/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* This file contains codegen for the X86 ISA */ #include "codegen_x86.h" #include "dex/quick/mir_to_lir-inl.h" #include "mirror/array.h" #include "x86_lir.h" namespace art { /* * Perform register memory operation. */ LIR* X86Mir2Lir::GenRegMemCheck(ConditionCode c_code, int reg1, int base, int offset, ThrowKind kind) { LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind, current_dalvik_offset_, reg1, base, offset); OpRegMem(kOpCmp, reg1, base, offset); LIR* branch = OpCondBranch(c_code, tgt); // Remember branch target - will process later throw_launchpads_.Insert(tgt); return branch; } /* * Compare two 64-bit values * x = y return 0 * x < y return -1 * x > y return 1 */ void X86Mir2Lir::GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) { FlushAllRegs(); LockCallTemps(); // Prepare for explicit register usage LoadValueDirectWideFixed(rl_src1, r0, r1); LoadValueDirectWideFixed(rl_src2, r2, r3); // Compute (r1:r0) = (r1:r0) - (r3:r2) OpRegReg(kOpSub, r0, r2); // r0 = r0 - r2 OpRegReg(kOpSbc, r1, r3); // r1 = r1 - r3 - CF NewLIR2(kX86Set8R, r2, kX86CondL); // r2 = (r1:r0) < (r3:r2) ? 1 : 0 NewLIR2(kX86Movzx8RR, r2, r2); OpReg(kOpNeg, r2); // r2 = -r2 OpRegReg(kOpOr, r0, r1); // r0 = high | low - sets ZF NewLIR2(kX86Set8R, r0, kX86CondNz); // r0 = (r1:r0) != (r3:r2) ? 1 : 0 NewLIR2(kX86Movzx8RR, r0, r0); OpRegReg(kOpOr, r0, r2); // r0 = r0 | r2 RegLocation rl_result = LocCReturn(); StoreValue(rl_dest, rl_result); } X86ConditionCode X86ConditionEncoding(ConditionCode cond) { switch (cond) { case kCondEq: return kX86CondEq; case kCondNe: return kX86CondNe; case kCondCs: return kX86CondC; case kCondCc: return kX86CondNc; case kCondMi: return kX86CondS; case kCondPl: return kX86CondNs; case kCondVs: return kX86CondO; case kCondVc: return kX86CondNo; case kCondHi: return kX86CondA; case kCondLs: return kX86CondBe; case kCondGe: return kX86CondGe; case kCondLt: return kX86CondL; case kCondGt: return kX86CondG; case kCondLe: return kX86CondLe; case kCondAl: case kCondNv: LOG(FATAL) << "Should not reach here"; } return kX86CondO; } LIR* X86Mir2Lir::OpCmpBranch(ConditionCode cond, int src1, int src2, LIR* target) { NewLIR2(kX86Cmp32RR, src1, src2); X86ConditionCode cc = X86ConditionEncoding(cond); LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ , cc); branch->target = target; return branch; } LIR* X86Mir2Lir::OpCmpImmBranch(ConditionCode cond, int reg, int check_value, LIR* target) { if ((check_value == 0) && (cond == kCondEq || cond == kCondNe)) { // TODO: when check_value == 0 and reg is rCX, use the jcxz/nz opcode NewLIR2(kX86Test32RR, reg, reg); } else { NewLIR2(IS_SIMM8(check_value) ? kX86Cmp32RI8 : kX86Cmp32RI, reg, check_value); } X86ConditionCode cc = X86ConditionEncoding(cond); LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ , cc); branch->target = target; return branch; } LIR* X86Mir2Lir::OpRegCopyNoInsert(int r_dest, int r_src) { if (X86_FPREG(r_dest) || X86_FPREG(r_src)) return OpFpRegCopy(r_dest, r_src); LIR* res = RawLIR(current_dalvik_offset_, kX86Mov32RR, r_dest, r_src); if (r_dest == r_src) { res->flags.is_nop = true; } return res; } LIR* X86Mir2Lir::OpRegCopy(int r_dest, int r_src) { LIR *res = OpRegCopyNoInsert(r_dest, r_src); AppendLIR(res); return res; } void X86Mir2Lir::OpRegCopyWide(int dest_lo, int dest_hi, int src_lo, int src_hi) { bool dest_fp = X86_FPREG(dest_lo) && X86_FPREG(dest_hi); bool src_fp = X86_FPREG(src_lo) && X86_FPREG(src_hi); assert(X86_FPREG(src_lo) == X86_FPREG(src_hi)); assert(X86_FPREG(dest_lo) == X86_FPREG(dest_hi)); if (dest_fp) { if (src_fp) { OpRegCopy(S2d(dest_lo, dest_hi), S2d(src_lo, src_hi)); } else { // TODO: Prevent this from happening in the code. The result is often // unused or could have been loaded more easily from memory. NewLIR2(kX86MovdxrRR, dest_lo, src_lo); NewLIR2(kX86MovdxrRR, dest_hi, src_hi); NewLIR2(kX86PsllqRI, dest_hi, 32); NewLIR2(kX86OrpsRR, dest_lo, dest_hi); } } else { if (src_fp) { NewLIR2(kX86MovdrxRR, dest_lo, src_lo); NewLIR2(kX86PsrlqRI, src_lo, 32); NewLIR2(kX86MovdrxRR, dest_hi, src_lo); } else { // Handle overlap if (src_hi == dest_lo) { OpRegCopy(dest_hi, src_hi); OpRegCopy(dest_lo, src_lo); } else { OpRegCopy(dest_lo, src_lo); OpRegCopy(dest_hi, src_hi); } } } } void X86Mir2Lir::GenSelect(BasicBlock* bb, MIR* mir) { UNIMPLEMENTED(FATAL) << "Need codegen for GenSelect"; } void X86Mir2Lir::GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) { LIR* taken = &block_label_list_[bb->taken->id]; RegLocation rl_src1 = mir_graph_->GetSrcWide(mir, 0); RegLocation rl_src2 = mir_graph_->GetSrcWide(mir, 2); FlushAllRegs(); LockCallTemps(); // Prepare for explicit register usage LoadValueDirectWideFixed(rl_src1, r0, r1); LoadValueDirectWideFixed(rl_src2, r2, r3); ConditionCode ccode = static_cast<ConditionCode>(mir->dalvikInsn.arg[0]); // Swap operands and condition code to prevent use of zero flag. if (ccode == kCondLe || ccode == kCondGt) { // Compute (r3:r2) = (r3:r2) - (r1:r0) OpRegReg(kOpSub, r2, r0); // r2 = r2 - r0 OpRegReg(kOpSbc, r3, r1); // r3 = r3 - r1 - CF } else { // Compute (r1:r0) = (r1:r0) - (r3:r2) OpRegReg(kOpSub, r0, r2); // r0 = r0 - r2 OpRegReg(kOpSbc, r1, r3); // r1 = r1 - r3 - CF } switch (ccode) { case kCondEq: case kCondNe: OpRegReg(kOpOr, r0, r1); // r0 = r0 | r1 break; case kCondLe: ccode = kCondGe; break; case kCondGt: ccode = kCondLt; break; case kCondLt: case kCondGe: break; default: LOG(FATAL) << "Unexpected ccode: " << ccode; } OpCondBranch(ccode, taken); } RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, int reg_lo, int lit, bool is_div) { LOG(FATAL) << "Unexpected use of GenDivRemLit for x86"; return rl_dest; } RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, int reg_lo, int reg_hi, bool is_div) { LOG(FATAL) << "Unexpected use of GenDivRem for x86"; return rl_dest; } bool X86Mir2Lir::GenInlinedMinMaxInt(CallInfo* info, bool is_min) { DCHECK_EQ(cu_->instruction_set, kX86); RegLocation rl_src1 = info->args[0]; RegLocation rl_src2 = info->args[1]; rl_src1 = LoadValue(rl_src1, kCoreReg); rl_src2 = LoadValue(rl_src2, kCoreReg); RegLocation rl_dest = InlineTarget(info); RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); OpRegReg(kOpCmp, rl_src1.low_reg, rl_src2.low_reg); DCHECK_EQ(cu_->instruction_set, kX86); LIR* branch = NewLIR2(kX86Jcc8, 0, is_min ? kX86CondG : kX86CondL); OpRegReg(kOpMov, rl_result.low_reg, rl_src1.low_reg); LIR* branch2 = NewLIR1(kX86Jmp8, 0); branch->target = NewLIR0(kPseudoTargetLabel); OpRegReg(kOpMov, rl_result.low_reg, rl_src2.low_reg); branch2->target = NewLIR0(kPseudoTargetLabel); StoreValue(rl_dest, rl_result); return true; } void X86Mir2Lir::OpLea(int rBase, int reg1, int reg2, int scale, int offset) { NewLIR5(kX86Lea32RA, rBase, reg1, reg2, scale, offset); } void X86Mir2Lir::OpTlsCmp(ThreadOffset offset, int val) { NewLIR2(kX86Cmp16TI8, offset.Int32Value(), val); } bool X86Mir2Lir::GenInlinedCas32(CallInfo* info, bool need_write_barrier) { DCHECK_NE(cu_->instruction_set, kThumb2); return false; } LIR* X86Mir2Lir::OpPcRelLoad(int reg, LIR* target) { LOG(FATAL) << "Unexpected use of OpPcRelLoad for x86"; return NULL; } LIR* X86Mir2Lir::OpVldm(int rBase, int