/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "image_writer.h" #include <sys/stat.h> #include <vector> #include "base/logging.h" #include "base/unix_file/fd_file.h" #include "class_linker.h" #include "compiled_method.h" #include "dex_file-inl.h" #include "driver/compiler_driver.h" #include "elf_writer.h" #include "gc/accounting/card_table-inl.h" #include "gc/accounting/heap_bitmap.h" #include "gc/accounting/space_bitmap-inl.h" #include "gc/heap.h" #include "gc/space/large_object_space.h" #include "gc/space/space-inl.h" #include "globals.h" #include "image.h" #include "intern_table.h" #include "mirror/art_field-inl.h" #include "mirror/art_method-inl.h" #include "mirror/array-inl.h" #include "mirror/class-inl.h" #include "mirror/class_loader.h" #include "mirror/dex_cache-inl.h" #include "mirror/object-inl.h" #include "mirror/object_array-inl.h" #include "oat.h" #include "oat_file.h" #include "object_utils.h" #include "runtime.h" #include "scoped_thread_state_change.h" #include "sirt_ref.h" #include "UniquePtr.h" #include "utils.h" using ::art::mirror::ArtField; using ::art::mirror::ArtMethod; using ::art::mirror::Class; using ::art::mirror::DexCache; using ::art::mirror::EntryPointFromInterpreter; using ::art::mirror::Object; using ::art::mirror::ObjectArray; using ::art::mirror::String; namespace art { bool ImageWriter::Write(const std::string& image_filename, uintptr_t image_begin, const std::string& oat_filename, const std::string& oat_location) { CHECK(!image_filename.empty()); CHECK_NE(image_begin, 0U); image_begin_ = reinterpret_cast<byte*>(image_begin); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); const std::vector<DexCache*>& all_dex_caches = class_linker->GetDexCaches(); dex_caches_.insert(all_dex_caches.begin(), all_dex_caches.end()); UniquePtr<File> oat_file(OS::OpenFileReadWrite(oat_filename.c_str())); if (oat_file.get() == NULL) { LOG(ERROR) << "Failed to open oat file " << oat_filename << " for " << oat_location; return false; } oat_file_ = OatFile::OpenWritable(oat_file.get(), oat_location); if (oat_file_ == NULL) { LOG(ERROR) << "Failed to open writable oat file " << oat_filename << " for " << oat_location; return false; } class_linker->RegisterOatFile(*oat_file_); interpreter_to_interpreter_bridge_offset_ = oat_file_->GetOatHeader().GetInterpreterToInterpreterBridgeOffset(); interpreter_to_compiled_code_bridge_offset_ = oat_file_->GetOatHeader().GetInterpreterToCompiledCodeBridgeOffset(); jni_dlsym_lookup_offset_ = oat_file_->GetOatHeader().GetJniDlsymLookupOffset(); portable_resolution_trampoline_offset_ = oat_file_->GetOatHeader().GetPortableResolutionTrampolineOffset(); portable_to_interpreter_bridge_offset_ = oat_file_->GetOatHeader().GetPortableToInterpreterBridgeOffset(); quick_resolution_trampoline_offset_ = oat_file_->GetOatHeader().GetQuickResolutionTrampolineOffset(); quick_to_interpreter_bridge_offset_ = oat_file_->GetOatHeader().GetQuickToInterpreterBridgeOffset(); { Thread::Current()->TransitionFromSuspendedToRunnable(); PruneNonImageClasses(); // Remove junk ComputeLazyFieldsForImageClasses(); // Add useful information ComputeEagerResolvedStrings(); Thread::Current()->TransitionFromRunnableToSuspended(kNative); } gc::Heap* heap = Runtime::Current()->GetHeap(); heap->CollectGarbage(false); // Remove garbage. // Trim size of alloc spaces. for (const auto& space : heap->GetContinuousSpaces()) { if (space->IsDlMallocSpace()) { space->AsDlMallocSpace()->Trim(); } } if (!AllocMemory()) { return false; } #ifndef NDEBUG { // NOLINT(whitespace/braces) ScopedObjectAccess soa(Thread::Current()); CheckNonImageClassesRemoved(); } #endif Thread::Current()->TransitionFromSuspendedToRunnable(); size_t