/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "mutex.h" #include <errno.h> #include <sys/time.h> #include "atomic.h" #include "base/logging.h" #include "cutils/atomic.h" #include "cutils/atomic-inline.h" #include "mutex-inl.h" #include "runtime.h" #include "scoped_thread_state_change.h" #include "thread-inl.h" #include "utils.h" namespace art { #if defined(__APPLE__) // This works on Mac OS 10.6 but hasn't been tested on older releases. struct __attribute__((__may_alias__)) darwin_pthread_mutex_t { long padding0; // NOLINT(runtime/int) exact match to darwin type int padding1; uint32_t padding2; int16_t padding3; int16_t padding4; uint32_t padding5; pthread_t darwin_pthread_mutex_owner; // ...other stuff we don't care about. }; struct __attribute__((__may_alias__)) darwin_pthread_rwlock_t { long padding0; // NOLINT(runtime/int) exact match to darwin type pthread_mutex_t padding1; int padding2; pthread_cond_t padding3; pthread_cond_t padding4; int padding5; int padding6; pthread_t darwin_pthread_rwlock_owner; // ...other stuff we don't care about. }; #endif // __APPLE__ #if defined(__GLIBC__) struct __attribute__((__may_alias__)) glibc_pthread_mutex_t { int32_t padding0[2]; int owner; // ...other stuff we don't care about. }; struct __attribute__((__may_alias__)) glibc_pthread_rwlock_t { #ifdef __LP64__ int32_t padding0[6]; #else int32_t padding0[7]; #endif int writer; // ...other stuff we don't care about. }; #endif // __GLIBC__ #if ART_USE_FUTEXES static bool ComputeRelativeTimeSpec(timespec* result_ts, const timespec& lhs, const timespec& rhs) { const int32_t one_sec = 1000 * 1000 * 1000; // one second in nanoseconds. result_ts->tv_sec = lhs.tv_sec - rhs.tv_sec; result_ts->tv_nsec = lhs.tv_nsec - rhs.tv_nsec; if (result_ts->tv_nsec < 0) { result_ts->tv_sec--; result_ts->tv_nsec += one_sec; } else if (result_ts->tv_nsec > one_sec) { result_ts->tv_sec++; result_ts->tv_nsec -= one_sec; } return result_ts->tv_sec < 0; } #endif struct AllMutexData { // A guard for all_mutexes_ that's not a mutex (Mutexes must CAS to acquire and busy wait). AtomicInteger all_mutexes_guard; // All created mutexes guarded by all_mutexes_guard_. std::set<BaseMutex*>* all_mutexes; AllMutexData() : all_mutexes(NULL) {} }; static struct AllMutexData all_mutex_data[kAllMutexDataSize]; class ScopedAllMutexesLock { public: explicit ScopedAllMutexesLock(const BaseMutex* mutex) : mutex_(mutex) { while (!all_mutex_data->all_mutexes_guard.compare_and_swap(0, reinterpret_cast<int32_t>(mutex))) { NanoSleep(100); } } ~ScopedAllMutexesLock() { while (!all_mutex_data->all_mutexes_guard.compare_and_swap(reinterpret_cast<int32_t>(mutex_), 0)) { NanoSleep(100); } } private: const BaseMutex* const mutex_; }; BaseMutex::BaseMutex(const char* name, LockLevel level) : level_(level), name_(name) { if (kLogLockContentions) { ScopedAllMutexesLock mu(this); std::set<BaseMutex*>** all_mutexes_ptr = &all_mutex_data->all_mutexes; if (*all_mutexes_ptr == NULL) { // We leak the global set of all mutexes to avoid ordering issues in global variable // construction/destruction. *all_mutexes_ptr = new std::set<BaseMutex*>(); } (*all_mutexes_ptr)->insert(this); } } BaseMutex::~BaseMutex() { if (kLogLockContentions) { ScopedAllMutexesLock mu(this); all_mutex_data->all_mutexes->erase(this); } } void BaseMutex::DumpAll(std::ostream& os) { if (kLogLockContentions) { os << "Mutex logging:\n"; ScopedAllMutexesLock mu(reinterpret_cast<const BaseMutex*>(-1)); std::set<BaseMutex*>* all_mutexes = all_mutex_data->all_mutexes; if (all_mutexes == NULL) { // No mutexes have been created yet during at startup. return; } typedef std::set<BaseMutex*>::const_iterator It; os << "(Contented)\n"; for (It it = all_mutexes->begin(); it != all_mutexes->end(); ++it) { BaseMutex* mutex = *it; if (mutex->HasEverContended()) { mutex->Dump(os); os << "\n"; } } os << "(Never contented)\n"; for (It it = all_mutexes->begin(); it != all_mutexes->end(); ++it) { BaseMutex* mutex = *it; if (!mutex->HasEverContended()) { mutex->Dump(os); os << "\n"; } } } } void BaseMutex::CheckSafeToWait(Thread* self) { if (self == NULL) { CheckUnattachedThread(level_); return; } if (kDebugLocking) { CHECK(self->GetHeldMutex(level_) == this) << "Waiting on unacquired mutex: " << name_; bool bad_mutexes_held = false; for (int i = kLockLevelCount - 1; i >= 0; --i) { if (i != level_) { BaseMutex* held_mutex = self->GetHeldMutex(static_cast<LockLevel>(i)); if (held_mutex != NULL) { LOG(ERROR) << "Holding \"" << held_mutex->name_ << "\" " << "(level " << LockLevel(i) << ") while performing wait on " << "\"" << name_ << "\" (level " << level_ << ")"; bad_mutexes_held = true; } } } CHECK(!bad_mutexes_held); } } inline void BaseMutex::ContentionLogData::AddToWaitTime(uint64_t value) { if (kLogLockContentions) { // Atomically add value to wait_time. uint64_t new_val, old_val; volatile int64_t* addr = reinterpret_cast<volatile int64_t*>(&wait_time); volatile const int64_t* caddr = const_cast<volatile const int64_t*>(addr); do { old_val = static_cast<uint64_t>(QuasiAtomic::Read64(caddr)); new_val = old_val + value; } while (!QuasiAtomic::Cas64(static_cast<int64_t>(old_val), static_cast<int64_t>(new_val), addr)); } } void BaseMutex::RecordContention(uint64_t blocked_tid, uint64_t owner_tid, uint64_t nano_time_blocked) { if (kLogLockContentions) { ContentionLogData* data = contetion_log_data_; ++(data->contention_count); data->AddToWaitTime(nano_time_blocked); ContentionLogEntry* log = data->contention_log; // This code is intentionally racy as it is only used for diagnostics. uint32_t slot = data->cur_content_log_entry; if (log[slot].blocked_tid == blocked_tid && log[slot].owner_tid == blocked_tid) { ++log[slot].count; } else { uint32_t new_slot; do { slot = data->cur_content_log_entry; new_slot = (slot + 1) % kContentionLogSize; } while (!data->cur_content_log_entry.compare_and_swap(slot, new_slot)); log[new_slot].blocked_tid = blocked_tid; log[new_slot].owner_tid = owner_tid; log[new_slot].count = 1; } } } void BaseMutex::DumpContention(std::ostream& os) const { if (kLogLockContentions) { const ContentionLogData* data = contetion_log_data_; const ContentionLogEntry* log = data->contention_log; uint64_t wait_time = data->wait_time; uint32_t contention_count = data->contention_count; if (contention_count == 0) { os << "never contended"; } else { os << "contended " << contention_count << " times, average wait of contender " << PrettyDuration(wait_time / contention_count); SafeMap<uint64_t, size_t> most_common_blocker; SafeMap<uint64_t, size_t> most_common_blocked; typedef SafeMap<uint64_t, size_t>::const_iterator It; for (size_t i = 0; i < kContentionLogSize; ++i) { uint64_t blocked_tid = log[i].blocked_tid; uint64_t