push_back(entry->skeleton.prefix1); if (entry->skeleton.prefix2 != 0) { code_buffer_.push_back(entry->skeleton.prefix2); } } else { DCHECK_EQ(0, entry->skeleton.prefix2); } code_buffer_.push_back(entry->skeleton.opcode); if (entry->skeleton.opcode == 0x0F) { code_buffer_.push_back(entry->skeleton.extra_opcode1); if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) { code_buffer_.push_back(entry->skeleton.extra_opcode2); } else { DCHECK_EQ(0, entry->skeleton.extra_opcode2); } } else { DCHECK_EQ(0, entry->skeleton.extra_opcode1); DCHECK_EQ(0, entry->skeleton.extra_opcode2); } if (X86_FPREG(reg)) { reg = reg & X86_FP_REG_MASK; } if (reg >= 4) { DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg) << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file); } DCHECK_LT(reg, 8); uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg; code_buffer_.push_back(modrm); DCHECK_EQ(0, entry->skeleton.ax_opcode); DCHECK_EQ(0, entry->skeleton.immediate_bytes); } void X86Mir2Lir::EmitOpMem(const X86EncodingMap* entry, uint8_t base, int disp) { if (entry->skeleton.prefix1 != 0) { code_buffer_.push_back(entry->skeleton.prefix1); if (entry->skeleton.prefix2 != 0) { code_buffer_.push_back(entry->skeleton.prefix2); } } else { DCHECK_EQ(0, entry->skeleton.prefix2); } code_buffer_.push_back(entry->skeleton.opcode); DCHECK_EQ(0, entry->skeleton.extra_opcode1); DCHECK_EQ(0, entry->skeleton.extra_opcode2); DCHECK_LT(entry->skeleton.modrm_opcode, 8); DCHECK_LT(base, 8); uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (entry->skeleton.modrm_opcode << 3) | base; code_buffer_.push_back(modrm); EmitDisp(base, disp); DCHECK_EQ(0, entry->skeleton.ax_opcode); DCHECK_EQ(0, entry->skeleton.immediate_bytes); } void X86Mir2Lir::EmitMemReg(const X86EncodingMap* entry, uint8_t base, int disp, uint8_t reg) { if (entry->skeleton.prefix1 != 0) { code_buffer_.push_back(entry->skeleton.prefix1); if (entry->skeleton.prefix2 != 0) { code_buffer_.push_back(entry->skeleton.prefix2); } } else { DCHECK_EQ(0, entry->skeleton.prefix2); } code_buffer_.push_back(entry->skeleton.opcode); if (entry->skeleton.opcode == 0x0F) { code_buffer_.push_back(entry->skeleton.extra_opcode1); if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) { code_buffer_.push_back(entry->skeleton.extra_opcode2); } else { DCHECK_EQ(0, entry->skeleton.extra_opcode2); } } else { DCHECK_EQ(0, entry->skeleton.extra_opcode1); DCHECK_EQ(0, entry->skeleton.extra_opcode2); } if (X86_FPREG(reg)) { reg = reg & X86_FP_REG_MASK; } if (reg >= 4) { DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg) << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file); } DCHECK_LT(reg, 8); DCHECK_LT(base, 8); uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg << 3) | base; code_buffer_.push_back(modrm); if (base == rX86_SP) { // Special SIB for SP base code_buffer_.push_back(0 << 6 | (rX86_SP << 3) | rX86_SP); } EmitDisp(base, disp); DCHECK_EQ(0, entry->skeleton.modrm_opcode); DCHECK_EQ(0, entry->skeleton.ax_opcode); DCHECK_EQ(0, entry->skeleton.immediate_bytes); } void X86Mir2Lir::EmitRegMem(const X86EncodingMap* entry, uint8_t reg, uint8_t base, int disp) { // Opcode will flip operands. EmitMemReg(entry, base, disp, reg); } void X86Mir2Lir::EmitRegArray(const X86EncodingMap* entry, uint8_t reg, uint8_t base, uint8_t index, int scale, int disp) { if (entry->skeleton.prefix1 != 0) { code_buffer_.push_back(entry->skeleton.prefix1); if (entry->skeleton.prefix2 != 0) { code_buffer_.push_back(entry->skeleton.prefix2); } } else { DCHECK_EQ(0, entry->skeleton.prefix2); } code_buffer_.push_back(entry->skeleton.opcode); if (entry->skeleton.opcode == 0x0F) { code_buffer_.push_back(entry->skeleton.extra_opcode1); if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) { code_buffer_.push_back(entry->skeleton.extra_opcode2); } else { DCHECK_EQ(0, entry->skeleton.extra_opcode2); } } else { DCHECK_EQ(0, entry->skeleton.extra_opcode1); DCHECK_EQ(0, entry->skeleton.extra_opcode2); } if (X86_FPREG(reg)) { reg = reg & X86_FP_REG_MASK; } DCHECK_LT(reg, 8); uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg << 3) | rX86_SP; code_buffer_.push_back(modrm); DCHECK_LT(scale, 4); DCHECK_LT(index, 8); DCHECK_LT(base, 8); uint8_t sib = (scale << 6) | (index << 3) | base; code_buffer_.push_back(sib); EmitDisp(base, disp); DCHECK_EQ(0, entry->skeleton.modrm_opcode); DCHECK_EQ(0, entry->skeleton.ax_opcode); DCHECK_EQ(0, entry->skeleton.immediate_bytes); } void X86Mir2Lir::EmitArrayReg(const X86EncodingMap* entry, uint8_t base, uint8_t index, int scale, int disp, uint8_t reg) { // Opcode will flip operands. EmitRegArray(entry, reg, base, index, scale, disp); } void X86Mir2Lir::EmitRegThread(const X86EncodingMap* entry, uint8_t reg, int disp) { DCHECK_NE(entry->skeleton.prefix1, 0); code_buffer_.push_back(entry->skeleton.prefix1); if (entry->skeleton.prefix2 != 0) { code_buffer_.push_back(entry->skeleton.prefix2); } code_buffer_.push_back(entry->skeleton.opcode); if (entry->skeleton.opcode == 0x0F) { code_buffer_.push_back(entry->skeleton.extra_opcode1); if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) { code_buffer_.push_back(entry->skeleton.extra_opcode2); } else { DCHECK_EQ(0, entry->skeleton.extra_opcode2); } } else { DCHECK_EQ(0, entry->skeleton.extra_opcode1); DCHECK_EQ(0, entry->skeleton.extra_opcode2); } if (X86_FPREG(reg)) { reg = reg & X86_FP_REG_MASK; } if (reg >= 4) { DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg) << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file); } DCHECK_LT(reg, 8); uint8_t modrm = (0 << 6) | (reg << 3) | rBP; code_buffer_.push_back(modrm); code_buffer_.push_back(disp & 0xFF); code_buffer_.push_back((disp >> 8) & 0xFF); code_buffer_.push_back((disp >> 16) & 0xFF); code_buffer_.push_back((disp >> 24) & 0xFF); DCHECK_EQ(0, entry->skeleton.modrm_opcode); DCHECK_EQ(0, entry->skeleton.ax_opcode); DCHECK_EQ(0, entry->skeleton.immediate_bytes); } void X86Mir2Lir::EmitRegReg(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2) { if (entry->skeleton.prefix1 != 0) { code_buffer_.push_back(entry->skeleton.prefix1); if (entry->skeleton.prefix2 != 0) { code_buffer_.push_back(entry->skeleton.prefix2); } } else { DCHECK_EQ(0, entry->skeleton.prefix2); } code_buffer_.push_back(entry->skeleton.opcode); if (entry->skeleton.opcode == 0x0F) { code_buffer_.push_back(entry->skeleton.extra_opcode1); if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) { code_buffer_.push_back(entry->skeleton.extra_opcode2); } else { DCHECK_EQ(0, entry->skeleton.extra_opcode2); } } else { DCHECK_EQ(0, entry->skeleton.extra_opcode1); DCHECK_EQ(0, entry->skeleton.extra_opcode2); } if (X86_FPREG(reg1)) { reg1 = reg1 & X86_FP_REG_MASK; } if (X86_FPREG(reg2)) { reg2 = reg2 & X86_FP_REG_MASK; } DCHECK_LT(reg1, 8); DCHECK_LT(reg2, 8); uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2; code_buffer_.push_back(modrm); DCHECK_EQ(0, entry->skeleton.modrm_opcode); DCHECK_EQ(0, entry->skeleton.ax_opcode); DCHECK_EQ(0, entry->skeleton.immediate_bytes); } void X86Mir2Lir::EmitRegRegImm(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2, int32_t imm) { if (entry->skeleton.prefix1 != 0) { code_buffer_.push_back(entry->skeleton.prefix1); if (entry->skeleton.prefix2 != 0) { code_buffer_.push_back(entry->skeleton.prefix2); } } else { DCHECK_EQ(0, entry->skeleton.prefix2); } code_buffer_.push_back(entry->skeleton.opcode); if (entry->skeleton.opcode == 0x0F) { code_buffer_.push_back(entry->skeleton.extra_opcode1); if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) { code_buffer_.push_back(entry->skeleton.extra_opcode2); } else { DCHECK_EQ(0, entry->skeleton.extra_opcode2); } } else { DCHECK_EQ(0, entry->skeleton.extra_opcode1); DCHECK_EQ(0, entry->skeleton.extra_opcode2); } if (X86_FPREG(reg1)) { reg1 = reg1 & X86_FP_REG_MASK; } if (X86_FPREG(reg2)) { reg2 = reg2 & X86_FP_REG_MASK; } DCHECK_LT(reg1, 8); DCHECK_LT(reg2, 8); uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2; code_buffer_.push_back(modrm); DCHECK_EQ(0, entry->skeleton.modrm_opcode); DCHECK_EQ(0, entry->skeleton.ax_opcode); switch (entry->skeleton.immediate_bytes) { case 1: DCHECK(IS_SIMM8(imm)); code_buffer_.push_back(imm & 0xFF); break; case 2: DCHECK(IS_SIMM16(imm)); code_buffer_.push_back(imm & 0xFF); code_buffer_.push_back((imm >> 8) & 0xFF); break; case 4: code_buffer_.push_back(imm & 0xFF); code_buffer_.push_back((imm >> 8) & 0xFF); code_buffer_.push_back((imm >> 16) & 0xFF); code_buffer_.push_back((imm >> 24) & 0xFF); break; default: LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes << ") for instruction: " << entry->name; break; } } void X86Mir2Lir::EmitRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) { if (entry->skeleton.prefix1 != 0) { code_buffer_.push_back(entry->skeleton.prefix1); if (entry->skeleton.prefix2 != 0) { code_buffer_.push_back(entry->skeleton.prefix2); } } else { DCHECK_EQ(0, entry->skeleton.prefix2); } if (reg == rAX && entry->skeleton.ax_opcode != 0) { code_buffer_.push_back(entry->skeleton.ax_opcode); } else { code_buffer_.push_back(entry->skeleton.opcode); if (entry->skeleton.opcode == 0x0F) { code_buffer_.push_back(entry->skeleton.extra_opcode1); if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) { code_buffer_.push_back(entry->skeleton.extra_opcode2); } else { DCHECK_EQ(0, entry->skeleton.extra_opcode2); } } else { DCHECK_EQ(0, entry->skeleton.extra_opcode1); DCHECK_EQ(0, entry->skeleton.extra_opcode2); } if (X86_FPREG(reg)) { reg = reg & X86_FP_REG_MASK; } uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg; code_buffer_.push_back(modrm); } switch (entry->skeleton.immediate_bytes) { case 1: DCHECK(IS_SIMM8(imm)); code_buffer_.push_back(imm & 0xFF); break; case 2: DCHECK(IS_SIMM16(imm)); code_buffer_.push_back(imm & 0xFF); code_buffer_.push_back((imm >> 8) & 0xFF); break; case 4: code_buffer_.push_back(imm & 0xFF); code_buffer_.push_back((imm >> 8) & 0xFF); code_buffer_.push_back((imm >> 16) & 0xFF); code_buffer_.push_back((imm >> 24) & 0xFF); break; default: LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes << ") for instruction: " << entry->name; break; } } void X86Mir2Lir::EmitThreadImm(const X86EncodingMap* entry, int disp, int imm) { if (entry->skeleton.prefix1 != 0) { code_buffer_.push_back(entry->skeleton.prefix1); if (entry->skeleton.prefix2 != 0) { code_buffer_.push_back(entry->skeleton.prefix2); } } else { DCHECK_EQ(0, entry->skeleton.prefix2); } code_buffer_.push_back(entry->skeleton.opcode); if (entry->skeleton.opcode == 0x0F) { code_buffer_.push_back(entry->skeleton.extra_opcode1); if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) { code_buffer_.push_back(entry->skeleton.extra_opcode2); } else { DCHECK_EQ(0, entry->skeleton.extra_opcode2); } } else { DCHECK_EQ(0, entry->skeleton.extra_opcode1); DCHECK_EQ(0, entry->skeleton.extra_opcode2); } uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP; code_buffer_.push_back(modrm); code_buffer_.push_back(disp & 0xFF); code_buffer_.push_back((disp >> 8) & 0xFF); code_buffer_.push_back((disp >> 16) & 0xFF); code_buffer_.push_back((disp >> 24) & 0xFF); switch (entry->skeleton.immediate_bytes) { case 1: DCHECK(IS_SIMM8(imm)); code_buffer_.push_back(imm & 0xFF); break; case 2: DCHECK(IS_SIMM16(imm)); code_buffer_.push_back(imm & 0xFF); code_buffer_.push_back((imm >> 8) & 0xFF); break; case 4: code_buffer_.push_back(imm & 0xFF); code_buffer_.push_back((imm >> 8) & 0xFF); code_buffer_.push_back((imm >> 16) & 0xFF); code_buffer_.push_back((imm >> 24) & 0xFF); break; default: LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes << ") for instruction: " << entry->name; break; } DCHECK_EQ(entry->skeleton.ax_opcode, 0); } void X86Mir2Lir::EmitMovRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) { DCHECK_LT(reg, 8); code_buffer_.push_back(0xB8 + reg); code_buffer_.push_back(imm & 0xFF); code_buffer_.push_back((imm >> 8) & 0xFF); code_buffer_.push_back((imm >> 16) & 0xFF); code_buffer_.push_back((imm >> 24) & 0xFF); } void X86Mir2Lir::EmitShiftRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) { if (entry->skeleton.prefix1 != 0) { code_buffer_.push_back(entry->skeleton.prefix1); if (entry->skeleton.prefix2 != 0) { code_buffer_.push_back(entry->skeleton.prefix2); } } else { DCHECK_EQ(0, entry->skeleton.prefix2); } if (imm != 1) { code_buffer_.push_back(entry->skeleton.opcode); } else { // Shorter encoding for 1 bit shift code_buffer_.push_back(entry->skeleton.ax_opcode); } if (entry->skeleton.opcode == 0x0F) { code_buffer_.push_back(entry->skeleton.extra_opcode1); if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) { code_buffer_.push_back(entry->skeleton.extra_opcode2); } else { DCHECK_EQ(0, entry->skeleton.extra_opcode2); } } else { DCHECK_EQ(0, entry->skeleton.extra_opcode1); DCHECK_EQ(0, entry->skeleton.extra_opcode2); } if (reg >= 4) { DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg) << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file); } DCHECK_LT(reg, 8); uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg; code_buffer_.push_back(modrm); if (imm != 1) { DCHECK_EQ(entry->skeleton.immediate_bytes, 1); DCHECK(IS_SIMM8(imm)); code_buffer_.push_back(imm & 0xFF); } } void X86Mir2Lir::EmitShiftRegCl(const X86EncodingMap* entry, uint8_t reg, uint8_t cl) { DCHECK_EQ(cl, static_cast<uint8_t>(rCX)); if (entry->skeleton.prefix1 != 0) { code_buffer_.push_back(entry->skeleton.prefix1); if (entry->skeleton.prefix2 != 0) { code_buffer_.push_back(entry->skeleton.prefix2); } } else { DCHECK_EQ(0, entry->skeleton.prefix2); } code_buffer_.push_back(entry->skeleton.opcode); DCHECK_EQ(0, entry->skeleton.extra_opcode1); DCHECK_EQ(0, entry->skeleton.extra_opcode2); DCHECK_LT(reg, 8); uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg; code_buffer_.push_back(modrm); DCHECK_EQ(0, entry->skeleton.ax_opcode); DCHECK_EQ(0, entry->skeleton.immediate_bytes); } void X86Mir2Lir::EmitRegCond(const X86EncodingMap* entry, uint8_t reg, uint8_t condition) { if (entry->skeleton.prefix1 != 0) { code_buffer_.push_back(entry->skeleton.prefix1); if (entry->skeleton.prefix2 != 0) { code_buffer_.push_back(entry->skeleton.prefix2); } } else { DCHECK_EQ(0, entry->skeleton.prefix2); } DCHECK_EQ(0, entry->skeleton.ax_opcode); DCHECK_EQ(0x0F, entry->skeleton.opcode); code_buffer_.push_back(0x0F); DCHECK_EQ(0x90, entry->skeleton.extra_opcode1); code_buffer_.push_back(0x90 | condition); DCHECK_EQ(0, entry->skeleton.extra_opcode2); DCHECK_LT(reg, 8); uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg; code_buffer_.push_back(modrm); DCHECK_EQ(entry->skeleton.immediate_bytes, 0); } void X86Mir2Lir::EmitJmp(const X86EncodingMap* entry, int rel) { if (entry->opcode == kX86Jmp8) { DCHECK(IS_SIMM8(rel)); code_buffer_.push_back(0xEB); code_buffer_.push_back(rel & 0xFF); } else if (entry->opcode == kX86Jmp32) { code_buffer_.push_back(0xE9); code_buffer_.push_back(rel & 0xFF); code_buffer_.push_back((rel >> 8) & 0xFF); code_buffer_.push_back((rel >> 16) & 0xFF); code_buffer_.push_back((rel >> 24) & 0xFF); } else { DCHECK(entry->opcode == kX86JmpR); code_buffer_.push_back(entry->skeleton.opcode); uint8_t reg = static_cast<uint8_t>(rel); DCHECK_LT(reg, 8); uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg; code_buffer_.push_back(modrm); } } void X86Mir2Lir::EmitJcc(const X86EncodingMap* entry, int rel, uint8_t cc) { DCHECK_LT(cc, 16); if (entry->opcode == kX86Jcc8) { DCHECK(IS_SIMM8(rel)); code_buffer_.push_back(0x70 | cc); code_buffer_.push_back(rel & 0xFF); } else { DCHECK(entry->opcode == kX86Jcc32); code_buffer_.push_back(0x0F); code_buffer_.push_back(0x80 | cc); code_buffer_.push_back(rel & 0xFF); code_buffer_.push_back((rel >> 8) & 0xFF); code_buffer_.push_back((rel >> 16) & 0xFF); code_buffer_.push_back((rel >> 24) & 0xFF); } } void X86Mir2Lir::EmitCallMem(const X86EncodingMap* entry, uint8_t base, int disp) { if (entry->skeleton.prefix1 != 0) { code_buffer_.push_back(entry->skeleton.prefix1); if (entry->skeleton.prefix2 != 0) { code_buffer_.push_back(entry->skeleton.prefix2); } } else { DCHECK_EQ(0, entry->skeleton.prefix2); } code_buffer_.push_back(entry->skeleton.opcode); if (entry->skeleton.opcode == 0x0F) { code_buffer_.push_back(entry->skeleton.extra_opcode1); if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) { code_buffer_.push_back(entry->skeleton.extra_opcode2); } else { DCHECK_EQ(0, entry->skeleton.extra_opcode2); } } else { DCHECK_EQ(0, entry->skeleton.extra_opcode1); DCHECK_EQ(0, entry->skeleton.extra_opcode2); } uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (entry->skeleton.modrm_opcode << 3) | base; code_buffer_.push_back(modrm); if (base == rX86_SP) { // Special SIB for SP base code_buffer_.push_back(0 << 6 | (rX86_SP << 3) | rX86_SP); } EmitDisp(base, disp); DCHECK_EQ(0, entry->skeleton.ax_opcode); DCHECK_EQ(0, entry->skeleton.immediate_bytes); } void X86Mir2Lir::EmitCallThread(const X86EncodingMap* entry, int disp) { DCHECK_NE(entry->skeleton.prefix1, 0); code_buffer_.push_back(entry->skeleton.prefix1); if (entry->skeleton.prefix2 != 0) { code_buffer_.push_back(entry->skeleton.prefix2); } code_buffer_.push_back(entry->skeleton.opcode); if (entry->skeleton.opcode == 0x0F) { code_buffer_.push_back(entry->skeleton.extra_opcode1); if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) { code_buffer_.push_back(entry->skeleton.extra_opcode2); } else { DCHECK_EQ(0, entry->skeleton.extra_opcode2); } } else { DCHECK_EQ(0, entry->skeleton.extra_opcode1); DCHECK_EQ(0, entry->skeleton.extra_opcode2); } uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP; code_buffer_.push_back(modrm); code_buffer_.push_back(disp & 0xFF); code_buffer_.push_back((disp >> 8) & 0xFF); code_buffer_.push_back((disp >> 16) & 0xFF); code_buffer_.push_back((disp >> 24) & 0xFF); DCHECK_EQ(0, entry->skeleton.ax_opcode); DCHECK_EQ(0, entry->skeleton.immediate_bytes); } void X86Mir2Lir::EmitPcRel(const X86EncodingMap* entry, uint8_t reg, int base_or_table, uint8_t index, int scale, int table_or_disp) { int disp; if (entry->opcode == kX86PcRelLoadRA) { Mir2Lir::SwitchTable *tab_rec = reinterpret_cast<Mir2Lir::SwitchTable*>(table_or_disp); disp = tab_rec->offset; } else { DCHECK(entry->opcode == kX86PcRelAdr); Mir2Lir::FillArrayData *tab_rec = reinterpret_cast<Mir2Lir::FillArrayData*>(base_or_table); disp = tab_rec->offset; } if (entry->skeleton.prefix1 != 0) { code_buffer_.push_back(entry->skeleton.prefix1); if (entry->skeleton.prefix2 != 0) { code_buffer_.push_back(entry->skeleton.prefix2); } } else { DCHECK_EQ(0, entry->skeleton.prefix2); } if (X86_FPREG(reg)) { reg = reg & X86_FP_REG_MASK; } DCHECK_LT(reg, 8); if (entry->opcode == kX86PcRelLoadRA) { code_buffer_.push_back(entry->skeleton.opcode); DCHECK_EQ(0, entry->skeleton.extra_opcode1); DCHECK_EQ(0, entry->skeleton.extra_opcode2); uint8_t modrm = (2 << 6) | (reg << 3) | rX86_SP; code_buffer_.push_back(modrm); DCHECK_LT(scale, 4); DCHECK_LT(index, 8); DCHECK_LT(base_or_table, 8); uint8_t base = static_cast<uint8_t>(base_or_table); uint8_t sib = (scale << 6) | (index << 3) | base; code_buffer_.push_back(sib); DCHECK_EQ(0, entry->skeleton.immediate_bytes); } else { code_buffer_.push_back(entry->skeleton.opcode + reg); } code_buffer_.push_back(disp & 0xFF); code_buffer_.push_back((disp >> 8) & 0xFF); code_buffer_.push_back((disp >> 16) & 0xFF); code_buffer_.push_back((disp >> 24) & 0xFF); DCHECK_EQ(0, entry->skeleton.modrm_opcode); DCHECK_EQ(0, entry->skeleton.ax_opcode); } void X86Mir2Lir::EmitMacro(const X86EncodingMap* entry, uint8_t reg, int offset) { DCHECK(entry->opcode == kX86StartOfMethod) << entry->name; code_buffer_.push_back(0xE8); // call +0 code_buffer_.push_back(0); code_buffer_.push_back(0); code_buffer_.push_back(0); code_buffer_.push_back(0); DCHECK_LT(reg, 8); code_buffer_.push_back(0x58 + reg); // pop reg EmitRegImm(&X86Mir2Lir::EncodingMap[kX86Sub32RI], reg, offset + 5 /* size of call +0 */); } void X86Mir2Lir::EmitUnimplemented(const X86EncodingMap* entry, LIR* lir) { UNIMPLEMENTED(WARNING) << "encoding kind for " << entry->name << " " << BuildInsnString(entry->fmt, lir, 0); for (int i = 0; i < GetInsnSize(lir); ++i) { code_buffer_.push_back(0xCC); // push breakpoint instruction - int 3 } } /* * Assemble the LIR into binary instruction format. Note that we may * discover that pc-relative displacements may not fit the selected * instruction. In those cases we will try to substitute a new code * sequence