/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dex_file-inl.h" #include "driver/compiler_driver.h" #include "driver/dex_compilation_unit.h" #include "intrinsic_helper.h" #include "ir_builder.h" #include "method_reference.h" #include "mirror/art_method.h" #include "mirror/array.h" #include "mirror/string.h" #include "thread.h" #include "utils_llvm.h" #include "verifier/method_verifier.h" #include "dex/compiler_ir.h" #include "dex/mir_graph.h" #include "dex/quick/mir_to_lir.h" #include <llvm/ADT/STLExtras.h> #include <llvm/IR/Intrinsics.h> #include <llvm/IR/Metadata.h> #include <llvm/Pass.h> #include <llvm/Support/CFG.h> #include <llvm/Support/InstIterator.h> #include <vector> #include <map> #include <utility> using ::art::kMIRIgnoreNullCheck; using ::art::kMIRIgnoreRangeCheck; using ::art::llvm::IRBuilder; using ::art::llvm::IntrinsicHelper; using ::art::llvm::JType; using ::art::llvm::RuntimeSupportBuilder; using ::art::llvm::kBoolean; using ::art::llvm::kByte; using ::art::llvm::kChar; using ::art::llvm::kDouble; using ::art::llvm::kFloat; using ::art::llvm::kInt; using ::art::llvm::kLikely; using ::art::llvm::kLong; using ::art::llvm::kObject; using ::art::llvm::kShort; using ::art::llvm::kTBAAConstJObject; using ::art::llvm::kTBAAHeapArray; using ::art::llvm::kTBAAHeapInstance; using ::art::llvm::kTBAAHeapStatic; using ::art::llvm::kTBAARegister; using ::art::llvm::kTBAARuntimeInfo; using ::art::llvm::kTBAAShadowFrame; using ::art::llvm::kUnlikely; using ::art::llvm::kVoid; using ::art::llvm::runtime_support::AllocArray; using ::art::llvm::runtime_support::AllocArrayWithAccessCheck; using ::art::llvm::runtime_support::AllocObject; using ::art::llvm::runtime_support::AllocObjectWithAccessCheck; using ::art::llvm::runtime_support::CheckAndAllocArray; using ::art::llvm::runtime_support::CheckAndAllocArrayWithAccessCheck; using ::art::llvm::runtime_support::CheckCast; using ::art::llvm::runtime_support::CheckPutArrayElement; using ::art::llvm::runtime_support::FillArrayData; using ::art::llvm::runtime_support::FindCatchBlock; using ::art::llvm::runtime_support::FindDirectMethodWithAccessCheck; using ::art::llvm::runtime_support::FindInterfaceMethod; using ::art::llvm::runtime_support::FindInterfaceMethodWithAccessCheck; using ::art::llvm::runtime_support::FindStaticMethodWithAccessCheck; using ::art::llvm::runtime_support::FindSuperMethodWithAccessCheck; using ::art::llvm::runtime_support::FindVirtualMethodWithAccessCheck; using ::art::llvm::runtime_support::Get32Instance; using ::art::llvm::runtime_support::Get32Static; using ::art::llvm::runtime_support::Get64Instance; using ::art::llvm::runtime_support::Get64Static; using ::art::llvm::runtime_support::GetObjectInstance; using ::art::llvm::runtime_support::GetObjectStatic; using ::art::llvm::runtime_support::InitializeStaticStorage; using ::art::llvm::runtime_support::InitializeType; using ::art::llvm::runtime_support::InitializeTypeAndVerifyAccess; using ::art::llvm::runtime_support::IsAssignable; using ::art::llvm::runtime_support::ResolveString; using ::art::llvm::runtime_support::RuntimeId; using ::art::llvm::runtime_support::Set32Instance; using ::art::llvm::runtime_support::Set32Static; using ::art::llvm::runtime_support::Set64Instance; using ::art::llvm::runtime_support::Set64Static; using ::art::llvm::runtime_support::SetObjectInstance; using ::art::llvm::runtime_support::SetObjectStatic; using ::art::llvm::runtime_support::ThrowDivZeroException; using ::art::llvm::runtime_support::ThrowException; using ::art::llvm::runtime_support::ThrowIndexOutOfBounds; using ::art::llvm::runtime_support::ThrowNullPointerException; using ::art::llvm::runtime_support::ThrowStackOverflowException; using ::art::llvm::runtime_support::art_d2i; using ::art::llvm::runtime_support::art_d2l; using ::art::llvm::runtime_support::art_f2i; using ::art::llvm::runtime_support::art_f2l; namespace art { extern char RemapShorty(char shortyType); } // namespace art namespace { class GBCExpanderPass : public llvm::FunctionPass { private: const IntrinsicHelper& intrinsic_helper_; IRBuilder& irb_; llvm::LLVMContext& context_; RuntimeSupportBuilder& rtb_; private: llvm::AllocaInst* shadow_frame_; llvm::Value* old_shadow_frame_; private: art::CompilerDriver* const driver_; const art::DexCompilationUnit* const dex_compilation_unit_; llvm::Function* func_; std::vector<llvm::BasicBlock*> basic_blocks_; std::vector<llvm::BasicBlock*> basic_block_landing_pads_; llvm::BasicBlock* current_bb_; std::map<llvm::BasicBlock*, std::vector<std::pair<llvm::BasicBlock*, llvm::BasicBlock*> > > landing_pad_phi_mapping_; llvm::BasicBlock* basic_block_unwind_; // Maps each vreg to its shadow frame address. std::vector<llvm::Value*> shadow_frame_vreg_addresses_; bool changed_; private: //---------------------------------------------------------------------------- // Constant for GBC expansion //---------------------------------------------------------------------------- enum IntegerShiftKind { kIntegerSHL, kIntegerSHR, kIntegerUSHR, }; private: //---------------------------------------------------------------------------- // Helper function for GBC expansion //---------------------------------------------------------------------------- llvm::Value* ExpandToRuntime(RuntimeId rt, llvm::CallInst& inst); uint64_t LV2UInt(llvm::Value* lv) { return llvm::cast<llvm::ConstantInt>(lv)->getZExtValue(); } int64_t LV2SInt(llvm::Value* lv) { return llvm::cast<llvm::ConstantInt>(lv)->getSExtValue(); } private: // TODO: Almost all Emit* are directly copy-n-paste from MethodCompiler. // Refactor these utility functions from MethodCompiler to avoid forking. void EmitStackOverflowCheck(llvm::Instruction* first_non_alloca); void RewriteFunction(); void RewriteBasicBlock(llvm::BasicBlock* original_block); void UpdatePhiInstruction(llvm::BasicBlock* old_basic_block, llvm::BasicBlock* new_basic_block); // Sign or zero extend category 1 types < 32bits in size to 32bits. llvm::Value* SignOrZeroExtendCat1Types(llvm::Value* value, JType jty); // Truncate category 1 types from 32bits to the given JType size. llvm::Value* TruncateCat1Types(llvm::Value* value, JType jty); //---------------------------------------------------------------------------- // Dex cache code generation helper function //---------------------------------------------------------------------------- llvm::Value* EmitLoadDexCacheAddr(art::MemberOffset dex_cache_offset); llvm::Value* EmitLoadDexCacheStaticStorageFieldAddr(uint32_t type_idx); llvm::Value* EmitLoadDexCacheResolvedTypeFieldAddr(uint32_t type_idx); llvm::Value* EmitLoadDexCacheResolvedMethodFieldAddr(uint32_t method_idx); llvm::Value* EmitLoadDexCacheStringFieldAddr(uint32_t string_idx); //---------------------------------------------------------------------------- // Code generation helper function //---------------------------------------------------------------------------- llvm::Value* EmitLoadMethodObjectAddr(); llvm::Value* EmitLoadArrayLength(llvm::Value* array); llvm::Value* EmitLoadSDCalleeMethodObjectAddr(uint32_t callee_method_idx); llvm::Value* EmitLoadVirtualCalleeMethodObjectAddr(int vtable_idx, llvm::Value* this_addr); llvm::Value* EmitArrayGEP(llvm::Value* array_addr, llvm::Value* index_value, JType elem_jty); //---------------------------------------------------------------------------- // Invoke helper function //---------------------------------------------------------------------------- llvm::Value* EmitInvoke(llvm::CallInst& call_inst); //---------------------------------------------------------------------------- // Inlining helper functions //---------------------------------------------------------------------------- bool EmitIntrinsic(llvm::CallInst& call_inst, llvm::Value** result); bool EmitIntrinsicStringLengthOrIsEmpty(llvm::CallInst& call_inst, llvm::Value** result, bool is_empty); private: //---------------------------------------------------------------------------- // Expand Greenland intrinsics //---------------------------------------------------------------------------- void Expand_TestSuspend(llvm::CallInst& call_inst); void Expand_MarkGCCard(llvm::CallInst& call_inst); llvm::Value* Expand_LoadStringFromDexCache(llvm::Value* string_idx_value); llvm::Value* Expand_LoadTypeFromDexCache(llvm::Value* type_idx_value); void Expand_LockObject(llvm::Value* obj); void Expand_UnlockObject(llvm::Value* obj); llvm::Value* Expand_ArrayGet(llvm::Value* array_addr, llvm::Value* index_value, JType elem_jty); void Expand_ArrayPut(llvm::Value* new_value, llvm::Value* array_addr, llvm::Value* index_value, JType elem_jty); void Expand_FilledNewArray(llvm::CallInst& call_inst); llvm::Value* Expand_IGetFast(llvm::Value* field_offset_value, llvm::Value* is_volatile_value, llvm::Value* object_addr, JType field_jty); void Expand_IPutFast(llvm::Value* field_offset_value, llvm::Value* is_volatile_value, llvm::Value* object_addr, llvm::Value* new_value, JType field_jty); llvm::Value* Expand_SGetFast(llvm::Value* static_storage_addr, llvm::Value* field_offset_value, llvm::Value* is_volatile_value, JType field_jty); void Expand_SPutFast(llvm::Value* static_storage_addr, llvm::Value* field_offset_value, llvm::Value* is_volatile_value, llvm::Value* new_value, JType field_jty); llvm::Value* Expand_LoadDeclaringClassSSB(llvm::Value* method_object_addr); llvm::Value* Expand_LoadClassSSBFromDexCache(llvm::Value* type_idx_value); llvm::Value* Expand_GetSDCalleeMethodObjAddrFast(llvm::Value* callee_method_idx_value); llvm::Value* Expand_GetVirtualCalleeMethodObjAddrFast(llvm::Value* vtable_idx_value, llvm::Value* this_addr); llvm::Value* Expand_Invoke(llvm::CallInst& call_inst); llvm::Value* Expand_DivRem(llvm::CallInst& call_inst, bool is_div, JType op_jty); void Expand_AllocaShadowFrame(llvm::Value* num_vregs_value); void Expand_SetVReg(llvm::Value* entry_idx, llvm::Value* obj); void Expand_PopShadowFrame(); void Expand_UpdateDexPC(llvm::Value* dex_pc_value); //---------------------------------------------------------------------------- // Quick //---------------------------------------------------------------------------- llvm::Value* Expand_FPCompare(llvm::Value* src1_value, llvm::Value* src2_value, bool gt_bias); llvm::Value* Expand_LongCompare(llvm::Value* src1_value, llvm::Value* src2_value); llvm::Value* EmitCompareResultSelection(llvm::Value* cmp_eq, llvm::Value* cmp_lt); llvm::Value* EmitLoadConstantClass(uint32_t dex_pc, uint32_t type_idx); llvm::Value* EmitLoadStaticStorage(uint32_t dex_pc, uint32_t type_idx); llvm::Value* Expand_HLIGet(llvm::CallInst& call_inst, JType field_jty); void Expand_HLIPut(llvm::CallInst& call_inst, JType field_jty); llvm::Value* Expand_HLSget(llvm::CallInst& call_inst, JType field_jty); void Expand_HLSput(llvm::CallInst& call_inst, JType field_jty); llvm::Value* Expand_HLArrayGet(llvm::CallInst& call_inst, JType field_jty); void Expand_HLArrayPut(llvm::CallInst& call_inst, JType field_jty); llvm::Value* Expand_ConstString(llvm::CallInst& call_inst); llvm::Value* Expand_ConstClass(llvm::CallInst& call_inst); void Expand_MonitorEnter(llvm::CallInst& call_inst); void Expand_MonitorExit(llvm::CallInst& call_inst); void Expand_HLCheckCast(llvm::CallInst& call_inst); llvm::Value* Expand_InstanceOf(llvm::CallInst& call_inst); llvm::Value* Expand_NewInstance(llvm::CallInst& call_inst); llvm::Value* Expand_HLInvoke(llvm::CallInst& call_inst); llvm::Value* Expand_OptArrayLength(llvm::CallInst& call_inst); llvm::Value* Expand_NewArray(llvm::CallInst& call_inst); llvm::Value* Expand_HLFilledNewArray(llvm::CallInst& call_inst); void Expand_HLFillArrayData(llvm::CallInst& call_inst); llvm::Value* EmitAllocNewArray(uint32_t dex_pc, llvm::Value* array_length_value, uint32_t type_idx, bool is_filled_new_array); llvm::Value* EmitCallRuntimeForCalleeMethodObjectAddr(uint32_t callee_method_idx, art::InvokeType invoke_type, llvm::Value* this_addr, uint32_t dex_pc, bool is_fast_path); void EmitMarkGCCard(llvm::Value* value, llvm::Value* target_addr); void EmitUpdateDexPC(uint32_t dex_pc); void EmitGuard_DivZeroException(uint32_t dex_pc, llvm::Value* denominator, JType op_jty); void EmitGuard_NullPointerException(uint32_t dex_pc, llvm::Value* object, int opt_flags); void EmitGuard_ArrayIndexOutOfBoundsException(uint32_t dex_pc, llvm::Value* array, llvm::Value* index, int opt_flags); llvm::FunctionType* GetFunctionType(llvm::Type* ret_type, uint32_t method_idx, bool is_static); llvm::BasicBlock* GetBasicBlock(uint32_t dex_pc); llvm::BasicBlock* CreateBasicBlockWithDexPC(uint32_t dex_pc, const char* postfix); int32_t GetTryItemOffset(uint32_t dex_pc); llvm::BasicBlock* GetLandingPadBasicBlock(uint32_t dex_pc); llvm::BasicBlock* GetUnwindBasicBlock(); void EmitGuard_ExceptionLandingPad(uint32_t dex_pc); void EmitBranchExceptionLandingPad(uint32_t dex_pc); //---------------------------------------------------------------------------- // Expand Arithmetic Helper Intrinsics //---------------------------------------------------------------------------- llvm::Value* Expand_IntegerShift(llvm::Value* src1_value, llvm::Value* src2_value, IntegerShiftKind kind, JType op_jty); public: static char ID; GBCExpanderPass(const IntrinsicHelper& intrinsic_helper, IRBuilder& irb, art::CompilerDriver* driver, const art::DexCompilationUnit* dex_compilation_unit) : llvm::FunctionPass(ID), intrinsic_helper_(intrinsic_helper), irb_(irb), context_(irb.getContext()), rtb_(irb.Runtime()), shadow_frame_(NULL), old_shadow_frame_(NULL), driver_(driver), dex_compilation_unit_(dex_compilation_unit), func_(NULL), current_bb_(NULL), basic_block_unwind_(NULL), changed_(false) {} bool runOnFunction(llvm::Function& func); private: void InsertStackOverflowCheck(llvm::Function& func); llvm::Value* ExpandIntrinsic(IntrinsicHelper::IntrinsicId intr_id, llvm::CallInst& call_inst); }; char GBCExpanderPass::ID = 0; bool GBCExpanderPass::runOnFunction(llvm::Function& func) { VLOG(compiler) << "GBC expansion on " << func.getName().str(); // Runtime support or stub if (dex_compilation_unit_ == NULL) { return false; } // Setup rewrite context shadow_frame_ = NULL; old_shadow_frame_ = NULL; func_ = &func; changed_ = false; // Assume unchanged