oat_loaded_size = 0; size_t oat_data_offset = 0; ElfWriter::GetOatElfInformation(oat_file.get(), oat_loaded_size, oat_data_offset); CalculateNewObjectOffsets(oat_loaded_size, oat_data_offset); CopyAndFixupObjects(); PatchOatCodeAndMethods(); // Record allocations into the image bitmap. RecordImageAllocations(); Thread::Current()->TransitionFromRunnableToSuspended(kNative); UniquePtr<File> image_file(OS::CreateEmptyFile(image_filename.c_str())); ImageHeader* image_header = reinterpret_cast<ImageHeader*>(image_->Begin()); if (image_file.get() == NULL) { LOG(ERROR) << "Failed to open image file " << image_filename; return false; } if (fchmod(image_file->Fd(), 0644) != 0) { PLOG(ERROR) << "Failed to make image file world readable: " << image_filename; return EXIT_FAILURE; } // Write out the image. CHECK_EQ(image_end_, image_header->GetImageSize()); if (!image_file->WriteFully(image_->Begin(), image_end_)) { PLOG(ERROR) << "Failed to write image file " << image_filename; return false; } // Write out the image bitmap at the page aligned start of the image end. CHECK_ALIGNED(image_header->GetImageBitmapOffset(), kPageSize); if (!image_file->Write(reinterpret_cast<char*>(image_bitmap_->Begin()), image_header->GetImageBitmapSize(), image_header->GetImageBitmapOffset())) { PLOG(ERROR) << "Failed to write image file " << image_filename; return false; } return true; } void ImageWriter::RecordImageAllocations() { uint64_t start_time = NanoTime(); CHECK(image_bitmap_.get() != nullptr); for (const auto& it : offsets_) { mirror::Object* obj = reinterpret_cast<mirror::Object*>(image_->Begin() + it.second); DCHECK_ALIGNED(obj, kObjectAlignment); image_bitmap_->Set(obj); } LOG(INFO) << "RecordImageAllocations took " << PrettyDuration(NanoTime() - start_time); } bool ImageWriter::AllocMemory() { size_t size = 0; for (const auto& space : Runtime::Current()->GetHeap()->GetContinuousSpaces()) { if (space->IsDlMallocSpace()) { size += space->Size(); } } int prot = PROT_READ | PROT_WRITE; size_t length = RoundUp(size, kPageSize); image_.reset(MemMap::MapAnonymous("image writer image", NULL, length, prot)); if (image_.get() == NULL) { LOG(ERROR) << "Failed to allocate memory for image file generation"; return false; } return true; } void ImageWriter::ComputeLazyFieldsForImageClasses() { Runtime* runtime = Runtime::Current(); ClassLinker* class_linker = runtime->GetClassLinker(); class_linker->VisitClassesWithoutClassesLock(ComputeLazyFieldsForClassesVisitor, NULL); } bool ImageWriter::ComputeLazyFieldsForClassesVisitor(Class* c, void* /*arg*/) { c->ComputeName(); return true; } void ImageWriter::ComputeEagerResolvedStringsCallback(Object* obj, void* arg) { if (!obj->GetClass()->IsStringClass()) { return; } String* string = obj->AsString(); const uint16_t* utf16_string = string->GetCharArray()->GetData() + string->GetOffset(); ImageWriter* writer = reinterpret_cast<ImageWriter*>(arg); for (DexCache* dex_cache : writer->dex_caches_) { const DexFile& dex_file = *dex_cache->GetDexFile(); const DexFile::StringId* string_id = dex_file.FindStringId(utf16_string); if (string_id != NULL) { // This string occurs in this dex file, assign the dex cache entry. uint32_t string_idx = dex_file.GetIndexForStringId(*string_id); if (dex_cache->GetResolvedString(string_idx) == NULL) { dex_cache->SetResolvedString(string_idx, string); } } } } void ImageWriter::ComputeEagerResolvedStrings() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { // TODO: Check image spaces only? gc::Heap* heap = Runtime::Current()->GetHeap(); WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); heap->FlushAllocStack(); heap->GetLiveBitmap()->Walk(ComputeEagerResolvedStringsCallback, this); } bool