/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "codegen_x86.h" #include "dex/compiler_internals.h" #include "dex/quick/mir_to_lir-inl.h" #include "x86_lir.h" #include <string> namespace art { // FIXME: restore "static" when usage uncovered /*static*/ int core_regs[] = { rAX, rCX, rDX, rBX, rX86_SP, rBP, rSI, rDI #ifdef TARGET_REX_SUPPORT r8, r9, r10, r11, r12, r13, r14, 15 #endif }; /*static*/ int ReservedRegs[] = {rX86_SP}; /*static*/ int core_temps[] = {rAX, rCX, rDX, rBX}; /*static*/ int FpRegs[] = { fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7, #ifdef TARGET_REX_SUPPORT fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15 #endif }; /*static*/ int fp_temps[] = { fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7, #ifdef TARGET_REX_SUPPORT fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15 #endif }; RegLocation X86Mir2Lir::LocCReturn() { RegLocation res = X86_LOC_C_RETURN; return res; } RegLocation X86Mir2Lir::LocCReturnWide() { RegLocation res = X86_LOC_C_RETURN_WIDE; return res; } RegLocation X86Mir2Lir::LocCReturnFloat() { RegLocation res = X86_LOC_C_RETURN_FLOAT; return res; } RegLocation X86Mir2Lir::LocCReturnDouble() { RegLocation res = X86_LOC_C_RETURN_DOUBLE; return res; } // Return a target-dependent special register. int X86Mir2Lir::TargetReg(SpecialTargetRegister reg) { int res = INVALID_REG; switch (reg) { case kSelf: res = rX86_SELF; break; case kSuspend: res = rX86_SUSPEND; break; case kLr: res = rX86_LR; break; case kPc: res = rX86_PC; break; case kSp: res = rX86_SP; break; case kArg0: res = rX86_ARG0; break; case kArg1: res = rX86_ARG1; break; case kArg2: res = rX86_ARG2; break; case kArg3: res = rX86_ARG3; break; case kFArg0: res = rX86_FARG0; break; case kFArg1: res = rX86_FARG1; break; case kFArg2: res = rX86_FARG2; break; case kFArg3: res = rX86_FARG3; break; case kRet0: res = rX86_RET0; break; case kRet1: res = rX86_RET1; break; case kInvokeTgt: res = rX86_INVOKE_TGT; break; case kCount: res = rX86_COUNT; break; } return res; } // Create a double from a pair of singles. int X86Mir2Lir::S2d(int low_reg, int high_reg) { return X86_S2D(low_reg, high_reg); } // Return mask to strip off fp reg flags and bias. uint32_t X86Mir2Lir::FpRegMask() { return X86_FP_REG_MASK; } // True if both regs single, both core or both double. bool X86Mir2Lir::SameRegType(int reg1, int reg2) { return (X86_REGTYPE(reg1) == X86_REGTYPE(reg2)); } /* * Decode the register id. */ uint64_t X86Mir2Lir::GetRegMaskCommon(int reg) { uint64_t seed; int shift; int reg_id; reg_id = reg & 0xf; /* Double registers in x86 are just a single FP register */ seed = 1; /* FP register starts at bit position 16 */ shift = X86_FPREG(reg) ? kX86FPReg0 : 0; /* Expand the double register id into single offset */ shift += reg_id; return (seed << shift); } uint64_t X86Mir2Lir::GetPCUseDefEncoding() { /* * FIXME: might make sense to use a virtual resource encoding bit for pc. Might be * able to clean up some of the x86/Arm_Mips differences */ LOG(FATAL) << "Unexpected call to GetPCUseDefEncoding for x86"; return 0ULL; } void X86Mir2Lir::SetupTargetResourceMasks(LIR* lir) { DCHECK_EQ(cu_->instruction_set, kX86); // X86-specific resource map setup here. uint64_t flags = X86Mir2Lir::EncodingMap[lir->opcode].flags; if (flags & REG_USE_SP) { lir->use_mask |= ENCODE_X86_REG_SP; } if (flags & REG_DEF_SP) { lir->def_mask |= ENCODE_X86_REG_SP; } if (flags & REG_DEFA) { SetupRegMask(&lir->def_mask, rAX); } if (flags & REG_DEFD) { SetupRegMask(&lir->def_mask, rDX); } if (flags & REG_USEA) { SetupRegMask(&lir->use_mask, rAX); } if (flags & REG_USEC) { SetupRegMask(&lir->use_mask, rCX); } if (flags & REG_USED) { SetupRegMask(&lir->use_mask, rDX); } } /* For dumping instructions */ static const char* x86RegName[] = { "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" }; static const char* x86CondName[] = { "O", "NO", "B/NAE/C", "NB/AE/NC", "Z/EQ", "NZ/NE", "BE/NA", "NBE/A", "S", "NS", "P/PE", "NP/PO", "L/NGE", "NL/GE", "LE/NG", "NLE/G" }; /* * Interpret a format string and build a string no longer than size * See format key in Assemble.cc. */ std::string X86Mir2Lir::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr) { std::string buf; size_t i = 0; size_t fmt_len = strlen(fmt); while (i < fmt_len) { if (fmt[i] != '!') { buf += fmt[i]; i++; } else { i++; DCHECK_LT(i, fmt_len); char operand_number_ch = fmt[i]; i++; if (operand_number_ch == '!') { buf += "!"; } else { int operand_number = operand_number_ch - '0'; DCHECK_LT(operand_number, 6); // Expect upto 6 LIR operands. DCHECK_LT(i, fmt_len); int operand = lir->operands[operand_number]; switch (fmt[i]) { case 'c': DCHECK_LT(static_cast<size_t>(operand), sizeof(x86CondName)); buf += x86CondName[operand]; break; case 'd': buf += StringPrintf("%d", operand); break; case 'p': { SwitchTable *tab_rec = reinterpret_cast<SwitchTable*>(operand); buf += StringPrintf("0x%08x", tab_rec->offset); break; } case 'r': if (X86_FPREG(operand) || X86_DOUBLEREG(operand)) { int fp_reg = operand & X86_FP_REG_MASK; buf += StringPrintf("xmm%d", fp_reg); } else { DCHECK_LT(static_cast<size_t>(operand), sizeof(x86RegName)); buf += x86RegName[operand]; } break; case 't': buf += StringPrintf("0x%08x (L%p)", reinterpret_cast<uint32_t>(base_addr) + lir->offset + operand, lir->target); break; default: buf += StringPrintf("DecodeError '%c'", fmt[i]); break; } i++; } } } return buf; } void X86Mir2Lir::DumpResourceMask(LIR *x86LIR, uint64_t mask, const char *prefix) { char buf[256]; buf[0] = 0; if (mask == ENCODE_ALL) { strcpy(buf, "all"); } else { char num[8]; int i; for (i = 0; i < kX86RegEnd; i++) { if (mask & (1ULL << i)) { sprintf(num, "%d ", i); strcat(buf, num); } } if (mask & ENCODE_CCODE) { strcat(buf, "cc "); } /* Memory bits */ if (x86LIR && (mask & ENCODE_DALVIK_REG)) { sprintf(buf + strlen(buf), "dr%d%s", x86LIR->alias_info & 0xffff, (x86LIR->alias_info & 0x80000000) ? "(+1)" : ""); } if (mask & ENCODE_LITERAL) { strcat(buf, "lit "); } if (mask & ENCODE_HEAP_REF) { strcat(buf, "heap "); } if (mask & ENCODE_MUST_NOT_ALIAS) { strcat(buf, "noalias "); } } if (buf[0]) { LOG(INFO) << prefix << ": " << buf; } } void X86Mir2Lir::AdjustSpillMask() { // Adjustment for LR spilling, x86 has no LR so nothing to do here core_spill_mask_ |= (1 << rRET); num_core_spills_++; } /* * Mark a callee-save fp register as promoted. Note that * vpush/vpop uses contiguous register lists so we must * include any holes in the mask. Associate holes with * Dalvik register INVALID_VREG (0xFFFFU). */ void