owner_tid = log[i].owner_tid; uint32_t count = log[i].count; if (count > 0) { It it = most_common_blocked.find(blocked_tid); if (it != most_common_blocked.end()) { most_common_blocked.Overwrite(blocked_tid, it->second + count); } else { most_common_blocked.Put(blocked_tid, count); } it = most_common_blocker.find(owner_tid); if (it != most_common_blocker.end()) { most_common_blocker.Overwrite(owner_tid, it->second + count); } else { most_common_blocker.Put(owner_tid, count); } } } uint64_t max_tid = 0; size_t max_tid_count = 0; for (It it = most_common_blocked.begin(); it != most_common_blocked.end(); ++it) { if (it->second > max_tid_count) { max_tid = it->first; max_tid_count = it->second; } } if (max_tid != 0) { os << " sample shows most blocked tid=" << max_tid; } max_tid = 0; max_tid_count = 0; for (It it = most_common_blocker.begin(); it != most_common_blocker.end(); ++it) { if (it->second > max_tid_count) { max_tid = it->first; max_tid_count = it->second; } } if (max_tid != 0) { os << " sample shows tid=" << max_tid << " owning during this time"; } } } } Mutex::Mutex(const char* name, LockLevel level, bool recursive) : BaseMutex(name, level), recursive_(recursive), recursion_count_(0) { #if ART_USE_FUTEXES state_ = 0; exclusive_owner_ = 0; num_contenders_ = 0; #elif defined(__BIONIC__) || defined(__APPLE__) // Use recursive mutexes for bionic and Apple otherwise the // non-recursive mutexes don't have TIDs to check lock ownership of. pthread_mutexattr_t attributes; CHECK_MUTEX_CALL(pthread_mutexattr_init, (&attributes)); CHECK_MUTEX_CALL(pthread_mutexattr_settype, (&attributes, PTHREAD_MUTEX_RECURSIVE)); CHECK_MUTEX_CALL(pthread_mutex_init, (&mutex_, &attributes)); CHECK_MUTEX_CALL(pthread_mutexattr_destroy, (&attributes)); #else CHECK_MUTEX_CALL(pthread_mutex_init, (&mutex_, NULL)); #endif } Mutex::~Mutex() { #if ART_USE_FUTEXES if (state_ != 0) { MutexLock mu(Thread::Current(), *Locks::runtime_shutdown_lock_); Runtime* runtime = Runtime::Current(); bool shutting_down = (runtime == NULL) || runtime->IsShuttingDown(); LOG(shutting_down ? WARNING : FATAL) << "destroying mutex with owner: " << exclusive_owner_; } else { CHECK_EQ(exclusive_owner_, 0U) << "unexpectedly found an owner on unlocked mutex " << name_; CHECK_EQ(num_contenders_, 0) << "unexpectedly found a contender on mutex " << name_; } #else // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread // may still be using locks. int rc = pthread_mutex_destroy(&mutex_); if (rc != 0) { errno = rc; // TODO: should we just not log at all if shutting down? this could be the logging mutex! MutexLock mu(Thread::Current(), *Locks::runtime_shutdown_lock_); Runtime* runtime = Runtime::Current(); bool shutting_down = (runtime == NULL) || runtime->IsShuttingDown(); PLOG(shutting_down ? WARNING : FATAL) << "pthread_mutex_destroy failed for " << name_; } #endif } void Mutex::ExclusiveLock(Thread* self) { DCHECK(self == NULL || self == Thread::Current()); if (kDebugLocking && !recursive_) { AssertNotHeld(self); } if (!recursive_ || !IsExclusiveHeld(self)) { #if ART_USE_FUTEXES bool done = false; do { int32_t cur_state = state_; if (cur_state == 0) { // Change state from 0 to 1. done = android_atomic_acquire_cas(0, 1, &state_) == 0; } else { // Failed to acquire, hang up. ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid()); android_atomic_inc(&num_contenders_); if (futex(&state_, FUTEX_WAIT, 1, NULL, NULL, 0) != 0) { // EAGAIN and EINTR both indicate a spurious failure, try again from the beginning. // We don't use TEMP_FAILURE_RETRY so we can intentionally retry to acquire the lock. if ((errno != EAGAIN) && (errno != EINTR)) { PLOG(FATAL) << "futex wait failed for " << name_; } } android_atomic_dec(&num_contenders_); } } while (!done); DCHECK_EQ(state_, 1); exclusive_owner_ = SafeGetTid(self); #else CHECK_MUTEX_CALL(pthread_mutex_lock, (&mutex_)); #endif RegisterAsLocked(self); } recursion_count_++; if (kDebugLocking) { CHECK(recursion_count_ == 1 || recursive_) << "Unexpected recursion count on mutex: " << name_ << " " << recursion_count_; AssertHeld(self); } } bool Mutex::ExclusiveTryLock(Thread* self) { DCHECK(self == NULL || self == Thread::Current()); if (kDebugLocking && !recursive_) { AssertNotHeld(self); } if (!recursive_ || !IsExclusiveHeld(self)) { #if ART_USE_FUTEXES bool done = false; do { int32_t cur_state = state_; if (cur_state == 0) { // Change state from 0 to 1. done = android_atomic_acquire_cas(0, 1, &state_) == 0; } else { return false; } } while (!done); DCHECK_EQ(state_, 1); exclusive_owner_ = SafeGetTid(self); #else int result = pthread_mutex_trylock(&mutex_); if (result == EBUSY) { return false; } if (result != 0) { errno = result; PLOG(FATAL) << "pthread_mutex_trylock failed for " << name_; } #endif RegisterAsLocked(self); } recursion_count_++; if (kDebugLocking) { CHECK(recursion_count_ == 1 || recursive_) << "Unexpected recursion count on mutex: " << name_ << " " << recursion_count_; AssertHeld(self); } return true; } void Mutex::ExclusiveUnlock(Thread* self) { DCHECK(self == NULL || self == Thread::Current()); AssertHeld(self); recursion_count_--; if (!recursive_ || recursion_count_ == 0) { if (kDebugLocking) { CHECK(recursion_count_ == 0 || recursive_) << "Unexpected recursion count on mutex: " << name_ << " " << recursion_count_; } RegisterAsUnlocked(self); #if ART_USE_FUTEXES bool done = false; do { int32_t cur_state = state_; if (cur_state == 1) { // We're no longer the owner. exclusive_owner_ = 0; // Change state to 0. done = android_atomic_release_cas(cur_state, 0, &state_) == 0; if (done) { // Spurious fail? // Wake a contender if (num_contenders_ > 0) { futex(&state_, FUTEX_WAKE, 1, NULL, NULL, 0); } } } else { // Logging acquires the logging lock, avoid infinite recursion in that case. if (this != Locks::logging_lock_) { LOG(FATAL) << "Unexpected state_ in unlock " << cur_state << " for " << name_; } else { LogMessageData data(__FILE__, __LINE__, INTERNAL_FATAL, -1); LogMessage::LogLine(data, StringPrintf("Unexpected state_ %d in unlock for %s", cur_state, name_).c_str()); _exit(1); } } } while (!done); #else CHECK_MUTEX_CALL(pthread_mutex_unlock, (&mutex_)); #endif } } bool Mutex::IsExclusiveHeld(const Thread* self) const { DCHECK(self == NULL || self == Thread::Current()); bool result = (GetExclusiveOwnerTid() == SafeGetTid(self)); if (kDebugLocking) { // Sanity debug check that if we think it is locked we have it in our held mutexes. if (result && self != NULL && level_ != kMonitorLock && !gAborting) { CHECK_EQ(self->GetHeldMutex(level_), this); } } return result; } uint64_t Mutex::GetExclusiveOwnerTid() const { #if ART_USE_FUTEXES return exclusive_owner_; #elif defined(__BIONIC__) return