/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* This file contains codegen for the X86 ISA */ #include "codegen_x86.h" #include "dex/quick/mir_to_lir-inl.h" #include "x86_lir.h" namespace art { void X86Mir2Lir::GenSpecialCase(BasicBlock* bb, MIR* mir, SpecialCaseHandler special_case) { // TODO } /* * The sparse table in the literal pool is an array of <key,displacement> * pairs. */ void X86Mir2Lir::GenSparseSwitch(MIR* mir, uint32_t table_offset, RegLocation rl_src) { const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset; if (cu_->verbose) { DumpSparseSwitchTable(table); } int entries = table[1]; const int* keys = reinterpret_cast<const int*>(&table[2]); const int* targets = &keys[entries]; rl_src = LoadValue(rl_src, kCoreReg); for (int i = 0; i < entries; i++) { int key = keys[i]; BasicBlock* case_block = mir_graph_->FindBlock(current_dalvik_offset_ + targets[i]); OpCmpImmBranch(kCondEq, rl_src.low_reg, key, &block_label_list_[case_block->id]); } } /* * Code pattern will look something like: * * mov r_val, .. * call 0 * pop r_start_of_method * sub r_start_of_method, .. * mov r_key_reg, r_val * sub r_key_reg, low_key * cmp r_key_reg, size-1 ; bound check * ja done * mov r_disp, [r_start_of_method + r_key_reg * 4 + table_offset] * add r_start_of_method, r_disp * jmp r_start_of_method * done: */ void X86Mir2Lir::GenPackedSwitch(MIR* mir, uint32_t table_offset, RegLocation rl_src) { const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset; if (cu_->verbose) { DumpPackedSwitchTable(table); } // Add the table to the list - we'll process it later SwitchTable *tab_rec = static_cast<SwitchTable *>(arena_->Alloc(sizeof(SwitchTable), ArenaAllocator::kAllocData)); tab_rec->table = table; tab_rec->vaddr = current_dalvik_offset_; int size = table[1]; tab_rec->targets = static_cast<LIR**>(arena_->Alloc(size * sizeof(LIR*), ArenaAllocator::kAllocLIR)); switch_tables_.Insert(tab_rec); // Get the switch value rl_src = LoadValue(rl_src, kCoreReg); int start_of_method_reg = AllocTemp(); // Materialize a pointer to the switch table // NewLIR0(kX86Bkpt); NewLIR1(kX86StartOfMethod, start_of_method_reg); int low_key = s4FromSwitchData(&table[2]); int keyReg; // Remove the bias, if necessary if (low_key == 0) { keyReg = rl_src.low_reg; } else { keyReg = AllocTemp(); OpRegRegImm(kOpSub, keyReg, rl_src.low_reg, low_key); } // Bounds check - if < 0 or >= size continue following switch OpRegImm(kOpCmp, keyReg, size-1); LIR* branch_over = OpCondBranch(kCondHi, NULL); // Load the displacement from the switch table int disp_reg = AllocTemp(); NewLIR5(kX86PcRelLoadRA, disp_reg, start_of_method_reg, keyReg, 2, reinterpret_cast<uintptr_t>(tab_rec)); // Add displacement to start of method OpRegReg(kOpAdd, start_of_method_reg, disp_reg); // ..and go! LIR* switch_branch = NewLIR1(kX86JmpR, start_of_method_reg); tab_rec->anchor = switch_branch; /* branch_over target here */ LIR* target = NewLIR0(kPseudoTargetLabel); branch_over->target = target; } /* * Array data table format: * ushort ident = 0x0300 magic value * ushort width width of each element in the table * uint size number of elements in the table * ubyte data[size*width] table of data values (may contain a single-byte * padding at the end) * * Total size is 4+(width * size + 1)/2 16-bit code units. */ void X86Mir2Lir::GenFillArrayData(uint32_t table_offset, RegLocation rl_src) { const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset; // Add the table to the list - we'll process it later FillArrayData *tab_rec = static_cast<FillArrayData*>(arena_->Alloc(sizeof(FillArrayData), ArenaAllocator::kAllocData)); tab_rec->table = table; tab_rec->vaddr = current_dalvik_offset_; uint16_t width = tab_rec->table[1]; uint32_t size = tab_rec->table[2] | ((static_cast<uint32_t>(tab_rec->table[3])) << 16); tab_rec->size = (size * width) + 8; fill_array_data_.Insert(tab_rec); // Making a call - use explicit registers FlushAllRegs(); /* Everything to home location */ LoadValueDirectFixed(rl_src, rX86_ARG0); // Materialize a pointer to the fill data image NewLIR1(kX86StartOfMethod, rX86_ARG2); NewLIR2(kX86PcRelAdr, rX86_ARG1, reinterpret_cast<uintptr_t>(tab_rec)); NewLIR2(kX86Add32RR, rX86_ARG1, rX86_ARG2); CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(pHandleFillArrayData), rX86_ARG0, rX86_ARG1, true); } void X86Mir2Lir::GenMonitorEnter(int