X86Mir2Lir::MarkPreservedSingle(int v_reg, int reg) { UNIMPLEMENTED(WARNING) << "MarkPreservedSingle"; #if 0 LOG(FATAL) << "No support yet for promoted FP regs"; #endif } void X86Mir2Lir::FlushRegWide(int reg1, int reg2) { RegisterInfo* info1 = GetRegInfo(reg1); RegisterInfo* info2 = GetRegInfo(reg2); DCHECK(info1 && info2 && info1->pair && info2->pair && (info1->partner == info2->reg) && (info2->partner == info1->reg)); if ((info1->live && info1->dirty) || (info2->live && info2->dirty)) { if (!(info1->is_temp && info2->is_temp)) { /* Should not happen. If it does, there's a problem in eval_loc */ LOG(FATAL) << "Long half-temp, half-promoted"; } info1->dirty = false; info2->dirty = false; if (mir_graph_->SRegToVReg(info2->s_reg) < mir_graph_->SRegToVReg(info1->s_reg)) info1 = info2; int v_reg = mir_graph_->SRegToVReg(info1->s_reg); StoreBaseDispWide(rX86_SP, VRegOffset(v_reg), info1->reg, info1->partner); } } void X86Mir2Lir::FlushReg(int reg) { RegisterInfo* info = GetRegInfo(reg); if (info->live && info->dirty) { info->dirty = false; int v_reg = mir_graph_->SRegToVReg(info->s_reg); StoreBaseDisp(rX86_SP, VRegOffset(v_reg), reg, kWord); } } /* Give access to the target-dependent FP register encoding to common code */ bool X86Mir2Lir::IsFpReg(int reg) { return X86_FPREG(reg); } /* Clobber all regs that might be used by an external C call */ void X86Mir2Lir::ClobberCalleeSave() { Clobber(rAX); Clobber(rCX); Clobber(rDX); } RegLocation X86Mir2Lir::GetReturnWideAlt() { RegLocation res = LocCReturnWide(); CHECK(res.low_reg == rAX); CHECK(res.high_reg == rDX); Clobber(rAX); Clobber(rDX); MarkInUse(rAX); MarkInUse(rDX); MarkPair(res.low_reg, res.high_reg); return res; } RegLocation X86Mir2Lir::GetReturnAlt() { RegLocation res = LocCReturn(); res.low_reg = rDX; Clobber(rDX); MarkInUse(rDX); return res; } X86Mir2Lir::RegisterInfo* X86Mir2Lir::GetRegInfo(int reg) { return X86_FPREG(reg) ? ®_pool_->FPRegs[reg & X86_FP_REG_MASK] : ®_pool_->core_regs[reg]; } /* To be used when explicitly managing register use */ void X86Mir2Lir::LockCallTemps() { LockTemp(rX86_ARG0); LockTemp(rX86_ARG1); LockTemp(rX86_ARG2); LockTemp(rX86_ARG3); } /* To be used when explicitly managing register use */ void X86Mir2Lir::FreeCallTemps() { FreeTemp(rX86_ARG0); FreeTemp(rX86_ARG1); FreeTemp(rX86_ARG2); FreeTemp(rX86_ARG3); } void X86Mir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) { #if ANDROID_SMP != 0 // TODO: optimize fences NewLIR0(kX86Mfence); #endif } /* * Alloc a pair of core registers, or a double. Low reg in low byte, * high reg in next byte. */ int X86Mir2Lir::AllocTypedTempPair(bool fp_hint, int reg_class) { int high_reg; int low_reg; int res = 0; if (((reg_class == kAnyReg) && fp_hint) || (reg_class == kFPReg)) { low_reg = AllocTempDouble(); high_reg = low_reg + 1; res = (low_reg & 0xff) | ((high_reg & 0xff) << 8); return res; } low_reg = AllocTemp(); high_reg = AllocTemp(); res = (low_reg & 0xff) | ((high_reg & 0xff) << 8); return res; } int X86Mir2Lir::AllocTypedTemp(bool fp_hint, int reg_class) { if (((reg_class == kAnyReg) && fp_hint) || (reg_class == kFPReg)) { return AllocTempFloat(); } return AllocTemp(); } void X86Mir2Lir::CompilerInitializeRegAlloc() { int num_regs = sizeof(core_regs)/sizeof(*core_regs); int