count) { LOG(FATAL) << "Unexpected use of OpVldm for x86"; return NULL; } LIR* X86Mir2Lir::OpVstm(int rBase, int count) { LOG(FATAL) << "Unexpected use of OpVstm for x86"; return NULL; } void X86Mir2Lir::GenMultiplyByTwoBitMultiplier(RegLocation rl_src, RegLocation rl_result, int lit, int first_bit, int second_bit) { int t_reg = AllocTemp(); OpRegRegImm(kOpLsl, t_reg, rl_src.low_reg, second_bit - first_bit); OpRegRegReg(kOpAdd, rl_result.low_reg, rl_src.low_reg, t_reg); FreeTemp(t_reg); if (first_bit != 0) { OpRegRegImm(kOpLsl, rl_result.low_reg, rl_result.low_reg, first_bit); } } void X86Mir2Lir::GenDivZeroCheck(int reg_lo, int reg_hi) { int t_reg = AllocTemp(); OpRegRegReg(kOpOr, t_reg, reg_lo, reg_hi); GenImmedCheck(kCondEq, t_reg, 0, kThrowDivZero); FreeTemp(t_reg); } // Test suspend flag, return target of taken suspend branch LIR* X86Mir2Lir::OpTestSuspend(LIR* target) { OpTlsCmp(Thread::ThreadFlagsOffset(), 0); return OpCondBranch((target == NULL) ? kCondNe : kCondEq, target); } // Decrement register and branch on condition LIR* X86Mir2Lir::OpDecAndBranch(ConditionCode c_code, int reg, LIR* target) { OpRegImm(kOpSub, reg, 1); return OpCmpImmBranch(c_code, reg, 0, target); } bool X86Mir2Lir::SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div, RegLocation rl_src, RegLocation rl_dest, int lit) { LOG(FATAL) << "Unexpected use of smallLiteralDive in x86"; return false; } LIR* X86Mir2Lir::OpIT(ConditionCode cond, const char* guide) { LOG(FATAL) << "Unexpected use of OpIT in x86"; return NULL; } void X86Mir2Lir::GenMulLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) { LOG(FATAL) << "Unexpected use of GenX86Long for x86"; } void X86Mir2Lir::GenAddLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) { // TODO: fixed register usage here as we only have 4 temps and temporary allocation isn't smart // enough. FlushAllRegs(); LockCallTemps(); // Prepare for explicit register usage LoadValueDirectWideFixed(rl_src1, r0, r1); LoadValueDirectWideFixed(rl_src2, r2, r3); // Compute (r1:r0) = (r1:r0) + (r2:r3) OpRegReg(kOpAdd, r0, r2); // r0 = r0 + r2 OpRegReg(kOpAdc, r1, r3); // r1 = r1 + r3 + CF RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, r0, r1, INVALID_SREG, INVALID_SREG}; StoreValueWide(rl_dest, rl_result); } void X86Mir2Lir::GenSubLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) { // TODO: fixed register usage here as we only have 4 temps and temporary allocation isn't smart // enough. FlushAllRegs(); LockCallTemps(); // Prepare for explicit register usage LoadValueDirectWideFixed(rl_src1, r0, r1); LoadValueDirectWideFixed(rl_src2, r2, r3); // Compute (r1:r0) = (r1:r0) + (r2:r3) OpRegReg(kOpSub, r0, r2); // r0 = r0 - r2 OpRegReg(kOpSbc, r1, r3); // r1 = r1 - r3 - CF RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, r0, r1, INVALID_SREG, INVALID_SREG}; StoreValueWide(rl_dest, rl_result); } void X86Mir2Lir::GenAndLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) { // TODO: fixed register usage here as we only have 4 temps and temporary allocation isn't smart // enough. FlushAllRegs(); LockCallTemps(); // Prepare for explicit register usage LoadValueDirectWideFixed(rl_src1, r0, r1); LoadValueDirectWideFixed(rl_src2, r2, r3); // Compute (r1:r0) = (r1:r0) & (r2:r3) OpRegReg(kOpAnd, r0, r2); // r0 = r0 & r2 OpRegReg(kOpAnd, r1, r3); // r1 = r1 & r3 RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, r0, r1, INVALID_SREG, INVALID_SREG}; StoreValueWide(rl_dest, rl_result); } void X86Mir2Lir::GenOrLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) { // TODO: fixed register usage here as we