ImageWriter::IsImageClass(const Class* klass) { return compiler_driver_.IsImageClass(ClassHelper(klass).GetDescriptor()); } struct NonImageClasses { ImageWriter* image_writer; std::set<std::string>* non_image_classes; }; void ImageWriter::PruneNonImageClasses() { if (compiler_driver_.GetImageClasses() == NULL) { return; } Runtime* runtime = Runtime::Current(); ClassLinker* class_linker = runtime->GetClassLinker(); // Make a list of classes we would like to prune. std::set<std::string> non_image_classes; NonImageClasses context; context.image_writer = this; context.non_image_classes = &non_image_classes; class_linker->VisitClasses(NonImageClassesVisitor, &context); // Remove the undesired classes from the class roots. for (const std::string& it : non_image_classes) { class_linker->RemoveClass(it.c_str(), NULL); } // Clear references to removed classes from the DexCaches. ArtMethod* resolution_method = runtime->GetResolutionMethod(); for (DexCache* dex_cache : dex_caches_) { for (size_t i = 0; i < dex_cache->NumResolvedTypes(); i++) { Class* klass = dex_cache->GetResolvedType(i); if (klass != NULL && !IsImageClass(klass)) { dex_cache->SetResolvedType(i, NULL); dex_cache->GetInitializedStaticStorage()->Set(i, NULL); } } for (size_t i = 0; i < dex_cache->NumResolvedMethods(); i++) { ArtMethod* method = dex_cache->GetResolvedMethod(i); if (method != NULL && !IsImageClass(method->GetDeclaringClass())) { dex_cache->SetResolvedMethod(i, resolution_method); } } for (size_t i = 0; i < dex_cache->NumResolvedFields(); i++) { ArtField* field = dex_cache->GetResolvedField(i); if (field != NULL && !IsImageClass(field->GetDeclaringClass())) { dex_cache->SetResolvedField(i, NULL); } } } } bool ImageWriter::NonImageClassesVisitor(Class* klass, void* arg) { NonImageClasses* context = reinterpret_cast<NonImageClasses*>(arg); if (!context->image_writer->IsImageClass(klass)) { context->non_image_classes->insert(ClassHelper(klass).GetDescriptor()); } return true; } void ImageWriter::CheckNonImageClassesRemoved() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { if (compiler_driver_.GetImageClasses() == NULL) { return; } gc::Heap* heap = Runtime::Current()->GetHeap(); Thread* self = Thread::Current(); { WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); heap->FlushAllocStack(); } ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); heap->GetLiveBitmap()->Walk(CheckNonImageClassesRemovedCallback, this); } void ImageWriter::CheckNonImageClassesRemovedCallback(Object* obj, void* arg) { ImageWriter* image_writer = reinterpret_cast<ImageWriter*>(arg); if (!obj->IsClass()) { return; } Class* klass = obj->AsClass(); if (!image_writer->IsImageClass(klass)) { image_writer->DumpImageClasses(); CHECK(image_writer->IsImageClass(klass)) << ClassHelper(klass).GetDescriptor() << " " << PrettyDescriptor(klass); } } void ImageWriter::DumpImageClasses() { CompilerDriver::DescriptorSet* image_classes = compiler_driver_.GetImageClasses(); CHECK(image_classes != NULL); for (const std::string& image_class : *image_classes) { LOG(INFO) << " " << image_class; } } void ImageWriter::CalculateNewObjectOffsetsCallback(Object* obj, void* arg) { DCHECK(obj != NULL); DCHECK(arg != NULL); ImageWriter* image_writer = reinterpret_cast<ImageWriter*>(arg); // if it is a string, we want to intern it if its not interned. if (obj->GetClass()->IsStringClass()) { // we must be an interned string that was forward referenced and already assigned if (image_writer->IsImageOffsetAssigned(obj)) { DCHECK_EQ(obj, obj->AsString()->Intern()); return; } SirtRef<String> interned(Thread::Current(), obj->AsString()->Intern()); if (obj != interned.get()) { if (!image_writer->IsImageOffsetAssigned(interned.get())) { // interned obj is after us, allocate its location early image_writer->AssignImageOffset(interned.get()); } // point those looking for this object to the interned version. image_writer->SetImageOffset(obj, image_writer->GetImageOffset(interned.get())); return; } // else (obj == interned), nothing to do but fall through to the normal case } image_writer->AssignImageOffset(obj); } ObjectArray<Object>* ImageWriter::CreateImageRoots() const { Runtime* runtime = Runtime::Current(); ClassLinker* class_linker = runtime->GetClassLinker(); Class* object_array_class = class_linker->FindSystemClass("[Ljava/lang/Object;"); Thread* self = Thread::Current(); // build an Object[] of all the DexCaches used in the source_space_ ObjectArray<Object>* dex_caches = ObjectArray<Object>::Alloc(self, object_array_class, dex_caches_.size()); int i = 0; for (DexCache* dex_cache : dex_caches_) { dex_caches->Set(i++, dex_cache); } // build an Object[] of the roots needed to restore the runtime SirtRef<ObjectArray<Object> > image_roots(self, ObjectArray<Object>::Alloc(self, object_array_class, ImageHeader::kImageRootsMax)); image_roots->Set(ImageHeader::kResolutionMethod, runtime->GetResolutionMethod()); image_roots->Set(ImageHeader::kCalleeSaveMethod, runtime->GetCalleeSaveMethod(Runtime::kSaveAll)); image_roots->Set(ImageHeader::kRefsOnlySaveMethod, runtime->GetCalleeSaveMethod(Runtime::kRefsOnly)); image_roots->Set(ImageHeader::kRefsAndArgsSaveMethod, runtime->GetCalleeSaveMethod(Runtime::kRefsAndArgs)); image_roots->Set(ImageHeader::kOatLocation, String::AllocFromModifiedUtf8(self, oat_file_->GetLocation().c_str())); image_roots->Set(ImageHeader::kDexCaches, dex_caches); image_roots->Set(ImageHeader::kClassRoots, class_linker->GetClassRoots()); for (int i = 0; i < ImageHeader::kImageRootsMax; i++) { CHECK(image_roots->Get(i) != NULL); } return image_roots.get(); } void ImageWriter::CalculateNewObjectOffsets(size_t oat_loaded_size, size_t oat_data_offset) { CHECK_NE(0U, oat_loaded_size); Thread* self = Thread::Current(); SirtRef<ObjectArray<Object> > image_roots(self, CreateImageRoots()); gc::Heap* heap = Runtime::Current()->GetHeap(); const auto& spaces = heap->GetContinuousSpaces(); DCHECK(!spaces.empty()); DCHECK_EQ(0U, image_end_); // Leave space for the header, but do not write it yet, we need to // know where image_roots is going to end up image_end_ += RoundUp(sizeof(ImageHeader), 8); // 64-bit-alignment { WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); heap->FlushAllocStack(); // TODO: Image spaces only? // TODO: Add InOrderWalk to heap bitmap. const char* old = self->StartAssertNoThreadSuspension("ImageWriter"); DCHECK(heap->GetLargeObjectsSpace()->GetLiveObjects()->IsEmpty()); for (const auto& space : spaces) { space->GetLiveBitmap()->InOrderWalk(CalculateNewObjectOffsetsCallback, this); DCHECK_LT(image_end_, image_->Size()); } self->EndAssertNoThreadSuspension(old); } // Create the image bitmap. image_bitmap_.reset(gc::accounting::SpaceBitmap::Create("image bitmap", image_->Begin(), image_end_)); const byte* oat_file_begin = image_begin_ + RoundUp(image_end_, kPageSize); const byte* oat_file_end = oat_file_begin + oat_loaded_size; oat_data_begin_ = oat_file_begin + oat_data_offset; const byte* oat_data_end = oat_data_begin_ + oat_file_->Size(); // Return to write header at start of image with future location of image_roots. At this point, // image_end_ is the size of the image (excluding bitmaps). ImageHeader