/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_COMPILER_UTILS_ASSEMBLER_H_ #define ART_COMPILER_UTILS_ASSEMBLER_H_ #include <vector> #include "base/logging.h" #include "base/macros.h" #include "arm/constants_arm.h" #include "mips/constants_mips.h" #include "x86/constants_x86.h" #include "instruction_set.h" #include "managed_register.h" #include "memory_region.h" #include "offsets.h" namespace art { class Assembler; class AssemblerBuffer; class AssemblerFixup; namespace arm { class ArmAssembler; } namespace mips { class MipsAssembler; } namespace x86 { class X86Assembler; } class Label { public: Label() : position_(0) {} ~Label() { // Assert if label is being destroyed with unresolved branches pending. CHECK(!IsLinked()); } // Returns the position for bound and linked labels. Cannot be used // for unused labels. int Position() const { CHECK(!IsUnused()); return IsBound() ? -position_ - kPointerSize : position_ - kPointerSize; } int LinkPosition() const { CHECK(IsLinked()); return position_ - kWordSize; } bool IsBound() const { return position_ < 0; } bool IsUnused() const { return position_ == 0; } bool IsLinked() const { return position_ > 0; } private: int position_; void Reinitialize() { position_ = 0; } void BindTo(int position) { CHECK(!IsBound()); position_ = -position - kPointerSize; CHECK(IsBound()); } void LinkTo(int position) { CHECK(!IsBound()); position_ = position + kPointerSize; CHECK(IsLinked()); } friend class arm::ArmAssembler; friend class mips::MipsAssembler; friend class x86::X86Assembler; DISALLOW_COPY_AND_ASSIGN(Label); }; // Assembler fixups are positions in generated code that require processing // after the code has been copied to executable memory. This includes building // relocation information. class AssemblerFixup { public: virtual void Process(const MemoryRegion& region, int position) = 0; virtual ~AssemblerFixup() {} private: AssemblerFixup* previous_; int position_; AssemblerFixup* previous() const { return previous_; } void set_previous(AssemblerFixup* previous) { previous_ = previous; } int position() const { return position_; } void set_position(int position) { position_ = position; } friend class AssemblerBuffer; }; // Parent of all queued slow paths, emitted during finalization class SlowPath { public: SlowPath() : next_(NULL) {} virtual ~SlowPath() {} Label* Continuation() { return &continuation_; } Label* Entry() { return &entry_; } // Generate code for slow path virtual void Emit(Assembler *sp_asm) = 0; protected: // Entry branched to by fast path Label entry_; // Optional continuation that is branched to at the end of the slow path Label continuation_; // Next in linked list of slow paths SlowPath *next_; private: friend class AssemblerBuffer; DISALLOW_COPY_AND_ASSIGN(SlowPath); }; class AssemblerBuffer { public: AssemblerBuffer(); ~AssemblerBuffer(); // Basic support for emitting, loading, and storing. template<typename T> void Emit(T value) { CHECK(HasEnsuredCapacity()); *reinterpret_cast<T*>(cursor_) = value; cursor_ += sizeof(T); } template<typename T> T Load(size_t position) { CHECK_LE(position, Size() - static_cast<int>(sizeof(T))); return *reinterpret_cast<T*>(contents_ + position); } template<typename T> void Store(size_t position, T value) { CHECK_LE(position, Size() - static_cast<int>(sizeof(T))); *reinterpret_cast<T*>(contents_ + position) = value; } // Emit a fixup at the current location. void EmitFixup(AssemblerFixup* fixup) { fixup->set_previous(fixup_); fixup->set_position(Size()); fixup_ = fixup; } void EnqueueSlowPath(SlowPath* slowpath) { if (slow_path_ == NULL) { slow_path_ = slowpath; } else { SlowPath* cur = slow_path_; for ( ; cur->next_ != NULL ; cur = cur->next_) {} cur->next_ = slowpath; } } void EmitSlowPaths(Assembler* sp_asm) { SlowPath* cur = slow_path_; SlowPath* next = NULL; slow_path_ = NULL; for ( ; cur != NULL ; cur = next) { cur->Emit(sp_asm); next = cur->next_; delete cur; } } // Get the size of the emitted code. size_t Size() const { CHECK_GE(cursor_, contents_); return cursor_ - contents_; } byte* contents() const { return contents_; } // Copy the assembled instructions into the specified memory block // and apply all fixups. void FinalizeInstructions(const