opt_flags, RegLocation rl_src) { FlushAllRegs(); LoadValueDirectFixed(rl_src, rCX); // Get obj LockCallTemps(); // Prepare for explicit register usage GenNullCheck(rl_src.s_reg_low, rCX, opt_flags); // If lock is unheld, try to grab it quickly with compare and exchange // TODO: copy and clear hash state? NewLIR2(kX86Mov32RT, rDX, Thread::ThinLockIdOffset().Int32Value()); NewLIR2(kX86Sal32RI, rDX, LW_LOCK_OWNER_SHIFT); NewLIR2(kX86Xor32RR, rAX, rAX); NewLIR3(kX86LockCmpxchgMR, rCX, mirror::Object::MonitorOffset().Int32Value(), rDX); LIR* branch = NewLIR2(kX86Jcc8, 0, kX86CondEq); // If lock is held, go the expensive route - artLockObjectFromCode(self, obj); CallRuntimeHelperReg(QUICK_ENTRYPOINT_OFFSET(pLockObject), rCX, true); branch->target = NewLIR0(kPseudoTargetLabel); } void X86Mir2Lir::GenMonitorExit(int opt_flags, RegLocation rl_src) { FlushAllRegs(); LoadValueDirectFixed(rl_src, rAX); // Get obj LockCallTemps(); // Prepare for explicit register usage GenNullCheck(rl_src.s_reg_low, rAX, opt_flags); // If lock is held by the current thread, clear it to quickly release it // TODO: clear hash state? NewLIR2(kX86Mov32RT, rDX, Thread::ThinLockIdOffset().Int32Value()); NewLIR2(kX86Sal32RI, rDX, LW_LOCK_OWNER_SHIFT); NewLIR3(kX86Mov32RM, rCX, rAX, mirror::Object::MonitorOffset().Int32Value()); OpRegReg(kOpSub, rCX, rDX); LIR* branch = NewLIR2(kX86Jcc8, 0, kX86CondNe); NewLIR3(kX86Mov32MR, rAX, mirror::Object::MonitorOffset().Int32Value(), rCX); LIR* branch2 = NewLIR1(kX86Jmp8, 0); branch->target = NewLIR0(kPseudoTargetLabel); // Otherwise, go the expensive route - UnlockObjectFromCode(obj); CallRuntimeHelperReg(QUICK_ENTRYPOINT_OFFSET(pUnlockObject), rAX, true); branch2->target = NewLIR0(kPseudoTargetLabel); } void X86Mir2Lir::GenMoveException(RegLocation rl_dest) { int ex_offset = Thread::ExceptionOffset().Int32Value(); RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); NewLIR2(kX86Mov32RT, rl_result.low_reg, ex_offset); NewLIR2(kX86Mov32TI, ex_offset, 0); StoreValue(rl_dest, rl_result); } /* * Mark garbage collection card. Skip if the value we're storing is null. */ void X86Mir2Lir::MarkGCCard(int val_reg, int tgt_addr_reg) { int reg_card_base = AllocTemp(); int reg_card_no = AllocTemp(); LIR* branch_over = OpCmpImmBranch(kCondEq, val_reg, 0, NULL); NewLIR2(kX86Mov32RT, reg_card_base, Thread::CardTableOffset().Int32Value()); OpRegRegImm(kOpLsr, reg_card_no, tgt_addr_reg, gc::accounting::CardTable::kCardShift); StoreBaseIndexed(reg_card_base, reg_card_no, reg_card_base, 0, kUnsignedByte); LIR* target = NewLIR0(kPseudoTargetLabel); branch_over->target = target; FreeTemp(reg_card_base); FreeTemp(reg_card_no); } void X86Mir2Lir::GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) { /* * On entry, rX86_ARG0, rX86_ARG1, rX86_ARG2 are live. Let the register * allocation mechanism know so it doesn't try to use any of them when * expanding the frame or flushing. This leaves the utility * code with no spare temps. */ LockTemp(rX86_ARG0); LockTemp(rX86_ARG1); LockTemp(rX86_ARG2); /* Build frame, return address already on stack */ // TODO: 64 bit. OpRegImm(kOpSub, rX86_SP, frame_size_ - 4); /* * We can safely skip the stack overflow check if we're * a leaf *and* our frame size < fudge factor. */ const bool skip_overflow_check = (mir_graph_->MethodIsLeaf() && (static_cast<size_t>(frame_size_) < Thread::kStackOverflowReservedBytes)); NewLIR0(kPseudoMethodEntry); /* Spill core callee saves */ SpillCoreRegs(); /* NOTE: promotion of FP regs currently unsupported, thus no FP spill */ DCHECK_EQ(num_fp_spills_, 0); if (!skip_overflow_check) { // cmp rX86_SP, fs:[stack_end_]; jcc throw_launchpad LIR* tgt = RawLIR(0, kPseudoThrowTarget, kThrowStackOverflow, 0, 0, 0, 0); OpRegThreadMem(kOpCmp, rX86_SP, Thread::StackEndOffset()); OpCondBranch(kCondUlt, tgt); // Remember branch target - will process later throw_launchpads_.Insert(tgt); } FlushIns(ArgLocs, rl_method); FreeTemp(rX86_ARG0); FreeTemp(rX86_ARG1); FreeTemp(rX86_ARG2); } void X86Mir2Lir::GenExitSequence() { /* * In the exit path, rX86_RET0/rX86_RET1 are live - make sure they aren't * allocated by the register utilities as temps. */ LockTemp(rX86_RET0); LockTemp(rX86_RET1); NewLIR0(kPseudoMethodExit); UnSpillCoreRegs(); /* Remove frame except for return address */ OpRegImm(kOpAdd, rX86_SP, frame_size_ - 4); NewLIR0(kX86Ret); } } // namespace art