static_cast<uint64_t>((mutex_.value >> 16) & 0xffff); #elif defined(__GLIBC__) return reinterpret_cast<const glibc_pthread_mutex_t*>(&mutex_)->owner; #elif defined(__APPLE__) const darwin_pthread_mutex_t* dpmutex = reinterpret_cast<const darwin_pthread_mutex_t*>(&mutex_); pthread_t owner = dpmutex->darwin_pthread_mutex_owner; // 0 for unowned, -1 for PTHREAD_MTX_TID_SWITCHING // TODO: should we make darwin_pthread_mutex_owner volatile and recheck until not -1? if ((owner == (pthread_t)0) || (owner == (pthread_t)-1)) { return 0; } uint64_t tid; CHECK_PTHREAD_CALL(pthread_threadid_np, (owner, &tid), __FUNCTION__); // Requires Mac OS 10.6 return tid; #else #error unsupported C library #endif } void Mutex::Dump(std::ostream& os) const { os << (recursive_ ? "recursive " : "non-recursive ") << name_ << " level=" << static_cast<int>(level_) << " rec=" << recursion_count_ << " owner=" << GetExclusiveOwnerTid() << " "; DumpContention(os); } std::ostream& operator<<(std::ostream& os, const Mutex& mu) { mu.Dump(os); return os; } ReaderWriterMutex::ReaderWriterMutex(const char* name, LockLevel level) : BaseMutex(name, level) #if ART_USE_FUTEXES , state_(0), exclusive_owner_(0), num_pending_readers_(0), num_pending_writers_(0) #endif { // NOLINT(whitespace/braces) #if !ART_USE_FUTEXES CHECK_MUTEX_CALL(pthread_rwlock_init, (&rwlock_, NULL)); #endif } ReaderWriterMutex::~ReaderWriterMutex() { #if ART_USE_FUTEXES CHECK_EQ(state_, 0); CHECK_EQ(exclusive_owner_, 0U); CHECK_EQ(num_pending_readers_, 0); CHECK_EQ(num_pending_writers_, 0); #else // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread // may still be using locks. int rc = pthread_rwlock_destroy(&rwlock_); if (rc != 0) { errno = rc; // TODO: should we just not log at all if shutting down? this could be the logging mutex! MutexLock mu(Thread::Current(), *Locks::runtime_shutdown_lock_); Runtime* runtime = Runtime::Current(); bool shutting_down = runtime == NULL || runtime->IsShuttingDown(); PLOG(shutting_down ? WARNING : FATAL) << "pthread_rwlock_destroy failed for " << name_; } #endif } void ReaderWriterMutex::ExclusiveLock(Thread* self) { DCHECK(self == NULL || self == Thread::Current()); AssertNotExclusiveHeld(self); #if ART_USE_FUTEXES bool done = false; do { int32_t cur_state = state_; if (cur_state == 0) { // Change state from 0 to -1. done = android_atomic_acquire_cas(0, -1, &state_) == 0; } else { // Failed to acquire, hang up. ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid()); android_atomic_inc(&num_pending_writers_); if (futex(&state_, FUTEX_WAIT, cur_state, NULL, NULL, 0) != 0) { // EAGAIN and EINTR both indicate a spurious failure, try again from the beginning. // We don't use TEMP_FAILURE_RETRY so we can intentionally retry to acquire the lock. if ((errno != EAGAIN) && (errno != EINTR)) { PLOG(FATAL) << "futex wait failed for " << name_; } } android_atomic_dec(&num_pending_writers_); } } while (!done); DCHECK_EQ(state_, -1); exclusive_owner_ = SafeGetTid(self); #else CHECK_MUTEX_CALL(pthread_rwlock_wrlock, (&rwlock_)); #endif RegisterAsLocked(self); AssertExclusiveHeld(self); } void ReaderWriterMutex::ExclusiveUnlock(Thread* self) { DCHECK(self == NULL || self == Thread::Current()); AssertExclusiveHeld(self); RegisterAsUnlocked(self); #if ART_USE_FUTEXES bool done = false; do { int32_t cur_state = state_; if (cur_state == -1) { // We're