shadow_frame_vreg_addresses_.resize(dex_compilation_unit_->GetCodeItem()->registers_size_, NULL); basic_blocks_.resize(dex_compilation_unit_->GetCodeItem()->insns_size_in_code_units_); basic_block_landing_pads_.resize(dex_compilation_unit_->GetCodeItem()->tries_size_, NULL); basic_block_unwind_ = NULL; for (llvm::Function::iterator bb_iter = func_->begin(), bb_end = func_->end(); bb_iter != bb_end; ++bb_iter) { if (bb_iter->begin()->getMetadata("DexOff") == NULL) { continue; } uint32_t dex_pc = LV2UInt(bb_iter->begin()->getMetadata("DexOff")->getOperand(0)); basic_blocks_[dex_pc] = bb_iter; } // Insert stack overflow check InsertStackOverflowCheck(func); // TODO: Use intrinsic. // Rewrite the intrinsics RewriteFunction(); VERIFY_LLVM_FUNCTION(func); return changed_; } void GBCExpanderPass::RewriteBasicBlock(llvm::BasicBlock* original_block) { llvm::BasicBlock* curr_basic_block = original_block; llvm::BasicBlock::iterator inst_iter = original_block->begin(); llvm::BasicBlock::iterator inst_end = original_block->end(); while (inst_iter != inst_end) { llvm::CallInst* call_inst = llvm::dyn_cast<llvm::CallInst>(inst_iter); IntrinsicHelper::IntrinsicId intr_id = IntrinsicHelper::UnknownId; if (call_inst) { llvm::Function* callee_func = call_inst->getCalledFunction(); intr_id = intrinsic_helper_.GetIntrinsicId(callee_func); } if (intr_id == IntrinsicHelper::UnknownId) { // This is not intrinsic call. Skip this instruction. ++inst_iter; continue; } // Rewrite the intrinsic and change the function changed_ = true; irb_.SetInsertPoint(inst_iter); // Expand the intrinsic if (llvm::Value* new_value = ExpandIntrinsic(intr_id, *call_inst)) { inst_iter->replaceAllUsesWith(new_value); } // Remove the old intrinsic call instruction llvm::BasicBlock::iterator old_inst = inst_iter++; old_inst->eraseFromParent(); // Splice the instruction to the new basic block llvm::BasicBlock* next_basic_block = irb_.GetInsertBlock(); if (next_basic_block != curr_basic_block) { next_basic_block->getInstList().splice( irb_.GetInsertPoint(), curr_basic_block->getInstList(), inst_iter, inst_end); curr_basic_block = next_basic_block; inst_end = curr_basic_block->end(); } } } void GBCExpanderPass::RewriteFunction() { size_t num_basic_blocks = func_->getBasicBlockList().size(); // NOTE: We are not using (bb_iter != bb_end) as the for-loop condition, // because we will create new basic block while expanding the intrinsics. // We only want to iterate through the input basic blocks. landing_pad_phi_mapping_.clear(); for (llvm::Function::iterator bb_iter = func_->begin(); num_basic_blocks > 0; ++bb_iter, --num_basic_blocks) { // Set insert point to current basic block. irb_.SetInsertPoint(bb_iter); current_bb_ = bb_iter; // Rewrite the basic block RewriteBasicBlock(bb_iter); // Update the phi-instructions in the successor basic block llvm::BasicBlock* last_block = irb_.GetInsertBlock(); if (last_block != bb_iter) { UpdatePhiInstruction(bb_iter, last_block); } } typedef std::map<llvm::PHINode*, llvm::PHINode*> HandlerPHIMap; HandlerPHIMap handler_phi; // Iterate every used landing pad basic block for (size_t i = 0, ei = basic_block_landing_pads_.size(); i != ei; ++i) { llvm::BasicBlock* lbb = basic_block_landing_pads_[i]; if (lbb == NULL) { continue; } llvm::TerminatorInst* term_inst = lbb->getTerminator(); std::vector<std::pair<llvm::BasicBlock*, llvm::BasicBlock*> >& rewrite_pair = landing_pad_phi_mapping_[lbb]; irb_.SetInsertPoint(lbb->begin()); // Iterate every succeeding basic block (catch block) for (unsigned succ_iter = 0, succ_end = term_inst->getNumSuccessors(); succ_iter != succ_end; ++succ_iter) { llvm::BasicBlock* succ_basic_block = term_inst->getSuccessor(succ_iter); // Iterate every phi instructions in the succeeding basic block for (llvm::BasicBlock::iterator inst_iter = succ_basic_block->begin(), inst_end = succ_basic_block->end(); inst_iter != inst_end; ++inst_iter) { llvm::PHINode *phi = llvm::dyn_cast<llvm::PHINode>(inst_iter); if (!phi) { break; // Meet non-phi instruction. Done. } if (handler_phi[phi] == NULL) { handler_phi[phi] = llvm::PHINode::Create(phi->getType(), 1); } // Create new_phi in landing pad llvm::PHINode* new_phi = irb_.CreatePHI(phi->getType(), rewrite_pair.size()); // Insert all incoming value into new_phi by rewrite_pair for (size_t j = 0, ej = rewrite_pair.size(); j != ej; ++j) { llvm::BasicBlock* old_bb = rewrite_pair[j].first; llvm::BasicBlock* new_bb = rewrite_pair[j].second; new_phi->addIncoming(phi->getIncomingValueForBlock(old_bb), new_bb); } // Delete all incoming value from phi by rewrite_pair for (size_t j = 0, ej = rewrite_pair.size(); j != ej; ++j) { llvm::BasicBlock* old_bb = rewrite_pair[j].first; int old_bb_idx = phi->getBasicBlockIndex(old_bb); if (old_bb_idx >= 0) { phi->removeIncomingValue(old_bb_idx, false); } } // Insert new_phi into new handler phi handler_phi[phi]->addIncoming(new_phi, lbb); } } } // Replace all handler phi // We can't just use the old handler phi, because some exception edges will disappear after we // compute fast-path. for (HandlerPHIMap::iterator it = handler_phi.begin(); it != handler_phi.end(); ++it) { llvm::PHINode* old_phi = it->first; llvm::PHINode* new_phi = it->second; new_phi->insertBefore(old_phi); old_phi->replaceAllUsesWith(new_phi); old_phi->eraseFromParent(); } } void GBCExpanderPass::UpdatePhiInstruction(llvm::BasicBlock* old_basic_block, llvm::BasicBlock* new_basic_block) { llvm::TerminatorInst* term_inst = new_basic_block->getTerminator(); if (!term_inst) { return; // No terminating instruction in new_basic_block. Nothing to do. } // Iterate every succeeding basic block for (unsigned succ_iter = 0, succ_end = term_inst->getNumSuccessors(); succ_iter != succ_end; ++succ_iter) { llvm::BasicBlock* succ_basic_block = term_inst->getSuccessor(succ_iter); // Iterate every phi instructions in the succeeding basic block for (llvm::BasicBlock::iterator inst_iter = succ_basic_block->begin(), inst_end = succ_basic_block->end(); inst_iter != inst_end; ++inst_iter) { llvm::PHINode *phi = llvm::dyn_cast<llvm::PHINode>(inst_iter); if (!phi) { break; // Meet non-phi instruction. Done. } // Update the incoming block of this phi instruction for (llvm::PHINode::block_iterator ibb_iter = phi->block_begin(), ibb_end = phi->block_end(); ibb_iter != ibb_end; ++ibb_iter) { if (*ibb_iter == old_basic_block) { *ibb_iter = new_basic_block; } } } } } llvm::Value* GBCExpanderPass::ExpandToRuntime(RuntimeId rt, llvm::CallInst& inst) { // Some GBC intrinsic can directly replace with IBC runtime. "Directly" means // the arguments passed to the GBC intrinsic are as the same as IBC runtime // function, therefore only called function is needed to change. unsigned num_args = inst.getNumArgOperands(); if (num_args <= 0) { return irb_.CreateCall(irb_.GetRuntime(rt)); } else { std::vector<llvm::Value*> args; for (unsigned i = 0; i < num_args; i++) { args.push_back(inst.getArgOperand(i)); } return irb_.CreateCall(irb_.GetRuntime(rt), args); } } void GBCExpanderPass::EmitStackOverflowCheck(llvm::Instruction* first_non_alloca) { llvm::Function* func = first_non_alloca->getParent()->getParent(); llvm::Module* module = func->getParent(); // Call llvm intrinsic function to get frame address. llvm::Function* frameaddress = llvm::Intrinsic::getDeclaration(module, llvm::Intrinsic::frameaddress); // The type of llvm::frameaddress is: i8* @llvm.frameaddress(i32) llvm::Value* frame_address = irb_.CreateCall(frameaddress, irb_.getInt32(0)); // Cast i8* to int frame_address = irb_.CreatePtrToInt(frame_address, irb_.getPtrEquivIntTy()); // Get thread.stack_end_ llvm::Value* stack_end = irb_.Runtime().EmitLoadFromThreadOffset(art::Thread::StackEndOffset().Int32Value(), irb_.getPtrEquivIntTy(), kTBAARuntimeInfo); // Check the frame address < thread.stack_end_ ? llvm::Value* is_stack_overflow = irb_.CreateICmpULT(frame_address, stack_end); llvm::BasicBlock* block_exception = llvm::BasicBlock::Create(context_, "stack_overflow", func); llvm::BasicBlock* block_continue = llvm::BasicBlock::Create(context_, "stack_overflow_cont", func); irb_.CreateCondBr(is_stack_overflow, block_exception, block_continue, kUnlikely); // If stack overflow, throw exception. irb_.SetInsertPoint(block_exception); irb_.CreateCall(irb_.GetRuntime(ThrowStackOverflowException)); // Unwind. llvm::Type* ret_type = func->getReturnType(); if (ret_type->isVoidTy()) { irb_.CreateRetVoid(); } else { // The return value is ignored when there's an exception. MethodCompiler // returns zero value under the the corresponding return type in this case. // GBCExpander returns LLVM undef value here for brevity irb_.CreateRet(llvm::UndefValue::get(ret_type)); } irb_.SetInsertPoint(block_continue); } llvm::Value* GBCExpanderPass::EmitLoadDexCacheAddr(art::MemberOffset offset) { llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); return irb_.LoadFromObjectOffset(method_object_addr, offset.Int32Value(), irb_.getJObjectTy(), kTBAAConstJObject); } llvm::Value* GBCExpanderPass::EmitLoadDexCacheStaticStorageFieldAddr(uint32_t type_idx) { llvm::Value* static_storage_dex_cache_addr = EmitLoadDexCacheAddr(art::mirror::ArtMethod::DexCacheInitializedStaticStorageOffset()); llvm::Value* type_idx_value = irb_.getPtrEquivInt(type_idx); return EmitArrayGEP(static_storage_dex_cache_addr, type_idx_value, kObject); } llvm::Value* GBCExpanderPass::EmitLoadDexCacheResolvedTypeFieldAddr(uint32_t type_idx) { llvm::Value* resolved_type_dex_cache_addr = EmitLoadDexCacheAddr(art::mirror::ArtMethod::DexCacheResolvedTypesOffset()); llvm::Value* type_idx_value = irb_.getPtrEquivInt(type_idx); return EmitArrayGEP(resolved_type_dex_cache_addr, type_idx_value, kObject); } llvm::Value* GBCExpanderPass:: EmitLoadDexCacheResolvedMethodFieldAddr(uint32_t method_idx) { llvm::Value* resolved_method_dex_cache_addr = EmitLoadDexCacheAddr(art::mirror::ArtMethod::DexCacheResolvedMethodsOffset()); llvm::Value* method_idx_value = irb_.getPtrEquivInt(method_idx); return EmitArrayGEP(resolved_method_dex_cache_addr, method_idx_value, kObject); } llvm::Value* GBCExpanderPass:: EmitLoadDexCacheStringFieldAddr(uint32_t string_idx) { llvm::Value* string_dex_cache_addr = EmitLoadDexCacheAddr(art::mirror::ArtMethod::DexCacheStringsOffset()); llvm::Value* string_idx_value = irb_.getPtrEquivInt(string_idx); return EmitArrayGEP(string_dex_cache_addr, string_idx_value, kObject); } llvm::Value* GBCExpanderPass::EmitLoadMethodObjectAddr() { llvm::Function* parent_func = irb_.GetInsertBlock()->getParent(); return parent_func->arg_begin(); } llvm::Value* GBCExpanderPass::EmitLoadArrayLength(llvm::Value* array) { // Load array length return irb_.LoadFromObjectOffset(array, art::mirror::Array::LengthOffset().Int32Value(), irb_.getJIntTy(), kTBAAConstJObject); } llvm::Value* GBCExpanderPass::EmitLoadSDCalleeMethodObjectAddr(uint32_t callee_method_idx) { llvm::Value* callee_method_object_field_addr = EmitLoadDexCacheResolvedMethodFieldAddr(callee_method_idx); return irb_.CreateLoad(callee_method_object_field_addr, kTBAARuntimeInfo); } llvm::Value* GBCExpanderPass:: EmitLoadVirtualCalleeMethodObjectAddr(int vtable_idx, llvm::Value* this_addr) { // Load class object of *this* pointer llvm::Value* class_object_addr = irb_.LoadFromObjectOffset(this_addr, art::mirror::Object::ClassOffset().Int32Value(), irb_.getJObjectTy(), kTBAAConstJObject); // Load vtable address llvm::Value* vtable_addr = irb_.LoadFromObjectOffset(class_object_addr, art::mirror::Class::VTableOffset().Int32Value(), irb_.getJObjectTy(), kTBAAConstJObject); // Load callee method object llvm::Value* vtable_idx_value = irb_.getPtrEquivInt(static_cast<uint64_t>(vtable_idx)); llvm::Value* method_field_addr = EmitArrayGEP(vtable_addr, vtable_idx_value, kObject); return irb_.CreateLoad(method_field_addr, kTBAAConstJObject); } // Emit Array GetElementPtr llvm::Value* GBCExpanderPass::EmitArrayGEP(llvm::Value* array_addr, llvm::Value* index_value, JType elem_jty) { int data_offset; if (elem_jty == kLong || elem_jty == kDouble || (elem_jty == kObject && sizeof(uint64_t) == sizeof(art::mirror::Object*))) { data_offset = art::mirror::Array::DataOffset(sizeof(int64_t)).Int32Value(); } else { data_offset = art::mirror::Array::DataOffset(sizeof(int32_t)).Int32Value(); } llvm::Constant* data_offset_value = irb_.getPtrEquivInt(data_offset); llvm::Type* elem_type = irb_.getJType(elem_jty); llvm::Value* array_data_addr = irb_.CreatePtrDisp(array_addr, data_offset_value, elem_type->getPointerTo()); return irb_.CreateGEP(array_data_addr, index_value); } llvm::Value* GBCExpanderPass::EmitInvoke(llvm::CallInst& call_inst) { uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0)); art::InvokeType invoke_type = static_cast<art::InvokeType>(LV2UInt(call_inst.getArgOperand(0))); bool is_static = (invoke_type == art::kStatic); art::MethodReference target_method(dex_compilation_unit_->GetDexFile(), LV2UInt(call_inst.getArgOperand(1))); // Load *this* actual parameter llvm::Value* this_addr = (!is_static) ? call_inst.getArgOperand(3) : NULL; // Compute invoke related information for compiler decision int vtable_idx = -1; uintptr_t direct_code = 0; uintptr_t direct_method = 0; bool is_fast_path = driver_->ComputeInvokeInfo(dex_compilation_unit_, dex_pc, invoke_type, target_method, vtable_idx, direct_code, direct_method, true); // Load the method object llvm::Value* callee_method_object_addr = NULL; if (!is_fast_path) { callee_method_object_addr = EmitCallRuntimeForCalleeMethodObjectAddr(target_method.dex_method_index, invoke_type, this_addr, dex_pc, is_fast_path); } else { switch (invoke_type) { case art::kStatic: case art::kDirect: if (direct_method != 0u && direct_method != static_cast<uintptr_t>(-1)) { callee_method_object_addr = irb_.CreateIntToPtr(irb_.getPtrEquivInt(direct_method), irb_.getJObjectTy()); } else { callee_method_object_addr = EmitLoadSDCalleeMethodObjectAddr(target_method.dex_method_index); } break; case art::kVirtual: DCHECK_NE(vtable_idx, -1); callee_method_object_addr = EmitLoadVirtualCalleeMethodObjectAddr(vtable_idx, this_addr); break; case art::kSuper: LOG(FATAL) << "invoke-super should be promoted to invoke-direct in " "the fast path."; break; case art::kInterface: callee_method_object_addr = EmitCallRuntimeForCalleeMethodObjectAddr(target_method.dex_method_index, invoke_type, this_addr, dex_pc, is_fast_path); break; } } // Load