MemoryRegion& region); // To emit an instruction to the assembler buffer, the EnsureCapacity helper // must be used to guarantee that the underlying data area is big enough to // hold the emitted instruction. Usage: // // AssemblerBuffer buffer; // AssemblerBuffer::EnsureCapacity ensured(&buffer); // ... emit bytes for single instruction ... #ifndef NDEBUG class EnsureCapacity { public: explicit EnsureCapacity(AssemblerBuffer* buffer) { if (buffer->cursor() >= buffer->limit()) { buffer->ExtendCapacity(); } // In debug mode, we save the assembler buffer along with the gap // size before we start emitting to the buffer. This allows us to // check that any single generated instruction doesn't overflow the // limit implied by the minimum gap size. buffer_ = buffer; gap_ = ComputeGap(); // Make sure that extending the capacity leaves a big enough gap // for any kind of instruction. CHECK_GE(gap_, kMinimumGap); // Mark the buffer as having ensured the capacity. CHECK(!buffer->HasEnsuredCapacity()); // Cannot nest. buffer->has_ensured_capacity_ = true; } ~EnsureCapacity() { // Unmark the buffer, so we cannot emit after this. buffer_->has_ensured_capacity_ = false; // Make sure the generated instruction doesn't take up more // space than the minimum gap. int delta = gap_ - ComputeGap(); CHECK_LE(delta, kMinimumGap); } private: AssemblerBuffer* buffer_; int gap_; int ComputeGap() { return buffer_->Capacity() - buffer_->Size(); } }; bool has_ensured_capacity_; bool HasEnsuredCapacity() const { return has_ensured_capacity_; } #else class EnsureCapacity { public: explicit EnsureCapacity(AssemblerBuffer* buffer) { if (buffer->cursor() >= buffer->limit()) buffer->ExtendCapacity(); } }; // When building the C++ tests, assertion code is enabled. To allow // asserting that the user of the assembler buffer has ensured the // capacity needed for emitting, we add a dummy method in non-debug mode. bool HasEnsuredCapacity() const { return true; } #endif // Returns the position in the instruction stream. int GetPosition() { return cursor_ - contents_; } private: // The limit is set to kMinimumGap bytes before the end of the data area. // This leaves enough space for the longest possible instruction and allows // for a single, fast space check per instruction. static const int kMinimumGap = 32; byte* contents_; byte* cursor_; byte* limit_; AssemblerFixup* fixup_; bool fixups_processed_; // Head of linked list of slow paths SlowPath* slow_path_; byte* cursor() const { return cursor_; } byte* limit() const { return limit_; } size_t Capacity() const { CHECK_GE(limit_, contents_); return (limit_ - contents_) + kMinimumGap; } // Process the fixup chain starting at the given fixup. The offset is // non-zero for fixups in the body if the preamble is non-empty. void ProcessFixups(const MemoryRegion& region); // Compute the limit based on the data area and the capacity. See // description of kMinimumGap for the reasoning behind the value. static byte* ComputeLimit(byte* data, size_t capacity) { return data + capacity - kMinimumGap; } void ExtendCapacity(); friend class AssemblerFixup; }; class Assembler { public: static Assembler* Create(InstructionSet instruction_set); // Emit slow paths queued during assembly void EmitSlowPaths() { buffer_.EmitSlowPaths(this); } // Size of generated code size_t CodeSize() const { return buffer_.Size(); } // Copy instructions out of assembly buffer into the given region of memory void FinalizeInstructions(const MemoryRegion& region) { buffer_.FinalizeInstructions(region); } // Emit code that will create an activation on the stack virtual void BuildFrame(size_t frame_size, ManagedRegister method_reg, const std::vector<ManagedRegister>& callee_save_regs, const std::vector<ManagedRegister>& entry_spills) = 0; // Emit code that will remove an activation from the stack virtual void RemoveFrame(size_t frame_size, const std::vector<ManagedRegister>& callee_save_regs) = 0; virtual void IncreaseFrameSize(size_t adjust) = 0; virtual void DecreaseFrameSize(size_t adjust) = 0; // Store routines virtual void Store(FrameOffset offs, ManagedRegister src, size_t size) = 0; virtual void StoreRef(FrameOffset dest, ManagedRegister src) = 