no longer the owner. exclusive_owner_ = 0; // Change state from -1 to 0. done = android_atomic_release_cas(-1, 0, &state_) == 0; if (done) { // cmpxchg may fail due to noise? // Wake any waiters. if (num_pending_readers_ > 0 || num_pending_writers_ > 0) { futex(&state_, FUTEX_WAKE, -1, NULL, NULL, 0); } } } else { LOG(FATAL) << "Unexpected state_:" << cur_state << " for " << name_; } } while (!done); #else CHECK_MUTEX_CALL(pthread_rwlock_unlock, (&rwlock_)); #endif } #if HAVE_TIMED_RWLOCK bool ReaderWriterMutex::ExclusiveLockWithTimeout(Thread* self, int64_t ms, int32_t ns) { DCHECK(self == NULL || self == Thread::Current()); #if ART_USE_FUTEXES bool done = false; timespec end_abs_ts; InitTimeSpec(true, CLOCK_REALTIME, ms, ns, &end_abs_ts); do { int32_t cur_state = state_; if (cur_state == 0) { // Change state from 0 to -1. done = android_atomic_acquire_cas(0, -1, &state_) == 0; } else { // Failed to acquire, hang up. timespec now_abs_ts; InitTimeSpec(true, CLOCK_REALTIME, 0, 0, &now_abs_ts); timespec rel_ts; if (ComputeRelativeTimeSpec(&rel_ts, end_abs_ts, now_abs_ts)) { return false; // Timed out. } ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid()); android_atomic_inc(&num_pending_writers_); if (futex(&state_, FUTEX_WAIT, cur_state, &rel_ts, NULL, 0) != 0) { if (errno == ETIMEDOUT) { android_atomic_dec(&num_pending_writers_); return false; // Timed out. } else if ((errno != EAGAIN) && (errno != EINTR)) { // EAGAIN and EINTR both indicate a spurious failure, // recompute the relative time out from now and try again. // We don't use TEMP_FAILURE_RETRY so we can recompute rel_ts; PLOG(FATAL) << "timed futex wait failed for " << name_; } } android_atomic_dec(&num_pending_writers_); } } while (!done); exclusive_owner_ = SafeGetTid(self); #else timespec ts; InitTimeSpec(true, CLOCK_REALTIME, ms, ns, &ts); int result = pthread_rwlock_timedwrlock(&rwlock_, &ts); if (result == ETIMEDOUT) { return false; } if (result != 0) { errno = result; PLOG(FATAL) << "pthread_rwlock_timedwrlock failed for " << name_; } #endif RegisterAsLocked(self); AssertSharedHeld(self); return true; } #endif bool ReaderWriterMutex::SharedTryLock(Thread* self) { DCHECK(self == NULL || self == Thread::Current()); #if ART_USE_FUTEXES bool done = false; do { int32_t cur_state = state_; if (cur_state >= 0) { // Add as an extra reader. done = android_atomic_acquire_cas(cur_state, cur_state + 1, &state_) == 0; } else { // Owner holds it exclusively. return false; } } while (!done); #else int result = pthread_rwlock_tryrdlock(&rwlock_); if (result == EBUSY) { return false; } if (result != 0) { errno = result; PLOG(FATAL) << "pthread_mutex_trylock failed for " << name_; } #endif RegisterAsLocked(self); AssertSharedHeld(self); return true; } bool ReaderWriterMutex::IsExclusiveHeld(const Thread* self) const { DCHECK(self == NULL || self == Thread::Current()); bool result = (GetExclusiveOwnerTid() == SafeGetTid(self)); if (kDebugLocking) { // Sanity that if the pthread thinks we own the lock the Thread agrees. if (self != NULL && result) { CHECK_EQ(self->GetHeldMutex(level_), this); } } return result; } bool ReaderWriterMutex::IsSharedHeld(const Thread* self) const { DCHECK(self == NULL || self == Thread::Current()); bool result; if (UNLIKELY(self == NULL)) { // Handle unattached threads. result = IsExclusiveHeld(self); // TODO: a