or request that the trace be shortened and retried. */ AssemblerStatus X86Mir2Lir::AssembleInstructions(uintptr_t start_addr) { LIR *lir; AssemblerStatus res = kSuccess; // Assume success const bool kVerbosePcFixup = false; for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) { if (lir->opcode < 0) { continue; } if (lir->flags.is_nop) { continue; } if (lir->flags.pcRelFixup) { switch (lir->opcode) { case kX86Jcc8: { LIR *target_lir = lir->target; DCHECK(target_lir != NULL); int delta = 0; uintptr_t pc; if (IS_SIMM8(lir->operands[0])) { pc = lir->offset + 2 /* opcode + rel8 */; } else { pc = lir->offset + 6 /* 2 byte opcode + rel32 */; } uintptr_t target = target_lir->offset; delta = target - pc; if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) { if (kVerbosePcFixup) { LOG(INFO) << "Retry for JCC growth at " << lir->offset << " delta: " << delta << " old delta: " << lir->operands[0]; } lir->opcode = kX86Jcc32; SetupResourceMasks(lir); res = kRetryAll; } if (kVerbosePcFixup) { LOG(INFO) << "Source:"; DumpLIRInsn(lir, 0); LOG(INFO) << "Target:"; DumpLIRInsn(target_lir, 0); LOG(INFO) << "Delta " << delta; } lir->operands[0] = delta; break; } case kX86Jcc32: { LIR *target_lir = lir->target; DCHECK(target_lir != NULL); uintptr_t pc = lir->offset + 6 /* 2 byte opcode + rel32 */; uintptr_t target = target_lir->offset; int delta = target - pc; if (kVerbosePcFixup) { LOG(INFO) << "Source:"; DumpLIRInsn(lir, 0); LOG(INFO) << "Target:"; DumpLIRInsn(target_lir, 0); LOG(INFO) << "Delta " << delta; } lir->operands[0] = delta; break; } case kX86Jmp8: { LIR *target_lir = lir->target; DCHECK(target_lir != NULL); int delta = 0; uintptr_t pc; if (IS_SIMM8(lir->operands[0])) { pc = lir->offset + 2 /* opcode + rel8 */; } else { pc = lir->offset + 5 /* opcode + rel32 */; } uintptr_t target = target_lir->offset; delta = target - pc; if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && delta == 0) { // Useless branch lir->flags.is_nop = true; if (kVerbosePcFixup) { LOG(INFO) << "Retry for useless branch at " << lir->offset; } res = kRetryAll; } else if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) { if (kVerbosePcFixup) { LOG(INFO) << "Retry for JMP growth at " << lir->offset; } lir->opcode = kX86Jmp32; SetupResourceMasks(lir); res = kRetryAll; } lir->operands[0] = delta; break; } case kX86Jmp32: { LIR *target_lir = lir->target; DCHECK(target_lir != NULL); uintptr_t pc = lir->offset + 5 /* opcode + rel32 */; uintptr_t target = target_lir->offset; int delta = target - pc; lir->operands[0] = delta; break; } default: break; } } /* * If one of the pc-relative instructions expanded we'll have * to make another pass. Don't bother to fully assemble the * instruction. */ if (res != kSuccess) { continue; } CHECK_EQ(static_cast<size_t>(lir->offset), code_buffer_.size()); const X86EncodingMap *entry = &X86Mir2Lir::EncodingMap[lir->opcode]; size_t starting_cbuf_size = code_buffer_.size(); switch (entry->kind) { case kData: // 4 bytes of data code_buffer_.push_back(lir->operands[0]); break; case kNullary: // 1 byte of opcode DCHECK_EQ(0, entry->skeleton.prefix1); DCHECK_EQ(0, entry->skeleton.prefix2); code_buffer_.push_back(entry->skeleton.opcode); if (entry->skeleton.extra_opcode1 != 0) { code_buffer_.push_back(entry->skeleton.extra_opcode1); if (entry->skeleton.extra_opcode2 != 0) { code_buffer_.push_back(entry->skeleton.extra_opcode2); } } else { DCHECK_EQ(0, entry->skeleton.extra_opcode2); } DCHECK_EQ(0, entry->skeleton.modrm_opcode); DCHECK_EQ(0, entry->skeleton.ax_opcode); DCHECK_EQ(0, entry->skeleton.immediate_bytes); break; case kReg: // lir operands - 0: reg EmitOpReg(entry, lir->operands[0]); break; case kMem: // lir operands - 0: base, 1: disp EmitOpMem(entry, lir->operands[0], lir->operands[1]); break; case kMemReg: // lir operands - 0: base, 1: disp, 2: reg EmitMemReg(entry, lir->operands[0], lir->operands[1], lir->operands[2]); break; case kArrayReg: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg EmitArrayReg(entry, lir->operands[0], lir->operands[1], lir->operands[2], lir->operands[3], lir->operands[4]); break; case kRegMem: // lir operands - 0: reg, 1: base, 2: disp EmitRegMem(entry, lir->operands[0], lir->operands[1], lir->operands[2]); break; case kRegArray: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp EmitRegArray(entry, lir->operands[0], lir->operands[1], lir->operands[2], lir->operands[3], lir->operands[4]); break; case kRegThread: // lir operands - 0: reg, 1: disp EmitRegThread(entry, lir->operands[0], lir->operands[1]); break; case kRegReg: // lir operands - 0: reg1, 1: reg2 EmitRegReg(entry, lir->operands[0], lir->operands[1]); break; case kRegRegStore: // lir operands - 0: reg2, 1: reg1 EmitRegReg(entry, lir->operands[1], lir->operands[0]); break; case kRegRegImm: EmitRegRegImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]); break; case kRegImm: // lir operands - 0: reg, 1: immediate EmitRegImm(entry, lir->operands[0], lir->operands[1]); break; case kThreadImm: // lir operands - 0: disp, 1: immediate EmitThreadImm(entry, lir->operands[0], lir->operands[1]); break; case kMovRegImm: // lir operands - 0: reg, 1: immediate EmitMovRegImm(entry, lir->operands[0], lir->operands[1]); break; case kShiftRegImm: // lir operands - 0: reg, 1: immediate EmitShiftRegImm(entry, lir->operands[0], lir->operands[1]); break; case kShiftRegCl: // lir operands - 0: reg, 1: cl EmitShiftRegCl(entry, lir->operands[0], lir->operands[1]); break; case kRegCond: // lir operands - 0: reg, 1: condition EmitRegCond(entry, lir->operands[0], lir->operands[1]); break; case kJmp: // lir operands - 0: rel if (entry->opcode == kX86JmpT) { // This works since the instruction format for jmp and call is basically the same and // EmitCallThread loads opcode info. EmitCallThread(entry, lir->operands[0]); } else { EmitJmp(entry, lir->operands[0]); } break; case kJcc: // lir operands - 0: rel, 1: CC, target assigned EmitJcc(entry, lir->operands[0], lir->operands[1]); break; case kCall: switch (entry->opcode) { case kX86CallM: // lir operands - 0: base, 1: disp EmitCallMem(entry, lir->operands[0], lir->operands[1]); break; case kX86CallT: // lir operands - 0: disp EmitCallThread(entry, lir->operands[0]); break; default: EmitUnimplemented(entry, lir); break; } break; case kPcRel: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table EmitPcRel(entry, lir->operands[0], lir->operands[1], lir->operands[2], lir->operands[3], lir->operands[4]); break; case kMacro: EmitMacro(entry, lir->operands[0], lir->offset); break; default: EmitUnimplemented(entry, lir); break; } CHECK_EQ(static_cast<size_t>(GetInsnSize(lir)), code_buffer_.size() - starting_cbuf_size) << "Instruction size mismatch for entry: " << X86Mir2Lir::EncodingMap[lir->opcode].name; } return res; } } // namespace art