num_reserved = sizeof(ReservedRegs)/sizeof(*ReservedRegs); int num_temps = sizeof(core_temps)/sizeof(*core_temps); int num_fp_regs = sizeof(FpRegs)/sizeof(*FpRegs); int num_fp_temps = sizeof(fp_temps)/sizeof(*fp_temps); reg_pool_ = static_cast<RegisterPool*>(arena_->Alloc(sizeof(*reg_pool_), ArenaAllocator::kAllocRegAlloc)); reg_pool_->num_core_regs = num_regs; reg_pool_->core_regs = static_cast<RegisterInfo*>(arena_->Alloc(num_regs * sizeof(*reg_pool_->core_regs), ArenaAllocator::kAllocRegAlloc)); reg_pool_->num_fp_regs = num_fp_regs; reg_pool_->FPRegs = static_cast<RegisterInfo *>(arena_->Alloc(num_fp_regs * sizeof(*reg_pool_->FPRegs), ArenaAllocator::kAllocRegAlloc)); CompilerInitPool(reg_pool_->core_regs, core_regs, reg_pool_->num_core_regs); CompilerInitPool(reg_pool_->FPRegs, FpRegs, reg_pool_->num_fp_regs); // Keep special registers from being allocated for (int i = 0; i < num_reserved; i++) { MarkInUse(ReservedRegs[i]); } // Mark temp regs - all others not in use can be used for promotion for (int i = 0; i < num_temps; i++) { MarkTemp(core_temps[i]); } for (int i = 0; i < num_fp_temps; i++) { MarkTemp(fp_temps[i]); } } void X86Mir2Lir::FreeRegLocTemps(RegLocation rl_keep, RegLocation rl_free) { if ((rl_free.low_reg != rl_keep.low_reg) && (rl_free.low_reg != rl_keep.high_reg) && (rl_free.high_reg != rl_keep.low_reg) && (rl_free.high_reg != rl_keep.high_reg)) { // No overlap, free both FreeTemp(rl_free.low_reg); FreeTemp(rl_free.high_reg); } } void X86Mir2Lir::SpillCoreRegs() { if (num_core_spills_ == 0) { return; } // Spill mask not including fake return address register uint32_t mask = core_spill_mask_ & ~(1 << rRET); int offset = frame_size_ - (4 * num_core_spills_); for (int reg = 0; mask; mask >>= 1, reg++) { if (mask & 0x1) { StoreWordDisp(rX86_SP, offset, reg); offset += 4; } } } void X86Mir2Lir::UnSpillCoreRegs() { if (num_core_spills_ == 0) { return; } // Spill mask not including fake return address register uint32_t mask = core_spill_mask_ & ~(1 << rRET); int offset = frame_size_ - (4 * num_core_spills_); for (int reg = 0; mask; mask >>= 1, reg++) { if (mask & 0x1) { LoadWordDisp(rX86_SP, offset, reg); offset += 4; } } } bool X86Mir2Lir::IsUnconditionalBranch(LIR* lir) { return (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jmp32); } X86Mir2Lir::X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena) : Mir2Lir(cu, mir_graph, arena) { for (int i = 0; i < kX86Last; i++) { if (X86Mir2Lir::EncodingMap[i].opcode != i) { LOG(FATAL) << "Encoding order for " << X86Mir2Lir::EncodingMap[i].name << " is wrong: expecting " << i << ", seeing " << static_cast<int>(X86Mir2Lir::EncodingMap[i].opcode); } } } Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph, ArenaAllocator* const arena) { return new X86Mir2Lir(cu, mir_graph, arena); } // Not used in x86 int X86Mir2Lir::LoadHelper(ThreadOffset offset) { LOG(FATAL) << "Unexpected use of LoadHelper in x86"; return INVALID_REG; } uint64_t X86Mir2Lir::GetTargetInstFlags(int opcode) { return X86Mir2Lir::EncodingMap[opcode].flags; } const char* X86Mir2Lir::GetTargetInstName(int opcode) { return X86Mir2Lir::EncodingMap[opcode].name; } const char* X86Mir2Lir::GetTargetInstFmt(int opcode) { return X86Mir2Lir::EncodingMap[opcode].fmt; } } // namespace art