the actual parameter std::vector<llvm::Value*> args; args.push_back(callee_method_object_addr); // method object for callee for (uint32_t i = 3; i < call_inst.getNumArgOperands(); ++i) { args.push_back(call_inst.getArgOperand(i)); } llvm::Value* code_addr; llvm::Type* func_type = GetFunctionType(call_inst.getType(), target_method.dex_method_index, is_static); if (direct_code != 0u && direct_code != static_cast<uintptr_t>(-1)) { code_addr = irb_.CreateIntToPtr(irb_.getPtrEquivInt(direct_code), func_type->getPointerTo()); } else { code_addr = irb_.LoadFromObjectOffset(callee_method_object_addr, art::mirror::ArtMethod::GetEntryPointFromCompiledCodeOffset().Int32Value(), func_type->getPointerTo(), kTBAARuntimeInfo); } // Invoke callee EmitUpdateDexPC(dex_pc); llvm::Value* retval = irb_.CreateCall(code_addr, args); EmitGuard_ExceptionLandingPad(dex_pc); return retval; } bool GBCExpanderPass::EmitIntrinsic(llvm::CallInst& call_inst, llvm::Value** result) { DCHECK(result != NULL); uint32_t callee_method_idx = LV2UInt(call_inst.getArgOperand(1)); std::string callee_method_name( PrettyMethod(callee_method_idx, *dex_compilation_unit_->GetDexFile())); if (callee_method_name == "int java.lang.String.length()") { return EmitIntrinsicStringLengthOrIsEmpty(call_inst, result, false /* is_empty */); } if (callee_method_name == "boolean java.lang.String.isEmpty()") { return EmitIntrinsicStringLengthOrIsEmpty(call_inst, result, true /* is_empty */); } *result = NULL; return false; } bool GBCExpanderPass::EmitIntrinsicStringLengthOrIsEmpty(llvm::CallInst& call_inst, llvm::Value** result, bool is_empty) { art::InvokeType invoke_type = static_cast<art::InvokeType>(LV2UInt(call_inst.getArgOperand(0))); DCHECK_NE(invoke_type, art::kStatic); DCHECK_EQ(call_inst.getNumArgOperands(), 4U); llvm::Value* this_object = call_inst.getArgOperand(3); llvm::Value* string_count = irb_.LoadFromObjectOffset(this_object, art::mirror::String::CountOffset().Int32Value(), irb_.getJIntTy(), kTBAAConstJObject); if (is_empty) { llvm::Value* count_equals_zero = irb_.CreateICmpEQ(string_count, irb_.getJInt(0)); llvm::Value* is_empty = irb_.CreateSelect(count_equals_zero, irb_.getJBoolean(true), irb_.getJBoolean(false)); is_empty = SignOrZeroExtendCat1Types(is_empty, kBoolean); *result = is_empty; } else { *result = string_count; } return true; } void GBCExpanderPass::Expand_TestSuspend(llvm::CallInst& call_inst) { uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0)); llvm::Value* suspend_count = irb_.Runtime().EmitLoadFromThreadOffset(art::Thread::ThreadFlagsOffset().Int32Value(), irb_.getInt16Ty(), kTBAARuntimeInfo); llvm::Value* is_suspend = irb_.CreateICmpNE(suspend_count, irb_.getInt16(0)); llvm::BasicBlock* basic_block_suspend = CreateBasicBlockWithDexPC(dex_pc, "suspend"); llvm::BasicBlock* basic_block_cont = CreateBasicBlockWithDexPC(dex_pc, "suspend_cont"); irb_.CreateCondBr(is_suspend, basic_block_suspend, basic_block_cont, kUnlikely); irb_.SetInsertPoint(basic_block_suspend); if (dex_pc != art::DexFile::kDexNoIndex) { EmitUpdateDexPC(dex_pc); } irb_.Runtime().EmitTestSuspend(); llvm::BasicBlock* basic_block_exception = CreateBasicBlockWithDexPC(dex_pc, "exception"); llvm::Value* exception_pending = irb_.Runtime().EmitIsExceptionPending(); irb_.CreateCondBr(exception_pending, basic_block_exception, basic_block_cont, kUnlikely); irb_.SetInsertPoint(basic_block_exception); llvm::Type* ret_type = call_inst.getParent()->getParent()->getReturnType(); if (ret_type->isVoidTy()) { irb_.CreateRetVoid(); } else { // The return value is ignored when there's an exception. irb_.CreateRet(llvm::UndefValue::get(ret_type)); } irb_.SetInsertPoint(basic_block_cont); return; } void GBCExpanderPass::Expand_MarkGCCard(llvm::CallInst& call_inst) { irb_.Runtime().EmitMarkGCCard(call_inst.getArgOperand(0), call_inst.getArgOperand(1)); return; } llvm::Value* GBCExpanderPass::Expand_LoadStringFromDexCache(llvm::Value* string_idx_value) { uint32_t string_idx = llvm::cast<llvm::ConstantInt>(string_idx_value)->getZExtValue(); llvm::Value* string_field_addr = EmitLoadDexCacheStringFieldAddr(string_idx); return irb_.CreateLoad(string_field_addr, kTBAARuntimeInfo); } llvm::Value* GBCExpanderPass::Expand_LoadTypeFromDexCache(llvm::Value* type_idx_value) { uint32_t type_idx = llvm::cast<llvm::ConstantInt>(type_idx_value)->getZExtValue(); llvm::Value* type_field_addr = EmitLoadDexCacheResolvedTypeFieldAddr(type_idx); return irb_.CreateLoad(type_field_addr, kTBAARuntimeInfo); } void GBCExpanderPass::Expand_LockObject(llvm::Value* obj) { rtb_.EmitLockObject(obj); return; } void GBCExpanderPass::Expand_UnlockObject(llvm::Value* obj) { rtb_.EmitUnlockObject(obj); return; } llvm::Value* GBCExpanderPass::Expand_ArrayGet(llvm::Value* array_addr, llvm::Value* index_value, JType elem_jty) { llvm::Value* array_elem_addr = EmitArrayGEP(array_addr, index_value, elem_jty); return irb_.CreateLoad(array_elem_addr, kTBAAHeapArray, elem_jty); } void GBCExpanderPass::Expand_ArrayPut(llvm::Value* new_value, llvm::Value* array_addr, llvm::Value* index_value, JType elem_jty) { llvm::Value* array_elem_addr = EmitArrayGEP(array_addr, index_value, elem_jty); irb_.CreateStore(new_value, array_elem_addr, kTBAAHeapArray, elem_jty); return; } void GBCExpanderPass::Expand_FilledNewArray(llvm::CallInst& call_inst) { // Most of the codes refer to MethodCompiler::EmitInsn_FilledNewArray llvm::Value* array = call_inst.getArgOperand(0); uint32_t element_jty = llvm::cast<llvm::ConstantInt>(call_inst.getArgOperand(1))->getZExtValue(); DCHECK_GT(call_inst.getNumArgOperands(), 2U); unsigned num_elements = (call_inst.getNumArgOperands() - 2); bool is_elem_int_ty = (static_cast<JType>(element_jty) == kInt); uint32_t alignment; llvm::Constant* elem_size; llvm::PointerType* field_type; // NOTE: Currently filled-new-array only supports 'L', '[', and 'I' // as the element, thus we are only checking 2 cases: primitive int and // non-primitive type. if (is_elem_int_ty) { alignment = sizeof(int32_t); elem_size = irb_.getPtrEquivInt(sizeof(int32_t)); field_type = irb_.getJIntTy()->getPointerTo(); } else { alignment = irb_.getSizeOfPtrEquivInt(); elem_size = irb_.getSizeOfPtrEquivIntValue(); field_type = irb_.getJObjectTy()->getPointerTo(); } llvm::Value* data_field_offset = irb_.getPtrEquivInt(art::mirror::Array::DataOffset(alignment).Int32Value()); llvm::Value* data_field_addr = irb_.CreatePtrDisp(array, data_field_offset, field_type); for (unsigned i = 0; i < num_elements; ++i) { // Values to fill the array begin at the 3rd argument llvm::Value* reg_value = call_inst.getArgOperand(2 + i); irb_.CreateStore(reg_value, data_field_addr, kTBAAHeapArray); data_field_addr = irb_.CreatePtrDisp(data_field_addr, elem_size, field_type); } return; } llvm::Value* GBCExpanderPass::Expand_IGetFast(llvm::Value* field_offset_value, llvm::Value* /*is_volatile_value*/, llvm::Value* object_addr, JType field_jty) { int field_offset = llvm::cast<llvm::ConstantInt>(field_offset_value)->getSExtValue(); DCHECK_GE(field_offset, 0); llvm::PointerType* field_type = irb_.getJType(field_jty)->getPointerTo(); field_offset_value = irb_.getPtrEquivInt(field_offset); llvm::Value* field_addr = irb_.CreatePtrDisp(object_addr, field_offset_value, field_type); // TODO: Check is_volatile. We need to generate atomic load instruction // when is_volatile is true. return irb_.CreateLoad(field_addr, kTBAAHeapInstance, field_jty); } void GBCExpanderPass::Expand_IPutFast(llvm::Value* field_offset_value, llvm::Value* /* is_volatile_value */, llvm::Value* object_addr, llvm::Value* new_value, JType field_jty) { int field_offset = llvm::cast<llvm::ConstantInt>(field_offset_value)->getSExtValue(); DCHECK_GE(field_offset, 0); llvm::PointerType* field_type = irb_.getJType(field_jty)->getPointerTo(); field_offset_value = irb_.getPtrEquivInt(field_offset); llvm::Value* field_addr = irb_.CreatePtrDisp(object_addr, field_offset_value, field_type); // TODO: Check is_volatile. We need to generate atomic store instruction // when is_volatile is true. irb_.CreateStore(new_value, field_addr, kTBAAHeapInstance, field_jty); return; } llvm::Value* GBCExpanderPass::Expand_SGetFast(llvm::Value* static_storage_addr, llvm::Value* field_offset_value, llvm::Value* /*is_volatile_value*/, JType field_jty) { int field_offset = llvm::cast<llvm::ConstantInt>(field_offset_value)->getSExtValue(); DCHECK_GE(field_offset, 0); llvm::Value* static_field_offset_value = irb_.getPtrEquivInt(field_offset); llvm::Value* static_field_addr = irb_.CreatePtrDisp(static_storage_addr, static_field_offset_value, irb_.getJType(field_jty)->getPointerTo()); // TODO: Check is_volatile. We need to generate atomic store instruction // when is_volatile is true. return irb_.CreateLoad(static_field_addr, kTBAAHeapStatic, field_jty); } void GBCExpanderPass::Expand_SPutFast(llvm::Value* static_storage_addr, llvm::Value* field_offset_value, llvm::Value* /* is_volatile_value */, llvm::Value* new_value, JType field_jty) { int field_offset = llvm::cast<llvm::ConstantInt>(field_offset_value)->getSExtValue(); DCHECK_GE(field_offset, 0); llvm::Value* static_field_offset_value = irb_.getPtrEquivInt(field_offset); llvm::Value* static_field_addr = irb_.CreatePtrDisp(static_storage_addr, static_field_offset_value, irb_.getJType(field_jty)->getPointerTo()); // TODO: Check is_volatile. We need to generate atomic store instruction // when is_volatile is true. irb_.CreateStore(new_value, static_field_addr, kTBAAHeapStatic, field_jty); return; } llvm::Value* GBCExpanderPass::Expand_LoadDeclaringClassSSB(llvm::Value* method_object_addr) { return irb_.LoadFromObjectOffset(method_object_addr, art::mirror::ArtMethod::DeclaringClassOffset().Int32Value(), irb_.getJObjectTy(), kTBAAConstJObject); } llvm::Value* GBCExpanderPass::Expand_LoadClassSSBFromDexCache(llvm::Value* type_idx_value) { uint32_t type_idx = llvm::cast<llvm::ConstantInt>(type_idx_value)->getZExtValue(); llvm::Value* storage_field_addr = EmitLoadDexCacheStaticStorageFieldAddr(type_idx); return irb_.CreateLoad(storage_field_addr, kTBAARuntimeInfo); } llvm::Value* GBCExpanderPass::Expand_GetSDCalleeMethodObjAddrFast(llvm::Value* callee_method_idx_value) { uint32_t callee_method_idx = llvm::cast<llvm::ConstantInt>(callee_method_idx_value)->getZExtValue(); return EmitLoadSDCalleeMethodObjectAddr(callee_method_idx); } llvm::Value* GBCExpanderPass::Expand_GetVirtualCalleeMethodObjAddrFast( llvm::Value* vtable_idx_value, llvm::Value* this_addr) { int vtable_idx = llvm::cast<llvm::ConstantInt>(vtable_idx_value)->getSExtValue(); return EmitLoadVirtualCalleeMethodObjectAddr(vtable_idx, this_addr); } llvm::Value* GBCExpanderPass::Expand_Invoke(llvm::CallInst& call_inst) { // Most of the codes refer to MethodCompiler::EmitInsn_Invoke llvm::Value* callee_method_object_addr = call_inst.getArgOperand(0); unsigned num_args = call_inst.getNumArgOperands(); llvm::Type* ret_type = call_inst.getType(); // Determine the function type of the callee method std::vector<llvm::Type*> args_type; std::vector<llvm::Value*> args; for (unsigned i = 0; i < num_args; i++) { args.push_back(call_inst.getArgOperand(i)); args_type.push_back(args[i]->getType()); } llvm::FunctionType* callee_method_type = llvm::FunctionType::get(ret_type, args_type, false); llvm::Value* code_addr = irb_.LoadFromObjectOffset(callee_method_object_addr, art::mirror::ArtMethod::GetEntryPointFromCompiledCodeOffset().Int32Value(), callee_method_type->getPointerTo(), kTBAARuntimeInfo); // Invoke callee llvm::Value* retval = irb_.CreateCall(code_addr, args); return retval; } llvm::Value* GBCExpanderPass::Expand_DivRem(llvm::CallInst& call_inst, bool is_div, JType op_jty) { llvm::Value* dividend = call_inst.getArgOperand(0); llvm::Value* divisor = call_inst.getArgOperand(1); uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0)); EmitGuard_DivZeroException(dex_pc, divisor, op_jty); // Most of the codes refer to MethodCompiler::EmitIntDivRemResultComputation // Check the special case: MININT / -1 = MININT // That case will cause overflow, which is undefined behavior in llvm. // So we check the divisor is -1 or not, if the divisor is -1, we do // the special path to avoid undefined behavior. llvm::Type* op_type = irb_.getJType(op_jty); llvm::Value* zero = irb_.getJZero(op_jty); llvm::Value* neg_one = llvm::ConstantInt::getSigned(op_type, -1); llvm::Function* parent = irb_.GetInsertBlock()->getParent(); llvm::BasicBlock* eq_neg_one = llvm::BasicBlock::Create(context_, "", parent); llvm::BasicBlock* ne_neg_one = llvm::BasicBlock::Create(context_, "", parent); llvm::BasicBlock* neg_one_cont = llvm::BasicBlock::Create(context_, "", parent); llvm::Value* is_equal_neg_one = irb_.CreateICmpEQ(divisor, neg_one); irb_.CreateCondBr(is_equal_neg_one, eq_neg_one, ne_neg_one, kUnlikely); // If divisor == -1 irb_.SetInsertPoint(eq_neg_one); llvm::Value* eq_result; if (is_div) { // We can just change from "dividend div -1" to "neg dividend". The sub // don't care the sign/unsigned because of two's complement representation. // And the behavior is what we want: // -(2^n) (2^n)-1 // MININT < k <= MAXINT -> mul k -1 = -k // MININT == k -> mul k -1 = k // // LLVM use sub to represent 'neg' eq_result = irb_.CreateSub(zero, dividend); } else { // Everything modulo -1 will be 0. eq_result = zero; } irb_.CreateBr(neg_one_cont); // If divisor != -1, just do the division. irb_.SetInsertPoint(ne_neg_one); llvm::Value* ne_result; if (is_div) { ne_result = irb_.CreateSDiv(dividend, divisor); } else { ne_result = irb_.CreateSRem(dividend, divisor); } irb_.CreateBr(neg_one_cont); irb_.SetInsertPoint(neg_one_cont); llvm::PHINode* result = irb_.CreatePHI(op_type, 2); result->addIncoming(eq_result, eq_neg_one); result->addIncoming(ne_result, ne_neg_one); return result; } void GBCExpanderPass::Expand_AllocaShadowFrame(llvm::Value* num_vregs_value) { // Most of the codes refer to MethodCompiler::EmitPrologueAllocShadowFrame and // MethodCompiler::EmitPushShadowFrame uint16_t num_vregs = llvm::cast<llvm::ConstantInt>(num_vregs_value)->getZExtValue(); llvm::StructType* shadow_frame_type = irb_.getShadowFrameTy(num_vregs); // Create allocas at the start of entry block. llvm::IRBuilderBase::InsertPoint irb_ip_original = irb_.saveIP(); llvm::BasicBlock* entry_block = &func_->front(); irb_.SetInsertPoint(&entry_block->front()); shadow_frame_ = irb_.CreateAlloca(shadow_frame_type); // Alloca a pointer to old shadow frame old_shadow_frame_ = irb_.CreateAlloca(shadow_frame_type->getElementType(0)->getPointerTo()); irb_.restoreIP(irb_ip_original); // Push the shadow frame llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); llvm::Value* shadow_frame_upcast = irb_.CreateConstGEP2_32(shadow_frame_, 0, 0); llvm::Value* result = rtb_.EmitPushShadowFrame(shadow_frame_upcast, method_object_addr, num_vregs); irb_.CreateStore(result, old_shadow_frame_, kTBAARegister); return; } void GBCExpanderPass::Expand_SetVReg(llvm::Value* entry_idx, llvm::Value* value) { unsigned vreg_idx = LV2UInt(entry_idx); DCHECK_LT(vreg_idx, dex_compilation_unit_->GetCodeItem()->registers_size_); llvm::Value* vreg_addr = shadow_frame_vreg_addresses_[vreg_idx]; if (UNLIKELY(vreg_addr == NULL)) { DCHECK(shadow_frame_ != NULL); llvm::Value* gep_index[] = { irb_.getInt32(0), // No pointer displacement irb_.getInt32(1), // VRegs entry_idx // Pointer field }; // A shadow frame address must dominate every use in the function so we // place it in the entry block right after the allocas. llvm::BasicBlock::iterator first_non_alloca = func_->getEntryBlock().begin(); while (llvm::isa<llvm::AllocaInst>(first_non_alloca)) { ++first_non_alloca; } llvm::IRBuilderBase::InsertPoint ip = irb_.saveIP(); irb_.SetInsertPoint(static_cast<llvm::Instruction*>(first_non_alloca)); vreg_addr = irb_.CreateGEP(shadow_frame_, gep_index); shadow_frame_vreg_addresses_[vreg_idx] = vreg_addr; irb_.restoreIP(ip); } irb_.CreateStore(value, irb_.CreateBitCast(vreg_addr, value->getType()->getPointerTo()), kTBAAShadowFrame); return; } void GBCExpanderPass::Expand_PopShadowFrame() { if (old_shadow_frame_ == NULL) { return; } rtb_.EmitPopShadowFrame(irb_.CreateLoad(old_shadow_frame_, kTBAARegister)); return; } void GBCExpanderPass::Expand_UpdateDexPC(llvm::Value* dex_pc_value) { irb_.StoreToObjectOffset(shadow_frame_, art::ShadowFrame::DexPCOffset(), dex_pc_value, kTBAAShadowFrame); return; } void GBCExpanderPass::InsertStackOverflowCheck(llvm::Function& func) { // All alloca instructions are generated in the first basic block of the // function, and there are no alloca instructions after the first non-alloca // instruction. llvm::BasicBlock* first_basic_block = &func.front(); // Look for first non-alloca instruction llvm::BasicBlock::iterator first_non_alloca = first_basic_block->begin(); while (llvm::isa<llvm::AllocaInst>(first_non_alloca)) { ++first_non_alloca; } irb_.SetInsertPoint(first_non_alloca); // Insert stack overflow check codes before first_non_alloca (i.e., after all // alloca instructions) EmitStackOverflowCheck(&*first_non_alloca); irb_.Runtime().EmitTestSuspend(); llvm::BasicBlock* next_basic_block = irb_.GetInsertBlock(); if (next_basic_block != first_basic_block) { // Splice the rest of the instruction to the continuing basic block next_basic_block->getInstList().splice( irb_.GetInsertPoint(), first_basic_block->getInstList(), first_non_alloca, first_basic_block->end()); // Rewrite the basic block RewriteBasicBlock(next_basic_block); // Update the phi-instructions in the successor basic block UpdatePhiInstruction(first_basic_block, irb_.GetInsertBlock()); } // We have changed the basic block changed_ = true; } // ==== High-level intrinsic expander ========================================== llvm::Value* GBCExpanderPass::Expand_FPCompare(llvm::Value* src1_value, llvm::Value* src2_value, bool gt_bias) { llvm::Value* cmp_eq = irb_.CreateFCmpOEQ(src1_value, src2_value); llvm::Value* cmp_lt; if (gt_bias) { cmp_lt = irb_.CreateFCmpOLT(src1_value, src2_value); } else { cmp_lt = irb_.CreateFCmpULT(src1_value, src2_value); } return EmitCompareResultSelection(cmp_eq, cmp_lt); } llvm::Value* GBCExpanderPass::Expand_LongCompare(llvm::Value* src1_value, llvm::Value* src2_value) { llvm::Value* cmp_eq = irb_.CreateICmpEQ(src1_value, src2_value); llvm::Value* cmp_lt = irb_.CreateICmpSLT(src1_value, src2_value); return EmitCompareResultSelection(cmp_eq, cmp_lt); } llvm::Value* GBCExpanderPass::EmitCompareResultSelection(llvm::Value* cmp_eq, llvm::Value* cmp_lt) { llvm::Constant* zero = irb_.getJInt(0); llvm::Constant* pos1 = irb_.getJInt(1); llvm::Constant* neg1 = irb_.getJInt(-1); llvm::Value* result_lt = irb_.CreateSelect(cmp_lt, neg1, pos1); llvm::Value* result_eq = irb_.CreateSelect(cmp_eq, zero, result_lt); return result_eq; } llvm::Value* GBCExpanderPass::Expand_IntegerShift(llvm::Value* src1_value, llvm::Value* src2_value, IntegerShiftKind kind, JType op_jty) { DCHECK(op_jty == kInt || op_jty == kLong); // Mask and zero-extend RHS properly if (op_jty == kInt) { src2_value = irb_.CreateAnd(src2_value, 0x1f); } else { llvm::Value* masked_src2_value = irb_.CreateAnd(src2_value, 0x3f); src2_value = irb_.CreateZExt(masked_src2_value, irb_.getJLongTy()); } // Create integer shift llvm instruction switch (kind) { case kIntegerSHL: return irb_.CreateShl(src1_value, src2_value); case kIntegerSHR: return irb_.CreateAShr(src1_value, src2_value); case kIntegerUSHR: return irb_.CreateLShr(src1_value, src2_value); default: LOG(FATAL) << "Unknown integer shift kind: " << kind; return NULL; } } llvm::Value* GBCExpanderPass::SignOrZeroExtendCat1Types(llvm::Value* value, JType jty) { switch (jty) { case kBoolean: case kChar: return irb_.CreateZExt(value, irb_.getJType(kInt)); case kByte: case kShort: return irb_.CreateSExt(value, irb_.getJType(kInt)); case kVoid: case kInt: case kLong: case kFloat: case kDouble: case kObject: return value; // Nothing to do. default: LOG(FATAL) << "Unknown java type: " << jty; return NULL; } } llvm::Value* GBCExpanderPass::TruncateCat1Types(llvm::Value* value, JType jty) { switch (jty) { case kBoolean: case kChar: case kByte: case kShort: return irb_.CreateTrunc(value, irb_.getJType(jty)); case kVoid: case kInt: case kLong: case kFloat: case kDouble: case kObject: return value; // Nothing to do. default: LOG(FATAL) << "Unknown java type: " << jty; return NULL; } } llvm::Value* GBCExpanderPass::Expand_HLArrayGet(llvm::CallInst& call_inst, JType elem_jty) { uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0)); llvm::Value* array_addr = call_inst.getArgOperand(1); llvm::Value* index_value = call_inst.getArgOperand(2); int opt_flags = LV2UInt(call_inst.getArgOperand(0)); EmitGuard_NullPointerException(dex_pc, array_addr, opt_flags); EmitGuard_ArrayIndexOutOfBoundsException(dex_pc, array_addr, index_value, opt_flags); llvm::Value* array_elem_addr = EmitArrayGEP(array_addr, index_value, elem_jty); llvm::Value* array_elem_value = irb_.CreateLoad(array_elem_addr, kTBAAHeapArray, elem_jty); return SignOrZeroExtendCat1Types(array_elem_value, elem_jty); } void GBCExpanderPass::Expand_HLArrayPut(llvm::CallInst& call_inst, JType elem_jty) { uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0)); llvm::Value* new_value = call_inst.getArgOperand(1); llvm::Value* array_addr = call_inst.getArgOperand(2); llvm::Value* index_value = call_inst.getArgOperand(3); int opt_flags = LV2UInt(call_inst.getArgOperand(0)); EmitGuard_NullPointerException(dex_pc, array_addr, opt_flags); EmitGuard_ArrayIndexOutOfBoundsException(dex_pc, array_addr, index_value, opt_flags); new_value = TruncateCat1Types(new_value, elem_jty); llvm::Value* array_elem_addr = EmitArrayGEP(array_addr, index_value, elem_jty); if (elem_jty == kObject) { // If put an object, check the type, and mark GC card table. llvm::Function* runtime_func = irb_.GetRuntime(CheckPutArrayElement); irb_.CreateCall2(runtime_func, new_value, array_addr); EmitGuard_ExceptionLandingPad(dex_pc); EmitMarkGCCard(new_value, array_addr); } irb_.CreateStore(new_value, array_elem_addr, kTBAAHeapArray, elem_jty); return; } llvm::Value* GBCExpanderPass::Expand_HLIGet(llvm::CallInst& call_inst, JType field_jty) { uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0)); llvm::Value* object_addr = call_inst.getArgOperand(1); uint32_t field_idx = LV2UInt(call_inst.getArgOperand(2)); int opt_flags = LV2UInt(call_inst.getArgOperand(0)); EmitGuard_NullPointerException(dex_pc, object_addr, opt_flags); llvm::Value* field_value; int field_offset; bool is_volatile; bool is_fast_path = driver_->ComputeInstanceFieldInfo( field_idx, dex_compilation_unit_, field_offset, is_volatile, false); if (!is_fast_path) { llvm::Function* runtime_func; if (field_jty == kObject) { runtime_func = irb_.GetRuntime(GetObjectInstance); } else if (field_jty == kLong || field_jty == kDouble) { runtime_func = irb_.GetRuntime(Get64Instance); } else { runtime_func = irb_.GetRuntime(Get32Instance); } llvm::ConstantInt* field_idx_value = irb_.getInt32(field_idx); llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); EmitUpdateDexPC(dex_pc); field_value = irb_.CreateCall3(runtime_func, field_idx_value, method_object_addr, object_addr); EmitGuard_ExceptionLandingPad(dex_pc); if (field_jty == kFloat || field_jty == kDouble) { field_value = irb_.CreateBitCast(field_value, irb_.getJType(field_jty)); } } else { DCHECK_GE(field_offset, 0); llvm::PointerType* field_type = irb_.getJType(field_jty)->getPointerTo(); llvm::ConstantInt* field_offset_value = irb_.getPtrEquivInt(field_offset); llvm::Value* field_addr = irb_.CreatePtrDisp(object_addr, field_offset_value, field_type); field_value = irb_.CreateLoad(field_addr, kTBAAHeapInstance, field_jty); field_value = SignOrZeroExtendCat1Types(field_value, field_jty); if (is_volatile) { irb_.CreateMemoryBarrier(art::kLoadLoad); } } return field_value; } void GBCExpanderPass::Expand_HLIPut(llvm::CallInst& call_inst, JType field_jty) { uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0)); llvm::Value* new_value = call_inst.getArgOperand(1); llvm::Value* object_addr = call_inst.getArgOperand(2); uint32_t field_idx = LV2UInt(call_inst.getArgOperand(3)); int opt_flags = LV2UInt(call_inst.getArgOperand(0)); EmitGuard_NullPointerException(dex_pc, object_addr, opt_flags); int field_offset; bool is_volatile; bool is_fast_path = driver_->ComputeInstanceFieldInfo( field_idx, dex_compilation_unit_, field_offset, is_volatile, true); if (!is_fast_path) { llvm::Function* runtime_func; if (field_jty == kFloat) { new_value = irb_.CreateBitCast(new_value, irb_.getJType(kInt)); } else if (field_jty == kDouble) { new_value = irb_.CreateBitCast(new_value, irb_.getJType(kLong)); } if (field_jty == kObject) { runtime_func = irb_.GetRuntime(SetObjectInstance); } else if (field_jty == kLong || field_jty == kDouble) { runtime_func = irb_.GetRuntime(Set64Instance); } else { runtime_func = irb_.GetRuntime(Set32Instance); } llvm::Value* field_idx_value = irb_.getInt32(field_idx); llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); EmitUpdateDexPC(dex_pc); irb_.CreateCall4(runtime_func, field_idx_value, method_object_addr, object_addr, new_value); EmitGuard_ExceptionLandingPad(dex_pc); } else { DCHECK_GE(field_offset, 0); if (is_volatile) { irb_.CreateMemoryBarrier(art::kStoreStore); } llvm::PointerType* field_type = irb_.getJType(field_jty)->getPointerTo(); llvm::Value* field_offset_value = irb_.getPtrEquivInt(field_offset); llvm::Value* field_addr = irb_.CreatePtrDisp(object_addr, field_offset_value, field_type); new_value = TruncateCat1Types(new_value, field_jty); irb_.CreateStore(new_value, field_addr, kTBAAHeapInstance, field_jty); if (is_volatile) { irb_.CreateMemoryBarrier(art::kLoadLoad); } if (field_jty == kObject) { // If put an object, mark the GC card table. EmitMarkGCCard(new_value, object_addr); } } return; } llvm::Value* GBCExpanderPass::EmitLoadConstantClass(uint32_t dex_pc, uint32_t type_idx) { if (!driver_->CanAccessTypeWithoutChecks(dex_compilation_unit_->GetDexMethodIndex(), *dex_compilation_unit_->GetDexFile(), type_idx)) { llvm::Value* type_idx_value = irb_.getInt32(type_idx); llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); llvm::Value* thread_object_addr = irb_.Runtime().EmitGetCurrentThread(); llvm::Function* runtime_func = irb_.GetRuntime(InitializeTypeAndVerifyAccess); EmitUpdateDexPC(dex_pc); llvm::Value* type_object_addr = irb_.CreateCall3(runtime_func, type_idx_value, method_object_addr, thread_object_addr); EmitGuard_ExceptionLandingPad(dex_pc); return type_object_addr; } else { // Try to load the class (type) object from the test cache. llvm::Value* type_field_addr = EmitLoadDexCacheResolvedTypeFieldAddr(type_idx); llvm::Value* type_object_addr = irb_.CreateLoad(type_field_addr, kTBAARuntimeInfo); if (driver_->CanAssumeTypeIsPresentInDexCache(*dex_compilation_unit_->GetDexFile(), type_idx)) { return type_object_addr; } llvm::BasicBlock* block_original = irb_.GetInsertBlock(); // Test whether class (type) object is in the dex cache or not llvm::Value* equal_null = irb_.CreateICmpEQ(type_object_addr, irb_.getJNull()); llvm::BasicBlock* block_cont = CreateBasicBlockWithDexPC(dex_pc, "cont"); llvm::BasicBlock* block_load_class = CreateBasicBlockWithDexPC(dex_pc, "load_class"); irb_.CreateCondBr(equal_null, block_load_class, block_cont, kUnlikely); // Failback routine to load the class object irb_.SetInsertPoint(block_load_class); llvm::Function* runtime_func = irb_.GetRuntime(InitializeType); llvm::Constant* type_idx_value = irb_.getInt32(type_idx); llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); llvm::Value* thread_object_addr = irb_.Runtime().EmitGetCurrentThread(); EmitUpdateDexPC(dex_pc); llvm::Value* loaded_type_object_addr = irb_.CreateCall3(runtime_func, type_idx_value, method_object_addr, thread_object_addr); EmitGuard_ExceptionLandingPad(dex_pc); llvm::BasicBlock* block_after_load_class = irb_.GetInsertBlock(); irb_.CreateBr(block_cont); // Now the class object must be loaded irb_.SetInsertPoint(block_cont); llvm::PHINode* phi = irb_.CreatePHI(irb_.getJObjectTy(), 2); phi->addIncoming(type_object_addr, block_original); phi->addIncoming(loaded_type_object_addr, block_after_load_class); return phi; } } llvm::Value* GBCExpanderPass::EmitLoadStaticStorage(uint32_t dex_pc, uint32_t type_idx) { llvm::BasicBlock* block_load_static = CreateBasicBlockWithDexPC(dex_pc, "load_static"); llvm::BasicBlock* block_cont = CreateBasicBlockWithDexPC(dex_pc, "cont"); // Load static storage from dex cache llvm::Value* storage_field_addr = EmitLoadDexCacheStaticStorageFieldAddr(type_idx); llvm::Value* storage_object_addr = irb_.CreateLoad(storage_field_addr, kTBAARuntimeInfo); llvm::BasicBlock* block_original = irb_.GetInsertBlock(); // Test: Is the static storage of this class initialized? llvm::Value* equal_null = irb_.CreateICmpEQ(storage_object_addr, irb_.getJNull()); irb_.CreateCondBr(equal_null, block_load_static, block_cont, kUnlikely); // Failback routine to load the class object irb_.SetInsertPoint(block_load_static); llvm::Function* runtime_func = irb_.GetRuntime(InitializeStaticStorage); llvm::Constant* type_idx_value = irb_.getInt32(type_idx); llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); llvm::Value* thread_object_addr = irb_.Runtime().EmitGetCurrentThread(); EmitUpdateDexPC(dex_pc); llvm::Value* loaded_storage_object_addr = irb_.CreateCall3(runtime_func, type_idx_value, method_object_addr, thread_object_addr); EmitGuard_ExceptionLandingPad(dex_pc); llvm::BasicBlock* block_after_load_static = irb_.GetInsertBlock(); irb_.CreateBr(block_cont); // Now the class object must be loaded irb_.SetInsertPoint(block_cont); llvm::PHINode* phi = irb_.CreatePHI(irb_.getJObjectTy(), 2); phi->addIncoming(storage_object_addr, block_original); phi->addIncoming(loaded_storage_object_addr, block_after_load_static); return phi; } llvm::Value* GBCExpanderPass::Expand_HLSget(llvm::CallInst& call_inst, JType field_jty) { uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0)); uint32_t field_idx = LV2UInt(call_inst.getArgOperand(0)); int field_offset; int ssb_index; bool is_referrers_class; bool is_volatile; bool is_fast_path = driver_->ComputeStaticFieldInfo( field_idx, dex_compilation_unit_, field_offset, ssb_index, is_referrers_class, is_volatile, false); llvm::Value* static_field_value; if (!is_fast_path) { llvm::Function* runtime_func; if (field_jty == kObject) { runtime_func = irb_.GetRuntime(GetObjectStatic); } else if (field_jty == kLong || field_jty == kDouble) { runtime_func = irb_.GetRuntime(Get64Static); } else { runtime_func = irb_.GetRuntime(Get32Static); } llvm::Constant* field_idx_value = irb_.getInt32(field_idx); llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); EmitUpdateDexPC(dex_pc); static_field_value = irb_.CreateCall2(runtime_func, field_idx_value, method_object_addr); EmitGuard_ExceptionLandingPad(dex_pc); if (field_jty == kFloat || field_jty == kDouble) { static_field_value = irb_.CreateBitCast(static_field_value, irb_.getJType(field_jty)); } } else { DCHECK_GE(field_offset, 0); llvm::Value* static_storage_addr = NULL; if (is_referrers_class) { // Fast path, static storage base is this method's class llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); static_storage_addr = irb_.LoadFromObjectOffset(method_object_addr, art::mirror::ArtMethod::DeclaringClassOffset().Int32Value(), irb_.getJObjectTy(), kTBAAConstJObject); } else { // Medium path, static storage base in a different class which // requires checks that the other class is initialized DCHECK_GE(ssb_index, 0); static_storage_addr = EmitLoadStaticStorage(dex_pc, ssb_index); } llvm::Value* static_field_offset_value = irb_.getPtrEquivInt(field_offset); llvm::Value* static_field_addr = irb_.CreatePtrDisp(static_storage_addr, static_field_offset_value, irb_.getJType(field_jty)->getPointerTo()); static_field_value = irb_.CreateLoad(static_field_addr, kTBAAHeapStatic, field_jty); static_field_value = SignOrZeroExtendCat1Types(static_field_value, field_jty); if (is_volatile) { irb_.CreateMemoryBarrier(art::kLoadLoad); } } return static_field_value; } void GBCExpanderPass::Expand_HLSput(llvm::CallInst& call_inst, JType field_jty) { uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0)); uint32_t field_idx = LV2UInt(call_inst.getArgOperand(0)); llvm::Value* new_value = call_inst.getArgOperand(1); if (field_jty == kFloat || field_jty == kDouble) { new_value = irb_.CreateBitCast(new_value, irb_.getJType(field_jty)); } int field_offset; int ssb_index; bool is_referrers_class; bool is_volatile; bool is_fast_path = driver_->ComputeStaticFieldInfo( field_idx, dex_compilation_unit_, field_offset, ssb_index, is_referrers_class, is_volatile, true); if (!is_fast_path) { llvm::Function* runtime_func; if (field_jty == kObject) { runtime_func = irb_.GetRuntime(SetObjectStatic); } else if (field_jty == kLong || field_jty == kDouble) { runtime_func = irb_.GetRuntime(Set64Static); } else { runtime_func = irb_.GetRuntime(Set32Static); } if (field_jty == kFloat) { new_value = irb_.CreateBitCast(new_value, irb_.getJType(kInt)); } else if (field_jty == kDouble) { new_value = irb_.CreateBitCast(new_value, irb_.getJType(kLong)); } llvm::Constant* field_idx_value = irb_.getInt32(field_idx); llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); EmitUpdateDexPC(dex_pc); irb_.CreateCall3(runtime_func, field_idx_value, method_object_addr, new_value); EmitGuard_ExceptionLandingPad(dex_pc); } else { DCHECK_GE(field_offset, 0); llvm::Value* static_storage_addr = NULL; if (is_referrers_class) { // Fast path, static storage base is this method's class llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); static_storage_addr = irb_.LoadFromObjectOffset(method_object_addr, art::mirror::ArtMethod::DeclaringClassOffset().Int32Value(), irb_.getJObjectTy(), kTBAAConstJObject); } else { // Medium path, static storage base in a different class which // requires checks that the other class is initialized DCHECK_GE(ssb_index, 0); static_storage_addr = EmitLoadStaticStorage(dex_pc, ssb_index); } if (is_volatile) { irb_.CreateMemoryBarrier(art::kStoreStore); } llvm::Value* static_field_offset_value = irb_.getPtrEquivInt(field_offset); llvm::Value* static_field_addr = irb_.CreatePtrDisp(static_storage_addr, static_field_offset_value, irb_.getJType(field_jty)->getPointerTo()); new_value = TruncateCat1Types(new_value, field_jty); irb_.CreateStore(new_value, static_field_addr, kTBAAHeapStatic, field_jty); if (is_volatile) { irb_.CreateMemoryBarrier(art::kStoreLoad); } if (field_jty == kObject) { // If put an object, mark the GC card table. EmitMarkGCCard(new_value, static_storage_addr); } } return; } llvm::Value* GBCExpanderPass::Expand_ConstString(llvm::CallInst& call_inst) { uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0)); uint32_t string_idx = LV2UInt(call_inst.getArgOperand(0)); llvm::Value* string_field_addr = EmitLoadDexCacheStringFieldAddr(string_idx); llvm::Value* string_addr = irb_.CreateLoad(string_field_addr, kTBAARuntimeInfo); if (!driver_->CanAssumeStringIsPresentInDexCache(*dex_compilation_unit_->GetDexFile(), string_idx)) { llvm::BasicBlock* block_str_exist = CreateBasicBlockWithDexPC(dex_pc, "str_exist"); llvm::BasicBlock* block_str_resolve = CreateBasicBlockWithDexPC(dex_pc, "str_resolve"); llvm::BasicBlock* block_cont = CreateBasicBlockWithDexPC(dex_pc, "str_cont"); // Test: Is the string resolved and in the dex cache? llvm::Value* equal_null = irb_.CreateICmpEQ(string_addr, irb_.getJNull()); irb_.CreateCondBr(equal_null, block_str_resolve, block_str_exist, kUnlikely); // String is resolved, go to next basic block. irb_.SetInsertPoint(block_str_exist); irb_.CreateBr(block_cont); // String is not resolved yet, resolve it now. irb_.SetInsertPoint(block_str_resolve); llvm::Function* runtime_func = irb_.GetRuntime(ResolveString); llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); llvm::Value* string_idx_value = irb_.getInt32(string_idx); EmitUpdateDexPC(dex_pc); llvm::Value* result = irb_.CreateCall2(runtime_func, method_object_addr, string_idx_value); EmitGuard_ExceptionLandingPad(dex_pc); irb_.CreateBr(block_cont); llvm::BasicBlock* block_pre_cont = irb_.GetInsertBlock(); irb_.SetInsertPoint(block_cont); llvm::PHINode* phi = irb_.CreatePHI(irb_.getJObjectTy(), 2); phi->addIncoming(string_addr, block_str_exist); phi->addIncoming(result, block_pre_cont); string_addr = phi; } return string_addr; } llvm::Value* GBCExpanderPass::Expand_ConstClass(llvm::CallInst& call_inst) { uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0)); uint32_t type_idx = LV2UInt(call_inst.getArgOperand(0)); llvm::Value* type_object_addr = EmitLoadConstantClass(dex_pc, type_idx); return type_object_addr; } void GBCExpanderPass::Expand_MonitorEnter(llvm::CallInst& call_inst) { uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0)); llvm::Value* object_addr = call_inst.getArgOperand(1); int opt_flags = LV2UInt(call_inst.getArgOperand(0)); EmitGuard_NullPointerException(dex_pc, object_addr, opt_flags); EmitUpdateDexPC(dex_pc); irb_.Runtime().EmitLockObject(object_addr); return; } void GBCExpanderPass::Expand_MonitorExit(llvm::CallInst& call_inst) { uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0)); llvm::Value* object_addr = call_inst.getArgOperand(1); int opt_flags = LV2UInt(call_inst.getArgOperand(0)); EmitGuard_NullPointerException(dex_pc, object_addr, opt_flags); EmitUpdateDexPC(dex_pc); irb_.Runtime().EmitUnlockObject(object_addr); EmitGuard_ExceptionLandingPad(dex_pc); return; } void GBCExpanderPass::Expand_HLCheckCast(llvm::CallInst& call_inst) { uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0)); uint32_t type_idx = LV2UInt(call_inst.getArgOperand(0)); llvm::Value* object_addr = call_inst.getArgOperand(1); llvm::BasicBlock* block_test_class = CreateBasicBlockWithDexPC(dex_pc, "test_class"); llvm::BasicBlock* block_test_sub_class = CreateBasicBlockWithDexPC(dex_pc, "test_sub_class"); llvm::BasicBlock* block_cont = CreateBasicBlockWithDexPC(dex_pc, "checkcast_cont"); // Test: Is the reference equal to null? Act as no-op when it is null. llvm::Value* equal_null = irb_.CreateICmpEQ(object_addr, irb_.getJNull()); irb_.CreateCondBr(equal_null, block_cont, block_test_class, kUnlikely); // Test: Is the object instantiated from the given class? irb_.SetInsertPoint(block_test_class); llvm::Value* type_object_addr = EmitLoadConstantClass(dex_pc, type_idx); DCHECK_EQ(art::mirror::Object::ClassOffset().Int32Value(), 0); llvm::PointerType* jobject_ptr_ty = irb_.getJObjectTy(); llvm::Value* object_type_field_addr = irb_.CreateBitCast(object_addr, jobject_ptr_ty->getPointerTo()); llvm::Value* object_type_object_addr = irb_.CreateLoad(object_type_field_addr, kTBAAConstJObject); llvm::Value* equal_class = irb_.CreateICmpEQ(type_object_addr, object_type_object_addr); irb_.CreateCondBr(equal_class, block_cont, block_test_sub_class, kLikely); // Test: Is the object instantiated from the subclass of the given class? irb_.SetInsertPoint(block_test_sub_class); EmitUpdateDexPC(dex_pc); irb_.CreateCall2(irb_.GetRuntime(CheckCast), type_object_addr, object_type_object_addr); EmitGuard_ExceptionLandingPad(dex_pc); irb_.CreateBr(block_cont); irb_.SetInsertPoint(block_cont); return; } llvm::Value* GBCExpanderPass::Expand_InstanceOf(llvm::CallInst& call_inst) { uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0)); uint32_t type_idx = LV2UInt(call_inst.getArgOperand(0)); llvm::Value* object_addr = call_inst.getArgOperand(1); llvm::BasicBlock* block_nullp = CreateBasicBlockWithDexPC(dex_pc, "nullp"); llvm::BasicBlock* block_test_class = CreateBasicBlockWithDexPC(dex_pc, "test_class"); llvm::BasicBlock* block_class_equals = CreateBasicBlockWithDexPC(dex_pc, "class_eq"); llvm::BasicBlock* block_test_sub_class = CreateBasicBlockWithDexPC(dex_pc, "test_sub_class"); llvm::BasicBlock* block_cont = CreateBasicBlockWithDexPC(dex_pc, "instance_of_cont"); // Overview of the following code : // We check for null, if so, then false, otherwise check for class == . If so // then true, otherwise do callout slowpath. // // Test: Is the reference equal to null? Set 0 when it is null. llvm::Value* equal_null = irb_.CreateICmpEQ(object_addr, irb_.getJNull()); irb_.CreateCondBr(equal_null, block_nullp, block_test_class, kUnlikely); irb_.SetInsertPoint(block_nullp); irb_.CreateBr(block_cont); // Test: Is the object instantiated from the given class? irb_.SetInsertPoint(block_test_class); llvm::Value* type_object_addr = EmitLoadConstantClass(dex_pc, type_idx); DCHECK_EQ(art::mirror::Object::ClassOffset().Int32Value(), 0); llvm::PointerType* jobject_ptr_ty = irb_.getJObjectTy(); llvm::Value* object_type_field_addr = irb_.CreateBitCast(object_addr, jobject_ptr_ty->getPointerTo()); llvm::Value* object_type_object_addr = irb_.CreateLoad(object_type_field_addr, kTBAAConstJObject); llvm::Value* equal_class = irb_.CreateICmpEQ(type_object_addr, object_type_object_addr); irb_.CreateCondBr(equal_class, block_class_equals, block_test_sub_class, kLikely); irb_.SetInsertPoint(block_class_equals); irb_.CreateBr(block_cont); // Test: Is the object instantiated from the subclass of the given class? irb_.SetInsertPoint(block_test_sub_class); llvm::Value* result = irb_.CreateCall2(irb_.GetRuntime(IsAssignable), type_object_addr, object_type_object_addr); irb_.CreateBr(block_cont); irb_.SetInsertPoint(block_cont); llvm::PHINode* phi = irb_.CreatePHI(irb_.getJIntTy(), 3); phi->addIncoming(irb_.getJInt(0), block_nullp); phi->addIncoming(irb_.getJInt(1), block_class_equals); phi->addIncoming(result, block_test_sub_class); return phi; } llvm::Value* GBCExpanderPass::Expand_NewInstance(llvm::CallInst& call_inst) { uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0)); uint32_t type_idx = LV2UInt(call_inst.getArgOperand(0)); llvm::Function* runtime_func; if (driver_->CanAccessInstantiableTypeWithoutChecks(dex_compilation_unit_->GetDexMethodIndex(), *dex_compilation_unit_->GetDexFile(), type_idx)) { runtime_func = irb_.GetRuntime(AllocObject); } else { runtime_func = irb_.GetRuntime(AllocObjectWithAccessCheck); } llvm::Constant* type_index_value = irb_.getInt32(type_idx); llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); llvm::Value* thread_object_addr = irb_.Runtime().EmitGetCurrentThread(); EmitUpdateDexPC(dex_pc); llvm::Value* object_addr = irb_.CreateCall3(runtime_func, type_index_value, method_object_addr, thread_object_addr); EmitGuard_ExceptionLandingPad(dex_pc); return object_addr; } llvm::Value* GBCExpanderPass::Expand_HLInvoke(llvm::CallInst& call_inst) { art::InvokeType invoke_type = static_cast<art::InvokeType>(LV2UInt(call_inst.getArgOperand(0))); bool is_static = (invoke_type == art::kStatic); if (!is_static) { // Test: Is *this* parameter equal to null? uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0)); llvm::Value* this_addr = call_inst.getArgOperand(3); int opt_flags = LV2UInt(call_inst.getArgOperand(2)); EmitGuard_NullPointerException(dex_pc, this_addr, opt_flags); } llvm::Value* result = NULL; if (EmitIntrinsic(call_inst, &result)) { return result; } return EmitInvoke(call_inst); } llvm::Value* GBCExpanderPass::Expand_OptArrayLength(llvm::CallInst& call_inst) { uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0)); // Get the array object address llvm::Value* array_addr = call_inst.getArgOperand(1); int opt_flags = LV2UInt(call_inst.getArgOperand(0)); EmitGuard_NullPointerException(dex_pc, array_addr, opt_flags); // Get the array length and store it to the register return EmitLoadArrayLength(array_addr); } llvm::Value* GBCExpanderPass::Expand_NewArray(llvm::CallInst& call_inst) { uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0)); uint32_t type_idx = LV2UInt(call_inst.getArgOperand(0)); llvm::Value* length = call_inst.getArgOperand(1); return EmitAllocNewArray(dex_pc, length, type_idx, false); } llvm::Value* GBCExpanderPass::Expand_HLFilledNewArray(llvm::CallInst& call_inst) { uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0)); uint32_t type_idx = LV2UInt(call_inst.getArgOperand(1)); uint32_t length = call_inst.getNumArgOperands() - 3; llvm::Value* object_addr = EmitAllocNewArray(dex_pc, irb_.getInt32(length), type_idx, true); if (length > 0) { // Check for the element type uint32_t type_desc_len = 0; const char* type_desc = dex_compilation_unit_->GetDexFile()->StringByTypeIdx(type_idx, &type_desc_len); DCHECK_GE(type_desc_len, 2u); // should be guaranteed by verifier DCHECK_EQ(type_desc[0], '['); // should be guaranteed by verifier bool is_elem_int_ty = (type_desc[1] == 'I'); uint32_t alignment; llvm::Constant* elem_size; llvm::PointerType* field_type; // NOTE: Currently filled-new-array only supports 'L', '[', and 'I' // as the element, thus we are only checking 2 cases: primitive int and // non-primitive type. if (is_elem_int_ty) { alignment = sizeof(int32_t); elem_size = irb_.getPtrEquivInt(sizeof(int32_t)); field_type = irb_.getJIntTy()->getPointerTo(); } else { alignment = irb_.getSizeOfPtrEquivInt(); elem_size = irb_.getSizeOfPtrEquivIntValue(); field_type = irb_.getJObjectTy()->getPointerTo(); } llvm::Value* data_field_offset = irb_.getPtrEquivInt(art::mirror::Array::DataOffset(alignment).Int32Value()); llvm::Value* data_field_addr = irb_.CreatePtrDisp(object_addr, data_field_offset, field_type); // TODO: Tune this code. Currently we are generating one instruction for // one element which may be very space consuming. Maybe changing to use // memcpy may help; however, since we can't guarantee that the alloca of // dalvik register are continuous, we can't perform such optimization yet. for (uint32_t i = 0; i < length; ++i) { llvm::Value* reg_value = call_inst.getArgOperand(i+3); irb_.CreateStore(reg_value, data_field_addr, kTBAAHeapArray); data_field_addr = irb_.CreatePtrDisp(data_field_addr, elem_size, field_type); } } return object_addr; } void GBCExpanderPass::Expand_HLFillArrayData(llvm::CallInst& call_inst) { uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0)); int32_t payload_offset = static_cast<int32_t>(dex_pc) + LV2SInt(call_inst.getArgOperand(0)); llvm::Value* array_addr = call_inst.getArgOperand(1); const art::Instruction::ArrayDataPayload* payload = reinterpret_cast<const art::Instruction::ArrayDataPayload*>( dex_compilation_unit_->GetCodeItem()->insns_ + payload_offset); if (payload->element_count == 0) { // When the number of the elements in the payload is zero, we don't have // to copy any numbers. However, we should check whether the array object // address is equal to null or not. EmitGuard_NullPointerException(dex_pc, array_addr, 0); } else { // To save the code size, we are going to call the runtime function to // copy the content from DexFile. // NOTE: We will check for the NullPointerException in the runtime. llvm::Function* runtime_func = irb_.GetRuntime(FillArrayData); llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); EmitUpdateDexPC(dex_pc); irb_.CreateCall4(runtime_func, method_object_addr, irb_.getInt32(dex_pc), array_addr, irb_.getInt32(payload_offset)); EmitGuard_ExceptionLandingPad(dex_pc); } return; } llvm::Value* GBCExpanderPass::EmitAllocNewArray(uint32_t dex_pc, llvm::Value* array_length_value, uint32_t type_idx, bool is_filled_new_array) { llvm::Function* runtime_func; bool skip_access_check = driver_->CanAccessTypeWithoutChecks(dex_compilation_unit_->GetDexMethodIndex(), *dex_compilation_unit_->GetDexFile(), type_idx); if (is_filled_new_array) { runtime_func = skip_access_check ? irb_.GetRuntime(CheckAndAllocArray) : irb_.GetRuntime(CheckAndAllocArrayWithAccessCheck); } else { runtime_func = skip_access_check ? irb_.GetRuntime(AllocArray) : irb_.GetRuntime(AllocArrayWithAccessCheck); } llvm::Constant* type_index_value = irb_.getInt32(type_idx); llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); llvm::Value* thread_object_addr = irb_.Runtime().EmitGetCurrentThread(); EmitUpdateDexPC(dex_pc); llvm::Value* object_addr = irb_.CreateCall4(runtime_func, type_index_value, method_object_addr, array_length_value, thread_object_addr); EmitGuard_ExceptionLandingPad(dex_pc); return object_addr; } llvm::Value* GBCExpanderPass:: EmitCallRuntimeForCalleeMethodObjectAddr(uint32_t callee_method_idx, art::InvokeType invoke_type, llvm::Value* this_addr, uint32_t dex_pc, bool is_fast_path) { llvm::Function* runtime_func = NULL; switch (invoke_type) { case art::kStatic: runtime_func = irb_.GetRuntime(FindStaticMethodWithAccessCheck); break; case art::kDirect: runtime_func = irb_.GetRuntime(FindDirectMethodWithAccessCheck); break; case art::kVirtual: runtime_func = irb_.GetRuntime(FindVirtualMethodWithAccessCheck); break; case art::kSuper: runtime_func = irb_.GetRuntime(FindSuperMethodWithAccessCheck); break; case art::kInterface: if (is_fast_path) { runtime_func = irb_.GetRuntime(FindInterfaceMethod); } else { runtime_func = irb_.GetRuntime(FindInterfaceMethodWithAccessCheck); } break; } llvm::Value* callee_method_idx_value = irb_.getInt32(callee_method_idx); if (this_addr == NULL) { DCHECK_EQ(invoke_type, art::kStatic); this_addr = irb_.getJNull(); } llvm::Value* caller_method_object_addr = EmitLoadMethodObjectAddr(); llvm::Value* thread_object_addr = irb_.Runtime().EmitGetCurrentThread(); EmitUpdateDexPC(dex_pc); llvm::Value* callee_method_object_addr = irb_.CreateCall4(runtime_func, callee_method_idx_value, this_addr, caller_method_object_addr, thread_object_addr); EmitGuard_ExceptionLandingPad(dex_pc); return callee_method_object_addr; } void GBCExpanderPass::EmitMarkGCCard(llvm::Value* value, llvm::Value* target_addr) { // Using runtime support, let the target can override by InlineAssembly. irb_.Runtime().EmitMarkGCCard(value, target_addr); } void GBCExpanderPass::EmitUpdateDexPC(uint32_t dex_pc) { if (shadow_frame_ == NULL) { return; } irb_.StoreToObjectOffset(shadow_frame_, art::ShadowFrame::DexPCOffset(), irb_.getInt32(dex_pc), kTBAAShadowFrame); } void GBCExpanderPass::EmitGuard_DivZeroException(uint32_t dex_pc, llvm::Value* denominator, JType op_jty) { DCHECK(op_jty == kInt || op_jty == kLong) << op_jty; llvm::Constant* zero = irb_.getJZero(op_jty); llvm::Value* equal_zero = irb_.CreateICmpEQ(denominator, zero); llvm::BasicBlock* block_exception = CreateBasicBlockWithDexPC(dex_pc, "div0"); llvm::BasicBlock* block_continue = CreateBasicBlockWithDexPC(dex_pc, "cont"); irb_.CreateCondBr(equal_zero, block_exception, block_continue, kUnlikely); irb_.SetInsertPoint(block_exception); EmitUpdateDexPC(dex_pc); irb_.CreateCall(irb_.GetRuntime(ThrowDivZeroException)); EmitBranchExceptionLandingPad(dex_pc); irb_.SetInsertPoint(block_continue); } void GBCExpanderPass::EmitGuard_NullPointerException(uint32_t dex_pc, llvm::Value* object, int opt_flags) { bool ignore_null_check = ((opt_flags & MIR_IGNORE_NULL_CHECK) != 0); if (ignore_null_check) { llvm::BasicBlock* lpad = GetLandingPadBasicBlock(dex_pc); if (lpad) { // There is at least one catch: create a "fake" conditional branch to // keep the exception edge to the catch block. landing_pad_phi_mapping_[lpad].push_back( std::make_pair(current_bb_->getUniquePredecessor(), irb_.GetInsertBlock())); llvm::BasicBlock* block_continue = CreateBasicBlockWithDexPC(dex_pc, "cont"); irb_.CreateCondBr(irb_.getFalse(), lpad, block_continue, kUnlikely); irb_.SetInsertPoint(block_continue); } } else { llvm::Value* equal_null = irb_.CreateICmpEQ(object, irb_.getJNull()); llvm::BasicBlock* block_exception = CreateBasicBlockWithDexPC(dex_pc, "nullp"); llvm::BasicBlock* block_continue = CreateBasicBlockWithDexPC(dex_pc, "cont"); irb_.CreateCondBr(equal_null, block_exception, block_continue, kUnlikely); irb_.SetInsertPoint(block_exception); EmitUpdateDexPC(dex_pc); irb_.CreateCall(irb_.GetRuntime(ThrowNullPointerException), irb_.getInt32(dex_pc)); EmitBranchExceptionLandingPad(dex_pc); irb_.SetInsertPoint(block_continue); } } void GBCExpanderPass::EmitGuard_ArrayIndexOutOfBoundsException(uint32_t dex_pc, llvm::Value* array, llvm::Value* index, int opt_flags) { bool ignore_range_check = ((opt_flags & MIR_IGNORE_RANGE_CHECK) != 0); if (ignore_range_check) { llvm::BasicBlock* lpad = GetLandingPadBasicBlock(dex_pc); if (lpad) { // There is at least one catch: create a "fake" conditional branch to // keep the exception edge to the catch block. landing_pad_phi_mapping_[lpad].push_back( std::make_pair(current_bb_->getUniquePredecessor(), irb_.GetInsertBlock())); llvm::BasicBlock* block_continue = CreateBasicBlockWithDexPC(dex_pc, "cont"); irb_.CreateCondBr(irb_.getFalse(), lpad, block_continue, kUnlikely); irb_.SetInsertPoint(block_continue); } } else { llvm::Value* array_len = EmitLoadArrayLength(array); llvm::Value* cmp = irb_.CreateICmpUGE(index, array_len); llvm::BasicBlock* block_exception = CreateBasicBlockWithDexPC(dex_pc, "overflow"); llvm::BasicBlock* block_continue = CreateBasicBlockWithDexPC(dex_pc, "cont"); irb_.CreateCondBr(cmp, block_exception, block_continue, kUnlikely); irb_.SetInsertPoint(block_exception); EmitUpdateDexPC(dex_pc); irb_.CreateCall2(irb_.GetRuntime(ThrowIndexOutOfBounds), index, array_len); EmitBranchExceptionLandingPad(dex_pc); irb_.SetInsertPoint(block_continue); } } llvm::FunctionType* GBCExpanderPass::GetFunctionType(llvm::Type* ret_type, uint32_t method_idx, bool is_static) { // Get method signature art::DexFile::MethodId const& method_id = dex_compilation_unit_->GetDexFile()->GetMethodId(method_idx); uint32_t shorty_size; const char* shorty = dex_compilation_unit_->GetDexFile()->GetMethodShorty(method_id, &shorty_size); CHECK_GE(shorty_size, 1u); // Get argument type std::vector<llvm::Type*> args_type; args_type.push_back(irb_.getJObjectTy()); // method object pointer if (!is_static) { args_type.push_back(irb_.getJType('L')); // "this" object pointer } for (uint32_t i = 1; i < shorty_size; ++i) { char shorty_type = art::RemapShorty(shorty[i]); args_type.push_back(irb_.getJType(shorty_type)); } return llvm::FunctionType::get(ret_type, args_type, false); } llvm::BasicBlock* GBCExpanderPass:: CreateBasicBlockWithDexPC(uint32_t dex_pc, const char* postfix) { std::string name; #if !defined(NDEBUG) art::StringAppendF(&name, "B%04x.%s", dex_pc, postfix); #endif return llvm::BasicBlock::Create(context_, name, func_); } llvm::BasicBlock* GBCExpanderPass::GetBasicBlock(uint32_t dex_pc) { DCHECK(dex_pc < dex_compilation_unit_->GetCodeItem()->insns_size_in_code_units_); CHECK(basic_blocks_[dex_pc] != NULL); return basic_blocks_[dex_pc]; } int32_t GBCExpanderPass::GetTryItemOffset(uint32_t dex_pc) { int32_t min = 0; int32_t max = dex_compilation_unit_->GetCodeItem()->tries_size_ - 1; while (min <= max) { int32_t mid = min + (max - min) / 2; const art::DexFile::TryItem* ti = art::DexFile::GetTryItems(*dex_compilation_unit_->GetCodeItem(), mid); uint32_t start = ti->start_addr_; uint32_t end = start + ti->insn_count_; if (dex_pc < start) { max = mid - 1; } else if (dex_pc >= end) { min = mid + 1; } else { return mid; // found } } return -1; // not found } llvm::BasicBlock* GBCExpanderPass::GetLandingPadBasicBlock(uint32_t dex_pc) { // Find the try item for this address in this method int32_t ti_offset = GetTryItemOffset(dex_pc); if (ti_offset == -1) { return NULL; // No landing pad is available for this address. } // Check for the existing landing pad basic block DCHECK_GT(basic_block_landing_pads_.size(), static_cast<size_t>(ti_offset)); llvm::BasicBlock* block_lpad = basic_block_landing_pads_[ti_offset]; if (block_lpad) { // We have generated landing pad for this try item already. Return the // same basic block. return block_lpad; } // Get try item from code item const art::DexFile::TryItem* ti = art::DexFile::GetTryItems(*dex_compilation_unit_->GetCodeItem(), ti_offset); std::string lpadname; #if !defined(NDEBUG) art::StringAppendF(&lpadname, "lpad%d_%04x_to_%04x", ti_offset, ti->start_addr_, ti->handler_off_); #endif // Create landing pad basic block block_lpad = llvm::BasicBlock::Create(context_, lpadname, func_); // Change IRBuilder insert point llvm::IRBuilderBase::InsertPoint irb_ip_original = irb_.saveIP(); irb_.SetInsertPoint(block_lpad); // Find catch block with matching type llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); llvm::Value* ti_offset_value = irb_.getInt32(ti_offset); llvm::Value* catch_handler_index_value = irb_.CreateCall2(irb_.GetRuntime(FindCatchBlock), method_object_addr, ti_offset_value); // Switch instruction (Go to unwind basic block by default) llvm::SwitchInst* sw = irb_.CreateSwitch(catch_handler_index_value, GetUnwindBasicBlock()); // Cases with matched catch block art::CatchHandlerIterator iter(*dex_compilation_unit_->GetCodeItem(), ti->start_addr_); for (uint32_t c = 0; iter.HasNext(); iter.Next(), ++c) { sw->addCase(irb_.getInt32(c), GetBasicBlock(iter.GetHandlerAddress())); } // Restore the orignal insert point for IRBuilder irb_.restoreIP(irb_ip_original); // Cache this landing pad DCHECK_GT(basic_block_landing_pads_.size(), static_cast<size_t>(ti_offset)); basic_block_landing_pads_[ti_offset] = block_lpad; return block_lpad; } llvm::BasicBlock* GBCExpanderPass::GetUnwindBasicBlock() { // Check the existing unwinding baisc