better best effort here. } else { result = (self->GetHeldMutex(level_) == this); } return result; } uint64_t ReaderWriterMutex::GetExclusiveOwnerTid() const { #if ART_USE_FUTEXES int32_t state = state_; if (state == 0) { return 0; // No owner. } else if (state > 0) { return -1; // Shared. } else { return exclusive_owner_; } #else #if defined(__BIONIC__) return rwlock_.writerThreadId; #elif defined(__GLIBC__) return reinterpret_cast<const glibc_pthread_rwlock_t*>(&rwlock_)->writer; #elif defined(__APPLE__) const darwin_pthread_rwlock_t* dprwlock = reinterpret_cast<const darwin_pthread_rwlock_t*>(&rwlock_); pthread_t owner = dprwlock->darwin_pthread_rwlock_owner; if (owner == (pthread_t)0) { return 0; } uint64_t tid; CHECK_PTHREAD_CALL(pthread_threadid_np, (owner, &tid), __FUNCTION__); // Requires Mac OS 10.6 return tid; #else #error unsupported C library #endif #endif } void ReaderWriterMutex::Dump(std::ostream& os) const { os << name_ << " level=" << static_cast<int>(level_) << " owner=" << GetExclusiveOwnerTid() << " "; DumpContention(os); } std::ostream& operator<<(std::ostream& os, const ReaderWriterMutex& mu) { mu.Dump(os); return os; } ConditionVariable::ConditionVariable(const char* name, Mutex& guard) : name_(name), guard_(guard) { #if ART_USE_FUTEXES sequence_ = 0; num_waiters_ = 0; #else CHECK_MUTEX_CALL(pthread_cond_init, (&cond_, NULL)); #endif } ConditionVariable::~ConditionVariable() { #if ART_USE_FUTEXES if (num_waiters_!= 0) { MutexLock mu(Thread::Current(), *Locks::runtime_shutdown_lock_); Runtime* runtime = Runtime::Current(); bool shutting_down = (runtime == NULL) || runtime->IsShuttingDown(); LOG(shutting_down ? WARNING : FATAL) << "ConditionVariable::~ConditionVariable for " << name_ << " called with " << num_waiters_ << " waiters."; } #else // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread // may still be using condition variables. int rc = pthread_cond_destroy(&cond_); if (rc != 0) { errno = rc; MutexLock mu(Thread::Current(), *Locks::runtime_shutdown_lock_); Runtime* runtime = Runtime::Current(); bool shutting_down = (runtime == NULL) || runtime->IsShuttingDown(); PLOG(shutting_down ? WARNING : FATAL) << "pthread_cond_destroy failed for " << name_; } #endif } void ConditionVariable::Broadcast(Thread* self) { DCHECK(self == NULL || self == Thread::Current()); // TODO: enable below, there's a race in thread creation that causes false failures currently. // guard_.AssertExclusiveHeld(self); DCHECK_EQ(guard_.GetExclusiveOwnerTid(), SafeGetTid(self)); #if ART_USE_FUTEXES if (num_waiters_ > 0) { android_atomic_inc(&sequence_); // Indicate the broadcast occurred. bool done = false; do { int32_t cur_sequence = sequence_; // Requeue waiters onto mutex. The waiter holds the contender count on the mutex high ensuring // mutex unlocks will awaken the requeued waiter thread. done = futex(&sequence_, FUTEX_CMP_REQUEUE, 0, reinterpret_cast<const timespec*>(std::numeric_limits<int32_t>::max()), &guard_.state_, cur_sequence) != -1; if (!done) { if (errno != EAGAIN) { PLOG(FATAL) << "futex cmp requeue failed for " << name_; } } } while (!done); } #else CHECK_MUTEX_CALL(pthread_cond_broadcast, (&cond_)); #endif } void ConditionVariable::Signal(Thread* self) { DCHECK(self == NULL || self == Thread::Current()); guard_.AssertExclusiveHeld(self); #if ART_USE_FUTEXES if (num_waiters_ > 