image_header(reinterpret_cast<uint32_t>(image_begin_), static_cast<uint32_t>(image_end_), RoundUp(image_end_, kPageSize), image_bitmap_->Size(), reinterpret_cast<uint32_t>(GetImageAddress(image_roots.get())), oat_file_->GetOatHeader().GetChecksum(), reinterpret_cast<uint32_t>(oat_file_begin), reinterpret_cast<uint32_t>(oat_data_begin_), reinterpret_cast<uint32_t>(oat_data_end), reinterpret_cast<uint32_t>(oat_file_end)); memcpy(image_->Begin(), &image_header, sizeof(image_header)); // Note that image_end_ is left at end of used space } void ImageWriter::CopyAndFixupObjects() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { Thread* self = Thread::Current(); const char* old_cause = self->StartAssertNoThreadSuspension("ImageWriter"); gc::Heap* heap = Runtime::Current()->GetHeap(); // TODO: heap validation can't handle this fix up pass heap->DisableObjectValidation(); // TODO: Image spaces only? WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); heap->FlushAllocStack(); heap->GetLiveBitmap()->Walk(CopyAndFixupObjectsCallback, this); self->EndAssertNoThreadSuspension(old_cause); } void ImageWriter::CopyAndFixupObjectsCallback(Object* object, void* arg) { DCHECK(object != NULL); DCHECK(arg != NULL); const Object* obj = object; ImageWriter* image_writer = reinterpret_cast<ImageWriter*>(arg); // see GetLocalAddress for similar computation size_t offset = image_writer->GetImageOffset(obj); byte* dst = image_writer->image_->Begin() + offset; const byte* src = reinterpret_cast<const byte*>(obj); size_t n = obj->SizeOf(); DCHECK_LT(offset + n, image_writer->image_->Size()); memcpy(dst, src, n); Object* copy = reinterpret_cast<Object*>(dst); copy->SetField32(Object::MonitorOffset(), 0, false); // We may have inflated the lock during compilation. image_writer->FixupObject(obj, copy); } void ImageWriter::FixupObject(const Object* orig, Object* copy) { DCHECK(orig != NULL); DCHECK(copy != NULL); copy->SetClass(down_cast<Class*>(GetImageAddress(orig->GetClass()))); // TODO: special case init of pointers to malloc data (or removal of these pointers) if (orig->IsClass()) { FixupClass(orig->AsClass(), down_cast<Class*>(copy)); } else if (orig->IsObjectArray()) { FixupObjectArray(orig->AsObjectArray<Object>(), down_cast<ObjectArray<Object>*>(copy)); } else if (orig->IsArtMethod()) { FixupMethod(orig->AsArtMethod(), down_cast<ArtMethod*>(copy)); } else { FixupInstanceFields(orig, copy); } } void ImageWriter::FixupClass(const Class* orig, Class* copy) { FixupInstanceFields(orig, copy); FixupStaticFields(orig, copy); } void ImageWriter::FixupMethod(const ArtMethod* orig, ArtMethod* copy) { FixupInstanceFields(orig, copy); // OatWriter replaces the code_ with an offset value. Here we re-adjust to a pointer relative to // oat_begin_ // The resolution method has a special trampoline to call. if (UNLIKELY(orig == Runtime::Current()->GetResolutionMethod())) { #if defined(ART_USE_PORTABLE_COMPILER) copy->SetEntryPointFromCompiledCode(GetOatAddress(portable_resolution_trampoline_offset_)); #else copy->SetEntryPointFromCompiledCode(GetOatAddress(quick_resolution_trampoline_offset_)); #endif } else { // We assume all methods have code. If they don't currently then we set them to the use the // resolution trampoline. Abstract methods never have code and so we need to make sure their // use results in an AbstractMethodError. We use the interpreter to achieve this. if (UNLIKELY(orig->IsAbstract())) { #if defined(ART_USE_PORTABLE_COMPILER) copy->SetEntryPointFromCompiledCode(GetOatAddress(portable_to_interpreter_bridge_offset_)); #else copy->SetEntryPointFromCompiledCode(GetOatAddress(quick_to_interpreter_bridge_offset_)); #endif copy->SetEntryPointFromInterpreter(reinterpret_cast<EntryPointFromInterpreter*> (GetOatAddress(interpreter_to_interpreter_bridge_offset_))); } else { copy->SetEntryPointFromInterpreter(reinterpret_cast<EntryPointFromInterpreter*> (GetOatAddress(interpreter_to_compiled_code_bridge_offset_))); // Use original code if it exists. Otherwise, set the code pointer to the resolution // trampoline. const byte* code = GetOatAddress(orig->GetOatCodeOffset()); if (code != NULL) { copy->SetEntryPointFromCompiledCode(code); } else { #if defined(ART_USE_PORTABLE_COMPILER) copy->SetEntryPointFromCompiledCode(GetOatAddress(portable_resolution_trampoline_offset_)); #else copy->SetEntryPointFromCompiledCode(GetOatAddress(quick_resolution_trampoline_offset_)); #endif } if (orig->IsNative()) { // The native method's pointer is set to a stub to lookup via dlsym. // Note this is not the code_ pointer, that is handled above. copy->SetNativeMethod(GetOatAddress(jni_dlsym_lookup_offset_)); } else { // Normal (non-abstract non-native) methods have various tables to relocate. uint32_t mapping_table_off = orig->GetOatMappingTableOffset(); const byte* mapping_table = GetOatAddress(mapping_table_off); copy->SetMappingTable(mapping_table); uint32_t vmap_table_offset = orig->GetOatVmapTableOffset(); const byte* vmap_table = GetOatAddress(vmap_table_offset); copy->SetVmapTable(vmap_table); uint32_t native_gc_map_offset = orig->GetOatNativeGcMapOffset(); const byte* native_gc_map = GetOatAddress(native_gc_map_offset); copy->SetNativeGcMap(reinterpret_cast<const uint8_t*>(native_gc_map)); } } } } void ImageWriter::FixupObjectArray(const ObjectArray<Object>* orig, ObjectArray<Object>* copy) { for (int32_t i = 0; i < orig->GetLength(); ++i) { const Object* element = orig->Get(i); copy->SetPtrWithoutChecks(i, GetImageAddress(element)); } } void ImageWriter::FixupInstanceFields(const Object* orig, Object* copy) { DCHECK(orig != NULL); DCHECK(copy != NULL); Class* klass = orig->GetClass(); DCHECK(klass != NULL); FixupFields(orig, copy, klass->GetReferenceInstanceOffsets(), false); } void ImageWriter::FixupStaticFields(const Class* orig, Class* copy) { DCHECK(orig != NULL); DCHECK(copy != NULL); FixupFields(orig, copy, orig->GetReferenceStaticOffsets(), true); } void ImageWriter::FixupFields(const Object* orig, Object* copy, uint32_t ref_offsets, bool is_static) { if (ref_offsets != CLASS_WALK_SUPER) { // Found a reference offset bitmap. Fixup the specified offsets. while (ref_offsets != 0) { size_t right_shift = CLZ(ref_offsets); MemberOffset byte_offset = CLASS_OFFSET_FROM_CLZ(right_shift); const Object* ref = orig->GetFieldObject<const Object*>(byte_offset, false); // Use SetFieldPtr to avoid card marking since we are writing to the image. copy->SetFieldPtr(byte_offset, GetImageAddress(ref), false); ref_offsets &= ~(CLASS_HIGH_BIT >> right_shift); } } else { // There is no reference offset bitmap. In the non-static case, // walk up the class inheritance hierarchy and find reference // offsets the hard way. In the static case, just consider this // class. for (const Class *klass = is_static ? orig->AsClass() : orig->GetClass(); klass != NULL; klass = is_static ? NULL : klass->GetSuperClass()) { size_t num_reference_fields = (is_static ? klass->NumReferenceStaticFields() : klass->NumReferenceInstanceFields()); for (size_t i = 0; i < num_reference_fields; ++i) { ArtField* field = (is_static ? klass->GetStaticField(i) : klass->GetInstanceField(i)); MemberOffset field_offset = field->GetOffset(); const Object* ref = orig->GetFieldObject<const Object*>(field_offset, false); // Use SetFieldPtr to avoid card marking since we are writing to the image. copy->SetFieldPtr(field_offset, GetImageAddress(ref), false); } } } if (!is_static && orig->IsReferenceInstance()) { // Fix-up