block block if (basic_block_unwind_ != NULL) { return basic_block_unwind_; } // Create new basic block for unwinding basic_block_unwind_ = llvm::BasicBlock::Create(context_, "exception_unwind", func_); // Change IRBuilder insert point llvm::IRBuilderBase::InsertPoint irb_ip_original = irb_.saveIP(); irb_.SetInsertPoint(basic_block_unwind_); // Pop the shadow frame Expand_PopShadowFrame(); // Emit the code to return default value (zero) for the given return type. char ret_shorty = dex_compilation_unit_->GetShorty()[0]; ret_shorty = art::RemapShorty(ret_shorty); if (ret_shorty == 'V') { irb_.CreateRetVoid(); } else { irb_.CreateRet(irb_.getJZero(ret_shorty)); } // Restore the orignal insert point for IRBuilder irb_.restoreIP(irb_ip_original); return basic_block_unwind_; } void GBCExpanderPass::EmitBranchExceptionLandingPad(uint32_t dex_pc) { if (llvm::BasicBlock* lpad = GetLandingPadBasicBlock(dex_pc)) { landing_pad_phi_mapping_[lpad].push_back(std::make_pair(current_bb_->getUniquePredecessor(), irb_.GetInsertBlock())); irb_.CreateBr(lpad); } else { irb_.CreateBr(GetUnwindBasicBlock()); } } void GBCExpanderPass::EmitGuard_ExceptionLandingPad(uint32_t dex_pc) { llvm::Value* exception_pending = irb_.Runtime().EmitIsExceptionPending(); llvm::BasicBlock* block_cont = CreateBasicBlockWithDexPC(dex_pc, "cont"); if (llvm::BasicBlock* lpad = GetLandingPadBasicBlock(dex_pc)) { landing_pad_phi_mapping_[lpad].push_back(std::make_pair(current_bb_->getUniquePredecessor(), irb_.GetInsertBlock())); irb_.CreateCondBr(exception_pending, lpad, block_cont, kUnlikely); } else { irb_.CreateCondBr(exception_pending, GetUnwindBasicBlock(), block_cont, kUnlikely); } irb_.SetInsertPoint(block_cont); } llvm::Value* GBCExpanderPass::ExpandIntrinsic(IntrinsicHelper::IntrinsicId intr_id, llvm::CallInst& call_inst) { switch (intr_id) { //==- Thread -----------------------------------------------------------==// case IntrinsicHelper::GetCurrentThread: { return irb_.Runtime().EmitGetCurrentThread(); } case IntrinsicHelper::CheckSuspend: { Expand_TestSuspend(call_inst); return NULL; } case IntrinsicHelper::TestSuspend: { Expand_TestSuspend(call_inst); return NULL; } case IntrinsicHelper::MarkGCCard: { Expand_MarkGCCard(call_inst); return NULL; } //==- Exception --------------------------------------------------------==// case IntrinsicHelper::ThrowException: { return ExpandToRuntime(ThrowException, call_inst); } case IntrinsicHelper::HLThrowException: { uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0)); EmitUpdateDexPC(dex_pc); irb_.CreateCall(irb_.GetRuntime(ThrowException), call_inst.getArgOperand(0)); EmitGuard_ExceptionLandingPad(dex_pc); return NULL; } case IntrinsicHelper::GetException: { return irb_.Runtime().EmitGetAndClearException(); } case IntrinsicHelper::IsExceptionPending: { return irb_.Runtime().EmitIsExceptionPending(); } case IntrinsicHelper::FindCatchBlock: { return ExpandToRuntime(FindCatchBlock, call_inst); } case IntrinsicHelper::ThrowDivZeroException: { return ExpandToRuntime(ThrowDivZeroException, call_inst); } case IntrinsicHelper::ThrowNullPointerException: { return ExpandToRuntime(ThrowNullPointerException, call_inst); } case IntrinsicHelper::ThrowIndexOutOfBounds: { return ExpandToRuntime(ThrowIndexOutOfBounds, call_inst); } //==- Const String -----------------------------------------------------==// case IntrinsicHelper::ConstString: { return Expand_ConstString(call_inst); } case IntrinsicHelper::LoadStringFromDexCache: { return Expand_LoadStringFromDexCache(call_inst.getArgOperand(0)); } case IntrinsicHelper::ResolveString: { return ExpandToRuntime(ResolveString, call_inst); } //==- Const Class ------------------------------------------------------==// case IntrinsicHelper::ConstClass: { return Expand_ConstClass(call_inst); } case IntrinsicHelper::InitializeTypeAndVerifyAccess: { return ExpandToRuntime(InitializeTypeAndVerifyAccess, call_inst); } case IntrinsicHelper::LoadTypeFromDexCache: { return Expand_LoadTypeFromDexCache(call_inst.getArgOperand(0)); } case IntrinsicHelper::InitializeType: { return ExpandToRuntime(InitializeType, call_inst); } //==- Lock -------------------------------------------------------------==// case IntrinsicHelper::LockObject: { Expand_LockObject(call_inst.getArgOperand(0)); return NULL; } case IntrinsicHelper::UnlockObject: { Expand_UnlockObject(call_inst.getArgOperand(0)); return NULL; } //==- Cast -------------------------------------------------------------==// case IntrinsicHelper::CheckCast: { return ExpandToRuntime(CheckCast, call_inst); } case IntrinsicHelper::HLCheckCast: { Expand_HLCheckCast(call_inst); return NULL; } case IntrinsicHelper::IsAssignable: { return ExpandToRuntime(IsAssignable, call_inst); } //==- Alloc ------------------------------------------------------------==// case IntrinsicHelper::AllocObject: { return ExpandToRuntime(AllocObject, call_inst); } case IntrinsicHelper::AllocObjectWithAccessCheck: { return ExpandToRuntime(AllocObjectWithAccessCheck, call_inst); } //==- Instance ---------------------------------------------------------==// case IntrinsicHelper::NewInstance: { return Expand_NewInstance(call_inst); } case IntrinsicHelper::InstanceOf: { return Expand_InstanceOf(call_inst); } //==- Array ------------------------------------------------------------==// case IntrinsicHelper::NewArray: { return Expand_NewArray(call_inst); } case IntrinsicHelper::OptArrayLength: { return Expand_OptArrayLength(call_inst); } case IntrinsicHelper::ArrayLength: { return EmitLoadArrayLength(call_inst.getArgOperand(0)); } case IntrinsicHelper::AllocArray: { return ExpandToRuntime(AllocArray, call_inst); } case IntrinsicHelper::AllocArrayWithAccessCheck: { return ExpandToRuntime(AllocArrayWithAccessCheck, call_inst); } case IntrinsicHelper::CheckAndAllocArray: { return ExpandToRuntime(CheckAndAllocArray, call_inst); } case IntrinsicHelper::CheckAndAllocArrayWithAccessCheck: { return ExpandToRuntime(CheckAndAllocArrayWithAccessCheck, call_inst); } case IntrinsicHelper::ArrayGet: { return Expand_ArrayGet(call_inst.getArgOperand(0), call_inst.getArgOperand(1), kInt); } case IntrinsicHelper::ArrayGetWide: { return Expand_ArrayGet(call_inst.getArgOperand(0), call_inst.getArgOperand(1), kLong); } case IntrinsicHelper::ArrayGetObject: { return Expand_ArrayGet(call_inst.getArgOperand(0), call_inst.getArgOperand(1), kObject); } case IntrinsicHelper::ArrayGetBoolean: { return Expand_ArrayGet(call_inst.getArgOperand(0), call_inst.getArgOperand(1), kBoolean); } case IntrinsicHelper::ArrayGetByte: { return Expand_ArrayGet(call_inst.getArgOperand(0), call_inst.getArgOperand(1), kByte); } case IntrinsicHelper::ArrayGetChar: { return Expand_ArrayGet(call_inst.getArgOperand(0), call_inst.getArgOperand(1), kChar); } case IntrinsicHelper::ArrayGetShort: { return Expand_ArrayGet(call_inst.getArgOperand(0), call_inst.getArgOperand(1), kShort); } case IntrinsicHelper::ArrayPut: { Expand_ArrayPut(call_inst.getArgOperand(0), call_inst.getArgOperand(1), call_inst.getArgOperand(2), kInt); return NULL; } case IntrinsicHelper::ArrayPutWide: { Expand_ArrayPut(call_inst.getArgOperand(0), call_inst.getArgOperand(1), call_inst.getArgOperand(2), kLong); return NULL; } case IntrinsicHelper::ArrayPutObject: { Expand_ArrayPut(call_inst.getArgOperand(0), call_inst.getArgOperand(1), call_inst.getArgOperand(2), kObject); return NULL; } case IntrinsicHelper::ArrayPutBoolean: { Expand_ArrayPut(call_inst.getArgOperand(0), call_inst.getArgOperand(1), call_inst.getArgOperand(2), kBoolean); return NULL; } case IntrinsicHelper::ArrayPutByte: { Expand_ArrayPut(call_inst.getArgOperand(0), call_inst.getArgOperand(1), call_inst.getArgOperand(2), kByte); return NULL; } case IntrinsicHelper::ArrayPutChar: { Expand_ArrayPut(call_inst.getArgOperand(0), call_inst.getArgOperand(1), call_inst.getArgOperand(2), kChar); return NULL; } case IntrinsicHelper::ArrayPutShort: { Expand_ArrayPut(call_inst.getArgOperand(0), call_inst.getArgOperand(1), call_inst.getArgOperand(2), kShort); return NULL; } case IntrinsicHelper::CheckPutArrayElement: { return ExpandToRuntime(CheckPutArrayElement, call_inst); } case IntrinsicHelper::FilledNewArray: { Expand_FilledNewArray(call_inst); return NULL; } case IntrinsicHelper::FillArrayData: { return ExpandToRuntime(FillArrayData, call_inst); } case IntrinsicHelper::HLFillArrayData: { Expand_HLFillArrayData(call_inst); return NULL; } case IntrinsicHelper::HLFilledNewArray: { return Expand_HLFilledNewArray(call_inst); } //==- Instance Field ---------------------------------------------------==// case IntrinsicHelper::InstanceFieldGet: case IntrinsicHelper::InstanceFieldGetBoolean: case IntrinsicHelper::InstanceFieldGetByte: case IntrinsicHelper::InstanceFieldGetChar: case IntrinsicHelper::InstanceFieldGetShort: { return ExpandToRuntime(Get32Instance, call_inst); } case IntrinsicHelper::InstanceFieldGetWide: { return ExpandToRuntime(Get64Instance, call_inst); } case IntrinsicHelper::InstanceFieldGetObject: { return ExpandToRuntime(GetObjectInstance, call_inst); } case IntrinsicHelper::InstanceFieldGetFast: { return Expand_IGetFast(call_inst.getArgOperand(0), call_inst.getArgOperand(1), call_inst.getArgOperand(2), kInt); } case IntrinsicHelper::InstanceFieldGetWideFast: { return Expand_IGetFast(call_inst.getArgOperand(0), call_inst.getArgOperand(1), call_inst.getArgOperand(2), kLong); } case IntrinsicHelper::InstanceFieldGetObjectFast: { return Expand_IGetFast(call_inst.getArgOperand(0), call_inst.getArgOperand(1), call_inst.getArgOperand(2), kObject); } case IntrinsicHelper::InstanceFieldGetBooleanFast: { return Expand_IGetFast(call_inst.getArgOperand(0), call_inst.getArgOperand(1), call_inst.getArgOperand(2), kBoolean); } case IntrinsicHelper::InstanceFieldGetByteFast: { return Expand_IGetFast(call_inst.getArgOperand(0), call_inst.getArgOperand(1), call_inst.getArgOperand(2), kByte); } case IntrinsicHelper::InstanceFieldGetCharFast: { return Expand_IGetFast(call_inst.getArgOperand(0), call_inst.getArgOperand(1), call_inst.getArgOperand(2), kChar); } case IntrinsicHelper::InstanceFieldGetShortFast: { return Expand_IGetFast(call_inst.getArgOperand(0), call_inst.getArgOperand(1), call_inst.getArgOperand(2), kShort); } case IntrinsicHelper::InstanceFieldPut: case IntrinsicHelper::InstanceFieldPutBoolean: case IntrinsicHelper::InstanceFieldPutByte: case IntrinsicHelper::InstanceFieldPutChar: case IntrinsicHelper::InstanceFieldPutShort: { return ExpandToRuntime(Set32Instance, call_inst); } case IntrinsicHelper::InstanceFieldPutWide: { return ExpandToRuntime(Set64Instance, call_inst); } case IntrinsicHelper::InstanceFieldPutObject: { return ExpandToRuntime(SetObjectInstance, call_inst); } case IntrinsicHelper::InstanceFieldPutFast: { Expand_IPutFast(call_inst.getArgOperand(0), call_inst.getArgOperand(1), call_inst.getArgOperand(2), call_inst.getArgOperand(3), kInt); return NULL; } case IntrinsicHelper::InstanceFieldPutWideFast: { Expand_IPutFast(call_inst.getArgOperand(0), call_inst.getArgOperand(1), call_inst.getArgOperand(2), call_inst.getArgOperand(3), kLong); return NULL; } case IntrinsicHelper::InstanceFieldPutObjectFast: { Expand_IPutFast(call_inst.getArgOperand(0), call_inst.getArgOperand(1), call_inst.getArgOperand(2), call_inst.getArgOperand(3), kObject); return NULL; } case IntrinsicHelper::InstanceFieldPutBooleanFast: { Expand_IPutFast(call_inst.getArgOperand(0), call_inst.getArgOperand(1), call_inst.getArgOperand(2), call_inst.getArgOperand(3), kBoolean); return NULL; } case IntrinsicHelper::InstanceFieldPutByteFast: { Expand_IPutFast(call_inst.getArgOperand(0), call_inst.getArgOperand(1), call_inst.getArgOperand(2), call_inst.getArgOperand(3), kByte); return NULL; } case IntrinsicHelper::InstanceFieldPutCharFast: { Expand_IPutFast(call_inst.getArgOperand(0), call_inst.getArgOperand(1), call_inst.getArgOperand(2), call_inst.getArgOperand(3), kChar); return NULL; } case IntrinsicHelper::InstanceFieldPutShortFast: { Expand_IPutFast(call_inst.getArgOperand(0), call_inst.getArgOperand(1), call_inst.getArgOperand(2), call_inst.getArgOperand(3), kShort); return NULL; } //==- Static Field -----------------------------------------------------==// case IntrinsicHelper::StaticFieldGet: case IntrinsicHelper::StaticFieldGetBoolean: case IntrinsicHelper::StaticFieldGetByte: case IntrinsicHelper::StaticFieldGetChar: case IntrinsicHelper::StaticFieldGetShort: { return ExpandToRuntime(Get32Static, call_inst); } case IntrinsicHelper::StaticFieldGetWide: { return ExpandToRuntime(Get64Static, call_inst); } case IntrinsicHelper::StaticFieldGetObject: { return ExpandToRuntime(GetObjectStatic, call_inst); } case IntrinsicHelper::StaticFieldGetFast: { return Expand_SGetFast(call_inst.getArgOperand(0), call_inst.getArgOperand(1), call_inst.getArgOperand(2), kInt); } case IntrinsicHelper::StaticFieldGetWideFast: { return Expand_SGetFast(call_inst.getArgOperand(0), call_inst.getArgOperand(1), call_inst.getArgOperand(2), kLong); } case IntrinsicHelper::StaticFieldGetObjectFast: { return Expand_SGetFast(call_inst.getArgOperand(0), call_inst.getArgOperand(1), call_inst.getArgOperand(2), kObject); } case IntrinsicHelper::StaticFieldGetBooleanFast: { return Expand_SGetFast(call_inst.getArgOperand(0), call_inst.getArgOperand(1), call_inst.getArgOperand(2), kBoolean); } case IntrinsicHelper::StaticFieldGetByteFast: { return Expand_SGetFast(call_inst.getArgOperand(0), call_inst.getArgOperand(1), call_inst.getArgOperand(2), kByte); } case IntrinsicHelper::StaticFieldGetCharFast: { return Expand_SGetFast(call_inst.getArgOperand(0), call_inst.getArgOperand(1), call_inst.getArgOperand(2), kChar); } case IntrinsicHelper::StaticFieldGetShortFast: { return Expand_SGetFast(call_inst.getArgOperand(0), call_inst.getArgOperand(1), call_inst.getArgOperand(2), kShort); } case IntrinsicHelper::StaticFieldPut: case IntrinsicHelper::StaticFieldPutBoolean: case IntrinsicHelper::StaticFieldPutByte: case IntrinsicHelper::StaticFieldPutChar: case IntrinsicHelper::StaticFieldPutShort: { return ExpandToRuntime(Set32Static, call_inst); } case IntrinsicHelper::StaticFieldPutWide: { return ExpandToRuntime(Set64Static, call_inst); } case IntrinsicHelper::StaticFieldPutObject: { return ExpandToRuntime(SetObjectStatic, call_inst); } case