0) { android_atomic_inc(&sequence_); // Indicate a signal occurred. // Futex wake 1 waiter who will then come and in contend on mutex. It'd be nice to requeue them // to avoid this, however, requeueing can only move all waiters. int num_woken = futex(&sequence_, FUTEX_WAKE, 1, NULL, NULL, 0); // Check something was woken or else we changed sequence_ before they had chance to wait. CHECK((num_woken == 0) || (num_woken == 1)); } #else CHECK_MUTEX_CALL(pthread_cond_signal, (&cond_)); #endif } void ConditionVariable::Wait(Thread* self) { guard_.CheckSafeToWait(self); WaitHoldingLocks(self); } void ConditionVariable::WaitHoldingLocks(Thread* self) { DCHECK(self == NULL || self == Thread::Current()); guard_.AssertExclusiveHeld(self); unsigned int old_recursion_count = guard_.recursion_count_; #if ART_USE_FUTEXES num_waiters_++; // Ensure the Mutex is contended so that requeued threads are awoken. android_atomic_inc(&guard_.num_contenders_); guard_.recursion_count_ = 1; int32_t cur_sequence = sequence_; guard_.ExclusiveUnlock(self); if (futex(&sequence_, FUTEX_WAIT, cur_sequence, NULL, NULL, 0) != 0) { // Futex failed, check it is an expected error. // EAGAIN == EWOULDBLK, so we let the caller try again. // EINTR implies a signal was sent to this thread. if ((errno != EINTR) && (errno != EAGAIN)) { PLOG(FATAL) << "futex wait failed for " << name_; } } guard_.ExclusiveLock(self); CHECK_GE(num_waiters_, 0); num_waiters_--; // We awoke and so no longer require awakes from the guard_'s unlock. CHECK_GE(guard_.num_contenders_, 0); android_atomic_dec(&guard_.num_contenders_); #else guard_.recursion_count_ = 0; CHECK_MUTEX_CALL(pthread_cond_wait, (&cond_, &guard_.mutex_)); #endif guard_.recursion_count_ = old_recursion_count; } void ConditionVariable::TimedWait(Thread* self, int64_t ms, int32_t ns) { DCHECK(self == NULL || self == Thread::Current()); guard_.AssertExclusiveHeld(self); guard_.CheckSafeToWait(self); unsigned int old_recursion_count = guard_.recursion_count_; #if ART_USE_FUTEXES timespec rel_ts; InitTimeSpec(false, CLOCK_REALTIME, ms, ns, &rel_ts); num_waiters_++; // Ensure the Mutex is contended so that requeued threads are awoken. android_atomic_inc(&guard_.num_contenders_); guard_.recursion_count_ = 1; int32_t cur_sequence = sequence_; guard_.ExclusiveUnlock(self); if (futex(&sequence_, FUTEX_WAIT, cur_sequence, &rel_ts, NULL, 0) != 0) { if (errno == ETIMEDOUT) { // Timed out we're done. } else if ((errno == EAGAIN) || (errno == EINTR)) { // A signal or ConditionVariable::Signal/Broadcast has come in. } else { PLOG(FATAL) << "timed futex wait failed for " << name_; } } guard_.ExclusiveLock(self); CHECK_GE(num_waiters_, 0); num_waiters_--; // We awoke and so no longer require awakes from the guard_'s unlock. CHECK_GE(guard_.num_contenders_, 0); android_atomic_dec(&guard_.num_contenders_); #else #ifdef HAVE_TIMEDWAIT_MONOTONIC #define TIMEDWAIT pthread_cond_timedwait_monotonic int clock = CLOCK_MONOTONIC; #else #define TIMEDWAIT pthread_cond_timedwait int clock = CLOCK_REALTIME; #endif guard_.recursion_count_ = 0; timespec ts; InitTimeSpec(true, clock, ms, ns, &ts); int rc = TEMP_FAILURE_RETRY(TIMEDWAIT(&cond_, &guard_.mutex_, &ts)); if (rc != 0 && rc != ETIMEDOUT) { errno = rc; PLOG(FATAL) << "TimedWait failed for " << name_; } #endif guard_.recursion_count_ = old_recursion_count; } } // namespace art