referent, that isn't marked as an object field, for References. ArtField* field = orig->GetClass()->FindInstanceField("referent", "Ljava/lang/Object;"); MemberOffset field_offset = field->GetOffset(); const Object* ref = orig->GetFieldObject<const Object*>(field_offset, false); // Use SetFieldPtr to avoid card marking since we are writing to the image. copy->SetFieldPtr(field_offset, GetImageAddress(ref), false); } } static ArtMethod* GetTargetMethod(const CompilerDriver::PatchInformation* patch) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); DexCache* dex_cache = class_linker->FindDexCache(patch->GetDexFile()); ArtMethod* method = class_linker->ResolveMethod(patch->GetDexFile(), patch->GetTargetMethodIdx(), dex_cache, NULL, NULL, patch->GetTargetInvokeType()); CHECK(method != NULL) << patch->GetDexFile().GetLocation() << " " << patch->GetTargetMethodIdx(); CHECK(!method->IsRuntimeMethod()) << patch->GetDexFile().GetLocation() << " " << patch->GetTargetMethodIdx(); CHECK(dex_cache->GetResolvedMethods()->Get(patch->GetTargetMethodIdx()) == method) << patch->GetDexFile().GetLocation() << " " << patch->GetReferrerMethodIdx() << " " << PrettyMethod(dex_cache->GetResolvedMethods()->Get(patch->GetTargetMethodIdx())) << " " << PrettyMethod(method); return method; } void ImageWriter::PatchOatCodeAndMethods() { Thread* self = Thread::Current(); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); const char* old_cause = self->StartAssertNoThreadSuspension("ImageWriter"); typedef std::vector<const CompilerDriver::PatchInformation*> Patches; const Patches& code_to_patch = compiler_driver_.GetCodeToPatch(); for (size_t i = 0; i < code_to_patch.size(); i++) { const CompilerDriver::PatchInformation* patch = code_to_patch[i]; ArtMethod* target = GetTargetMethod(patch); uint32_t code = reinterpret_cast<uint32_t>(class_linker->GetOatCodeFor(target)); uint32_t code_base = reinterpret_cast<uint32_t>(&oat_file_->GetOatHeader()); uint32_t code_offset = code - code_base; SetPatchLocation(patch, reinterpret_cast<uint32_t>(GetOatAddress(code_offset))); } const Patches& methods_to_patch = compiler_driver_.GetMethodsToPatch(); for (size_t i = 0; i < methods_to_patch.size(); i++) { const CompilerDriver::PatchInformation* patch = methods_to_patch[i]; ArtMethod* target = GetTargetMethod(patch); SetPatchLocation(patch, reinterpret_cast<uint32_t>(GetImageAddress(target))); } // Update the image header with the new checksum after patching ImageHeader* image_header = reinterpret_cast<ImageHeader*>(image_->Begin()); image_header->SetOatChecksum(oat_file_->GetOatHeader().GetChecksum()); self->EndAssertNoThreadSuspension(old_cause); } void ImageWriter::SetPatchLocation(const CompilerDriver::PatchInformation* patch, uint32_t value) { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); const void* oat_code = class_linker->GetOatCodeFor(patch->GetDexFile(), patch->GetReferrerClassDefIdx(), patch->GetReferrerMethodIdx()); OatHeader& oat_header = const_cast<OatHeader&>(oat_file_->GetOatHeader()); // TODO: make this Thumb2 specific uint8_t* base = reinterpret_cast<uint8_t*>(reinterpret_cast<uint32_t>(oat_code) & ~0x1); uint32_t* patch_location = reinterpret_cast<uint32_t*>(base + patch->GetLiteralOffset()); #ifndef NDEBUG const DexFile::MethodId& id = patch->GetDexFile().GetMethodId(patch->GetTargetMethodIdx()); uint32_t expected = reinterpret_cast<uint32_t>(&id); uint32_t actual = *patch_location; CHECK(actual == expected || actual == value) << std::hex << "actual=" << actual << "expected=" << expected << "value=" << value; #endif *patch_location = value; oat_header.UpdateChecksum(patch_location, sizeof(value)); } } // namespace art