0; virtual void StoreRawPtr(FrameOffset dest, ManagedRegister src) = 0; virtual void StoreImmediateToFrame(FrameOffset dest, uint32_t imm, ManagedRegister scratch) = 0; virtual void StoreImmediateToThread(ThreadOffset dest, uint32_t imm, ManagedRegister scratch) = 0; virtual void StoreStackOffsetToThread(ThreadOffset thr_offs, FrameOffset fr_offs, ManagedRegister scratch) = 0; virtual void StoreStackPointerToThread(ThreadOffset thr_offs) = 0; virtual void StoreSpanning(FrameOffset dest, ManagedRegister src, FrameOffset in_off, ManagedRegister scratch) = 0; // Load routines virtual void Load(ManagedRegister dest, FrameOffset src, size_t size) = 0; virtual void Load(ManagedRegister dest, ThreadOffset src, size_t size) = 0; virtual void LoadRef(ManagedRegister dest, FrameOffset src) = 0; virtual void LoadRef(ManagedRegister dest, ManagedRegister base, MemberOffset offs) = 0; virtual void LoadRawPtr(ManagedRegister dest, ManagedRegister base, Offset offs) = 0; virtual void LoadRawPtrFromThread(ManagedRegister dest, ThreadOffset offs) = 0; // Copying routines virtual void Move(ManagedRegister dest, ManagedRegister src, size_t size) = 0; virtual void CopyRawPtrFromThread(FrameOffset fr_offs, ThreadOffset thr_offs, ManagedRegister scratch) = 0; virtual void CopyRawPtrToThread(ThreadOffset thr_offs, FrameOffset fr_offs, ManagedRegister scratch) = 0; virtual void CopyRef(FrameOffset dest, FrameOffset src, ManagedRegister scratch) = 0; virtual void Copy(FrameOffset dest, FrameOffset src, ManagedRegister scratch, size_t size) = 0; virtual void Copy(FrameOffset dest, ManagedRegister src_base, Offset src_offset, ManagedRegister scratch, size_t size) = 0; virtual void Copy(ManagedRegister dest_base, Offset dest_offset, FrameOffset src, ManagedRegister scratch, size_t size) = 0; virtual void Copy(FrameOffset dest, FrameOffset src_base, Offset src_offset, ManagedRegister scratch, size_t size) = 0; virtual void Copy(ManagedRegister dest, Offset dest_offset, ManagedRegister src, Offset src_offset, ManagedRegister scratch, size_t size) = 0; virtual void Copy(FrameOffset dest, Offset dest_offset, FrameOffset src, Offset src_offset, ManagedRegister scratch, size_t size) = 0; virtual void MemoryBarrier(ManagedRegister scratch) = 0; // Sign extension virtual void SignExtend(ManagedRegister mreg, size_t size) = 0; // Zero extension virtual void ZeroExtend(ManagedRegister mreg, size_t size) = 0; // Exploit fast access in managed code to Thread::Current() virtual void GetCurrentThread(ManagedRegister tr) = 0; virtual void GetCurrentThread(FrameOffset dest_offset, ManagedRegister scratch) = 0; // Set up out_reg to hold a Object** into the SIRT, or to be NULL if the // value is null and null_allowed. in_reg holds a possibly stale reference // that can be used to avoid loading the SIRT entry to see if the value is // NULL. virtual void CreateSirtEntry(ManagedRegister out_reg, FrameOffset sirt_offset, ManagedRegister in_reg, bool null_allowed) = 0; // Set up out_off to hold a Object** into the SIRT, or to be NULL if the // value is null and null_allowed. virtual void CreateSirtEntry(FrameOffset out_off, FrameOffset sirt_offset, ManagedRegister scratch, bool null_allowed) = 0; // src holds a SIRT entry (Object**) load this into dst virtual void LoadReferenceFromSirt(ManagedRegister dst, ManagedRegister src) = 0; // Heap::VerifyObject on src. In some cases (such as a reference to this) we // know that src may not be null. virtual void VerifyObject(ManagedRegister src, bool could_be_null) = 0; virtual void VerifyObject(FrameOffset src, bool could_be_null) = 0; // Call to address held at [base+offset] virtual void Call(ManagedRegister base, Offset offset, ManagedRegister scratch) = 0; virtual void Call(FrameOffset base, Offset offset, ManagedRegister scratch) = 0; virtual void Call(ThreadOffset offset, ManagedRegister scratch) = 0; // Generate code to check if Thread::Current()->exception_ is non-null // and branch to a ExceptionSlowPath if it is. virtual void ExceptionPoll(ManagedRegister scratch, size_t stack_adjust) = 0; virtual ~Assembler() {} protected: Assembler() : buffer_() {} AssemblerBuffer buffer_; }; } // namespace art #endif // ART_COMPILER_UTILS_ASSEMBLER_H_