IntrinsicHelper::StaticFieldPutFast: { Expand_SPutFast(call_inst.getArgOperand(0), call_inst.getArgOperand(1), call_inst.getArgOperand(2), call_inst.getArgOperand(3), kInt); return NULL; } case IntrinsicHelper::StaticFieldPutWideFast: { Expand_SPutFast(call_inst.getArgOperand(0), call_inst.getArgOperand(1), call_inst.getArgOperand(2), call_inst.getArgOperand(3), kLong); return NULL; } case IntrinsicHelper::StaticFieldPutObjectFast: { Expand_SPutFast(call_inst.getArgOperand(0), call_inst.getArgOperand(1), call_inst.getArgOperand(2), call_inst.getArgOperand(3), kObject); return NULL; } case IntrinsicHelper::StaticFieldPutBooleanFast: { Expand_SPutFast(call_inst.getArgOperand(0), call_inst.getArgOperand(1), call_inst.getArgOperand(2), call_inst.getArgOperand(3), kBoolean); return NULL; } case IntrinsicHelper::StaticFieldPutByteFast: { Expand_SPutFast(call_inst.getArgOperand(0), call_inst.getArgOperand(1), call_inst.getArgOperand(2), call_inst.getArgOperand(3), kByte); return NULL; } case IntrinsicHelper::StaticFieldPutCharFast: { Expand_SPutFast(call_inst.getArgOperand(0), call_inst.getArgOperand(1), call_inst.getArgOperand(2), call_inst.getArgOperand(3), kChar); return NULL; } case IntrinsicHelper::StaticFieldPutShortFast: { Expand_SPutFast(call_inst.getArgOperand(0), call_inst.getArgOperand(1), call_inst.getArgOperand(2), call_inst.getArgOperand(3), kShort); return NULL; } case IntrinsicHelper::LoadDeclaringClassSSB: { return Expand_LoadDeclaringClassSSB(call_inst.getArgOperand(0)); } case IntrinsicHelper::LoadClassSSBFromDexCache: { return Expand_LoadClassSSBFromDexCache(call_inst.getArgOperand(0)); } case IntrinsicHelper::InitializeAndLoadClassSSB: { return ExpandToRuntime(InitializeStaticStorage, call_inst); } //==- High-level Array -------------------------------------------------==// case IntrinsicHelper::HLArrayGet: { return Expand_HLArrayGet(call_inst, kInt); } case IntrinsicHelper::HLArrayGetBoolean: { return Expand_HLArrayGet(call_inst, kBoolean); } case IntrinsicHelper::HLArrayGetByte: { return Expand_HLArrayGet(call_inst, kByte); } case IntrinsicHelper::HLArrayGetChar: { return Expand_HLArrayGet(call_inst, kChar); } case IntrinsicHelper::HLArrayGetShort: { return Expand_HLArrayGet(call_inst, kShort); } case IntrinsicHelper::HLArrayGetFloat: { return Expand_HLArrayGet(call_inst, kFloat); } case IntrinsicHelper::HLArrayGetWide: { return Expand_HLArrayGet(call_inst, kLong); } case IntrinsicHelper::HLArrayGetDouble: { return Expand_HLArrayGet(call_inst, kDouble); } case IntrinsicHelper::HLArrayGetObject: { return Expand_HLArrayGet(call_inst, kObject); } case IntrinsicHelper::HLArrayPut: { Expand_HLArrayPut(call_inst, kInt); return NULL; } case IntrinsicHelper::HLArrayPutBoolean: { Expand_HLArrayPut(call_inst, kBoolean); return NULL; } case IntrinsicHelper::HLArrayPutByte: { Expand_HLArrayPut(call_inst, kByte); return NULL; } case IntrinsicHelper::HLArrayPutChar: { Expand_HLArrayPut(call_inst, kChar); return NULL; } case IntrinsicHelper::HLArrayPutShort: { Expand_HLArrayPut(call_inst, kShort); return NULL; } case IntrinsicHelper::HLArrayPutFloat: { Expand_HLArrayPut(call_inst, kFloat); return NULL; } case IntrinsicHelper::HLArrayPutWide: { Expand_HLArrayPut(call_inst, kLong); return NULL; } case IntrinsicHelper::HLArrayPutDouble: { Expand_HLArrayPut(call_inst, kDouble); return NULL; } case IntrinsicHelper::HLArrayPutObject: { Expand_HLArrayPut(call_inst, kObject); return NULL; } //==- High-level Instance ----------------------------------------------==// case IntrinsicHelper::HLIGet: { return Expand_HLIGet(call_inst, kInt); } case IntrinsicHelper::HLIGetBoolean: { return Expand_HLIGet(call_inst, kBoolean); } case IntrinsicHelper::HLIGetByte: { return Expand_HLIGet(call_inst, kByte); } case IntrinsicHelper::HLIGetChar: { return Expand_HLIGet(call_inst, kChar); } case IntrinsicHelper::HLIGetShort: { return Expand_HLIGet(call_inst, kShort); } case IntrinsicHelper::HLIGetFloat: { return Expand_HLIGet(call_inst, kFloat); } case IntrinsicHelper::HLIGetWide: { return Expand_HLIGet(call_inst, kLong); } case IntrinsicHelper::HLIGetDouble: { return Expand_HLIGet(call_inst, kDouble); } case IntrinsicHelper::HLIGetObject: { return Expand_HLIGet(call_inst, kObject); } case IntrinsicHelper::HLIPut: { Expand_HLIPut(call_inst, kInt); return NULL; } case IntrinsicHelper::HLIPutBoolean: { Expand_HLIPut(call_inst, kBoolean); return NULL; } case IntrinsicHelper::HLIPutByte: { Expand_HLIPut(call_inst, kByte); return NULL; } case IntrinsicHelper::HLIPutChar: { Expand_HLIPut(call_inst, kChar); return NULL; } case IntrinsicHelper::HLIPutShort: { Expand_HLIPut(call_inst, kShort); return NULL; } case IntrinsicHelper::HLIPutFloat: { Expand_HLIPut(call_inst, kFloat); return NULL; } case IntrinsicHelper::HLIPutWide: { Expand_HLIPut(call_inst, kLong); return NULL; } case IntrinsicHelper::HLIPutDouble: { Expand_HLIPut(call_inst, kDouble); return NULL; } case IntrinsicHelper::HLIPutObject: { Expand_HLIPut(call_inst, kObject); return NULL; } //==- High-level Invoke ------------------------------------------------==// case IntrinsicHelper::HLInvokeVoid: case IntrinsicHelper::HLInvokeObj: case IntrinsicHelper::HLInvokeInt: case IntrinsicHelper::HLInvokeFloat: case IntrinsicHelper::HLInvokeLong: case IntrinsicHelper::HLInvokeDouble: { return Expand_HLInvoke(call_inst); } //==- Invoke -----------------------------------------------------------==// case IntrinsicHelper::FindStaticMethodWithAccessCheck: { return ExpandToRuntime(FindStaticMethodWithAccessCheck, call_inst); } case IntrinsicHelper::FindDirectMethodWithAccessCheck: { return ExpandToRuntime(FindDirectMethodWithAccessCheck, call_inst); } case IntrinsicHelper::FindVirtualMethodWithAccessCheck: { return ExpandToRuntime(FindVirtualMethodWithAccessCheck, call_inst); } case IntrinsicHelper::FindSuperMethodWithAccessCheck: { return ExpandToRuntime(FindSuperMethodWithAccessCheck, call_inst); } case IntrinsicHelper::FindInterfaceMethodWithAccessCheck: { return ExpandToRuntime(FindInterfaceMethodWithAccessCheck, call_inst); } case IntrinsicHelper::GetSDCalleeMethodObjAddrFast: { return Expand_GetSDCalleeMethodObjAddrFast(call_inst.getArgOperand(0)); } case IntrinsicHelper::GetVirtualCalleeMethodObjAddrFast: { return Expand_GetVirtualCalleeMethodObjAddrFast( call_inst.getArgOperand(0), call_inst.getArgOperand(1)); } case IntrinsicHelper::GetInterfaceCalleeMethodObjAddrFast: { return ExpandToRuntime(FindInterfaceMethod, call_inst); } case IntrinsicHelper::InvokeRetVoid: case IntrinsicHelper::InvokeRetBoolean: case IntrinsicHelper::InvokeRetByte: case IntrinsicHelper::InvokeRetChar: case IntrinsicHelper::InvokeRetShort: case IntrinsicHelper::InvokeRetInt: case IntrinsicHelper::InvokeRetLong: case IntrinsicHelper::InvokeRetFloat: case IntrinsicHelper::InvokeRetDouble: case IntrinsicHelper::InvokeRetObject: { return Expand_Invoke(call_inst); } //==- Math -------------------------------------------------------------==// case IntrinsicHelper::DivInt: { return Expand_DivRem(call_inst, /* is_div */true, kInt); } case IntrinsicHelper::RemInt: { return Expand_DivRem(call_inst, /* is_div */false, kInt); } case IntrinsicHelper::DivLong: { return Expand_DivRem(call_inst, /* is_div */true, kLong); } case IntrinsicHelper::RemLong: { return Expand_DivRem(call_inst, /* is_div */false, kLong); } case IntrinsicHelper::D2L: { return ExpandToRuntime(art_d2l, call_inst); } case IntrinsicHelper::D2I: { return ExpandToRuntime(art_d2i, call_inst); } case IntrinsicHelper::F2L: { return ExpandToRuntime(art_f2l, call_inst); } case IntrinsicHelper::F2I: { return ExpandToRuntime(art_f2i, call_inst); } //==- High-level Static ------------------------------------------------==// case IntrinsicHelper::HLSget: { return Expand_HLSget(call_inst, kInt); } case IntrinsicHelper::HLSgetBoolean: { return Expand_HLSget(call_inst, kBoolean); } case IntrinsicHelper::HLSgetByte: { return Expand_HLSget(call_inst, kByte); } case IntrinsicHelper::HLSgetChar: { return Expand_HLSget(call_inst, kChar); } case IntrinsicHelper::HLSgetShort: { return Expand_HLSget(call_inst, kShort); } case IntrinsicHelper::HLSgetFloat: { return Expand_HLSget(call_inst, kFloat); } case IntrinsicHelper::HLSgetWide: { return Expand_HLSget(call_inst, kLong); } case IntrinsicHelper::HLSgetDouble: { return Expand_HLSget(call_inst, kDouble); } case IntrinsicHelper::HLSgetObject: { return Expand_HLSget(call_inst, kObject); } case IntrinsicHelper::HLSput: { Expand_HLSput(call_inst, kInt); return NULL; } case IntrinsicHelper::HLSputBoolean: { Expand_HLSput(call_inst, kBoolean); return NULL; } case IntrinsicHelper::HLSputByte: { Expand_HLSput(call_inst, kByte); return NULL; } case IntrinsicHelper::HLSputChar: { Expand_HLSput(call_inst, kChar); return NULL; } case IntrinsicHelper::HLSputShort: { Expand_HLSput(call_inst, kShort); return NULL; } case IntrinsicHelper::HLSputFloat: { Expand_HLSput(call_inst, kFloat); return NULL; } case IntrinsicHelper::HLSputWide: { Expand_HLSput(call_inst, kLong); return NULL; } case IntrinsicHelper::HLSputDouble: { Expand_HLSput(call_inst, kDouble); return NULL; } case IntrinsicHelper::HLSputObject: { Expand_HLSput(call_inst, kObject); return NULL; } //==- High-level Monitor -----------------------------------------------==// case IntrinsicHelper::MonitorEnter: { Expand_MonitorEnter(call_inst); return NULL; } case IntrinsicHelper::MonitorExit: { Expand_MonitorExit(call_inst); return NULL; } //==- Shadow Frame -----------------------------------------------------==// case IntrinsicHelper::AllocaShadowFrame: { Expand_AllocaShadowFrame(call_inst.getArgOperand(0)); return NULL; } case IntrinsicHelper::SetVReg: { Expand_SetVReg(call_inst.getArgOperand(0), call_inst.getArgOperand(1)); return NULL; } case IntrinsicHelper::PopShadowFrame: { Expand_PopShadowFrame(); return NULL; } case IntrinsicHelper::UpdateDexPC: { Expand_UpdateDexPC(call_inst.getArgOperand(0)); return NULL; } //==- Comparison -------------------------------------------------------==// case IntrinsicHelper::CmplFloat: case IntrinsicHelper::CmplDouble: { return Expand_FPCompare(call_inst.getArgOperand(0), call_inst.getArgOperand(1), false); } case IntrinsicHelper::CmpgFloat: case IntrinsicHelper::CmpgDouble: { return Expand_FPCompare(call_inst.getArgOperand(0), call_inst.getArgOperand(1), true); } case IntrinsicHelper::CmpLong: { return Expand_LongCompare(call_inst.getArgOperand(0), call_inst.getArgOperand(1)); } //==- Const ------------------------------------------------------------==// case IntrinsicHelper::ConstInt: case IntrinsicHelper::ConstLong: { return call_inst.getArgOperand(0); } case IntrinsicHelper::ConstFloat: { return irb_.CreateBitCast(call_inst.getArgOperand(0), irb_.getJFloatTy()); } case IntrinsicHelper::ConstDouble: { return irb_.CreateBitCast(call_inst.getArgOperand(0), irb_.getJDoubleTy()); } case IntrinsicHelper::ConstObj: { CHECK_EQ(LV2UInt(call_inst.getArgOperand(0)), 0U); return irb_.getJNull(); } //==- Method Info ------------------------------------------------------==// case IntrinsicHelper::MethodInfo: { // Nothing to be done, because MethodInfo carries optional hints that are // not needed by the portable path. return NULL; } //==- Copy -------------------------------------------------------------==// case IntrinsicHelper::CopyInt: case IntrinsicHelper::CopyFloat: case IntrinsicHelper::CopyLong: case IntrinsicHelper::CopyDouble: case IntrinsicHelper::CopyObj: { return call_inst.getArgOperand(0); } //==- Shift ------------------------------------------------------------==// case IntrinsicHelper::SHLLong: { return Expand_IntegerShift(call_inst.getArgOperand(0), call_inst.getArgOperand(1), kIntegerSHL, kLong); } case IntrinsicHelper::SHRLong: { return Expand_IntegerShift(call_inst.getArgOperand(0), call_inst.getArgOperand(1), kIntegerSHR, kLong); } case IntrinsicHelper::USHRLong: { return Expand_IntegerShift(call_inst.getArgOperand(0), call_inst.getArgOperand(1), kIntegerUSHR, kLong); } case IntrinsicHelper::SHLInt: { return Expand_IntegerShift(call_inst.getArgOperand(0), call_inst.getArgOperand(1), kIntegerSHL, kInt); } case IntrinsicHelper::SHRInt: { return Expand_IntegerShift(call_inst.getArgOperand(0), call_inst.getArgOperand(1), kIntegerSHR, kInt); } case IntrinsicHelper::USHRInt: { return Expand_IntegerShift(call_inst.getArgOperand(0), call_inst.getArgOperand(1), kIntegerUSHR, kInt); } //==- Conversion -------------------------------------------------------==// case IntrinsicHelper::IntToChar: { return irb_.CreateZExt(irb_.CreateTrunc(call_inst.getArgOperand(0), irb_.getJCharTy()), irb_.getJIntTy()); } case IntrinsicHelper::IntToShort: { return irb_.CreateSExt(irb_.CreateTrunc(call_inst.getArgOperand(0), irb_.getJShortTy()), irb_.getJIntTy()); } case IntrinsicHelper::IntToByte: { return irb_.CreateSExt(irb_.CreateTrunc(call_inst.getArgOperand(0), irb_.getJByteTy()), irb_.getJIntTy()); } //==- Exception --------------------------------------------------------==// case IntrinsicHelper::CatchTargets: { UpdatePhiInstruction(current_bb_, irb_.GetInsertBlock()); llvm::SwitchInst* si = llvm::dyn_cast<llvm::SwitchInst>(call_inst.getNextNode()); CHECK(si != NULL); irb_.CreateBr(si->getDefaultDest()); si->eraseFromParent(); return call_inst.getArgOperand(0); } //==- Constructor barrier-----------------------------------------------==// case IntrinsicHelper::ConstructorBarrier: { irb_.CreateMemoryBarrier(art::kStoreStore); return NULL; } //==- Unknown Cases ----------------------------------------------------==// case IntrinsicHelper::MaxIntrinsicId: case IntrinsicHelper::UnknownId: // default: // NOTE: "default" is intentionally commented so that C/C++ compiler will // give some warning on unmatched cases. // NOTE: We should not implement these cases. break; } UNIMPLEMENTED(FATAL) << "Unexpected GBC intrinsic: " << static_cast<int>(intr_id); return NULL; } // NOLINT(readability/fn_size) } // anonymous namespace namespace art { namespace llvm { ::llvm::FunctionPass* CreateGBCExpanderPass(const IntrinsicHelper& intrinsic_helper, IRBuilder& irb, CompilerDriver* driver, const DexCompilationUnit* dex_compilation_unit) { return new GBCExpanderPass(intrinsic_helper, irb, driver, dex_compilation_unit); } } // namespace llvm } // namespace art