only have 4 temps and temporary allocation isn't smart // enough. FlushAllRegs(); LockCallTemps(); // Prepare for explicit register usage LoadValueDirectWideFixed(rl_src1, r0, r1); LoadValueDirectWideFixed(rl_src2, r2, r3); // Compute (r1:r0) = (r1:r0) | (r2:r3) OpRegReg(kOpOr, r0, r2); // r0 = r0 | r2 OpRegReg(kOpOr, r1, r3); // r1 = r1 | r3 RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, r0, r1, INVALID_SREG, INVALID_SREG}; StoreValueWide(rl_dest, rl_result); } void X86Mir2Lir::GenXorLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) { // TODO: fixed register usage here as we only have 4 temps and temporary allocation isn't smart // enough. FlushAllRegs(); LockCallTemps(); // Prepare for explicit register usage LoadValueDirectWideFixed(rl_src1, r0, r1); LoadValueDirectWideFixed(rl_src2, r2, r3); // Compute (r1:r0) = (r1:r0) ^ (r2:r3) OpRegReg(kOpXor, r0, r2); // r0 = r0 ^ r2 OpRegReg(kOpXor, r1, r3); // r1 = r1 ^ r3 RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, r0, r1, INVALID_SREG, INVALID_SREG}; StoreValueWide(rl_dest, rl_result); } void X86Mir2Lir::GenNegLong(RegLocation rl_dest, RegLocation rl_src) { FlushAllRegs(); LockCallTemps(); // Prepare for explicit register usage LoadValueDirectWideFixed(rl_src, r0, r1); // Compute (r1:r0) = -(r1:r0) OpRegReg(kOpNeg, r0, r0); // r0 = -r0 OpRegImm(kOpAdc, r1, 0); // r1 = r1 + CF OpRegReg(kOpNeg, r1, r1); // r1 = -r1 RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, r0, r1, INVALID_SREG, INVALID_SREG}; StoreValueWide(rl_dest, rl_result); } void X86Mir2Lir::OpRegThreadMem(OpKind op, int r_dest, ThreadOffset thread_offset) { X86OpCode opcode = kX86Bkpt; switch (op) { case kOpCmp: opcode = kX86Cmp32RT; break; case kOpMov: opcode = kX86Mov32RT; break; default: LOG(FATAL) << "Bad opcode: " << op; break; } NewLIR2(opcode, r_dest, thread_offset.Int32Value()); } /* * Generate array load */ void X86Mir2Lir::GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array, RegLocation rl_index, RegLocation rl_dest, int scale) { RegisterClass reg_class = oat_reg_class_by_size(size); int len_offset = mirror::Array::LengthOffset().Int32Value(); int data_offset; RegLocation rl_result; rl_array = LoadValue(rl_array, kCoreReg); rl_index = LoadValue(rl_index, kCoreReg); if (size == kLong || size == kDouble) { data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value(); } else { data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value(); } /* null object? */ GenNullCheck(rl_array.s_reg_low, rl_array.low_reg, opt_flags); if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) { /* if (rl_index >= [rl_array + len_offset]) goto kThrowArrayBounds */ GenRegMemCheck(kCondUge, rl_index.low_reg, rl_array.low_reg, len_offset, kThrowArrayBounds); } if ((size == kLong) || (size == kDouble)) { int reg_addr = AllocTemp(); OpLea(reg_addr, rl_array.low_reg, rl_index.low_reg, scale, data_offset); FreeTemp(rl_array.low_reg); FreeTemp(rl_index.low_reg); rl_result = EvalLoc(rl_dest, reg_class, true); LoadBaseIndexedDisp(reg_addr, INVALID_REG, 0, 0, rl_result.low_reg, rl_result.high_reg, size, INVALID_SREG); StoreValueWide(rl_dest, rl_result); } else { rl_result = EvalLoc(rl_dest, reg_class, true); LoadBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale, data_offset, rl_result.low_reg, INVALID_REG, size, INVALID_SREG); StoreValue(rl_dest, rl_result); } } /* * Generate array store * */ void X86Mir2Lir::GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array, RegLocation rl_index, RegLocation rl_src, int scale) { RegisterClass reg_class = oat_reg_class_by_size(size); int len_offset = mirror::Array::LengthOffset().Int32Value(); int data_offset; if (size == kLong || size == kDouble) { data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value(); } else { data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value(); } rl_array = LoadValue(rl_array, kCoreReg); rl_index = LoadValue(rl_index, kCoreReg); /* null object? */ GenNullCheck(rl_array.s_reg_low, rl_array.low_reg, opt_flags); if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) { /* if (rl_index >= [rl_array + len_offset]) goto kThrowArrayBounds */ GenRegMemCheck(kCondUge, rl_index.low_reg, rl_array.low_reg, len_offset, kThrowArrayBounds); } if ((size == kLong) || (size == kDouble)) { rl_src = LoadValueWide(rl_src, reg_class); } else { rl_src = LoadValue(rl_src, reg_class); } // If the src reg can't be byte accessed, move it to a temp first. if ((size == kSignedByte || size == kUnsignedByte) && rl_src.low_reg >= 4) { int temp = AllocTemp(); OpRegCopy(temp, rl_src.low_reg); StoreBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale, data_offset, temp, INVALID_REG, size, INVALID_SREG); } else { StoreBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale, data_offset, rl_src.low_reg, rl_src.high_reg, size, INVALID_SREG); } } /* * Generate array store * */ void X86Mir2Lir::GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index, RegLocation rl_src, int scale) { int len_offset = mirror::Array::LengthOffset().Int32Value(); int data_offset = mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value(); FlushAllRegs(); // Use explicit registers LockCallTemps(); int r_value = TargetReg(kArg0); // Register holding value int r_array_class = TargetReg(kArg1); // Register holding array's Class int r_array = TargetReg(kArg2); // Register holding array int r_index = TargetReg(kArg3); // Register holding index into array LoadValueDirectFixed(rl_array, r_array); // Grab array LoadValueDirectFixed(rl_src, r_value); // Grab value LoadValueDirectFixed(rl_index, r_index); // Grab index GenNullCheck(rl_array.s_reg_low, r_array, opt_flags); // NPE? // Store of null? LIR* null_value_check = OpCmpImmBranch(kCondEq, r_value, 0, NULL); // Get the array's class. LoadWordDisp(r_array, mirror::Object::ClassOffset().Int32Value(), r_array_class); CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(pCanPutArrayElement), r_value, r_array_class, true); // Redo LoadValues in case they didn't survive the call. LoadValueDirectFixed(rl_array, r_array); // Reload array LoadValueDirectFixed(rl_index, r_index); // Reload index LoadValueDirectFixed(rl_src, r_value); // Reload value r_array_class = INVALID_REG; // Branch here if value to be stored == null LIR* target = NewLIR0(kPseudoTargetLabel); null_value_check->target = target; // make an extra temp available for card mark below FreeTemp(TargetReg(kArg1)); if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) { /* if (rl_index >= [rl_array + len_offset]) goto kThrowArrayBounds */ GenRegMemCheck(kCondUge, r_index, r_array, len_offset, kThrowArrayBounds); } StoreBaseIndexedDisp(r_array, r_index, scale, data_offset, r_value, INVALID_REG, kWord, INVALID_SREG); FreeTemp(r_index); if (!mir_graph_->IsConstantNullRef(rl_src)) { MarkGCCard(r_value, r_array); } } void X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_shift) { // Default implementation is just to ignore the constant case. GenShiftOpLong(opcode, rl_dest, rl_src1, rl_shift); } void X86Mir2Lir::GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) { // Default - bail to non-const handler. GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2); } } // namespace art