/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dex_file_verifier.h" #include "base/stringprintf.h" #include "dex_file-inl.h" #include "leb128.h" #include "safe_map.h" #include "UniquePtr.h" #include "utf.h" #include "utils.h" #include "zip_archive.h" namespace art { static uint32_t MapTypeToBitMask(uint32_t map_type) { switch (map_type) { case DexFile::kDexTypeHeaderItem: return 1 << 0; case DexFile::kDexTypeStringIdItem: return 1 << 1; case DexFile::kDexTypeTypeIdItem: return 1 << 2; case DexFile::kDexTypeProtoIdItem: return 1 << 3; case DexFile::kDexTypeFieldIdItem: return 1 << 4; case DexFile::kDexTypeMethodIdItem: return 1 << 5; case DexFile::kDexTypeClassDefItem: return 1 << 6; case DexFile::kDexTypeMapList: return 1 << 7; case DexFile::kDexTypeTypeList: return 1 << 8; case DexFile::kDexTypeAnnotationSetRefList: return 1 << 9; case DexFile::kDexTypeAnnotationSetItem: return 1 << 10; case DexFile::kDexTypeClassDataItem: return 1 << 11; case DexFile::kDexTypeCodeItem: return 1 << 12; case DexFile::kDexTypeStringDataItem: return 1 << 13; case DexFile::kDexTypeDebugInfoItem: return 1 << 14; case DexFile::kDexTypeAnnotationItem: return 1 << 15; case DexFile::kDexTypeEncodedArrayItem: return 1 << 16; case DexFile::kDexTypeAnnotationsDirectoryItem: return 1 << 17; } return 0; } static bool IsDataSectionType(uint32_t map_type) { switch (map_type) { case DexFile::kDexTypeHeaderItem: case DexFile::kDexTypeStringIdItem: case DexFile::kDexTypeTypeIdItem: case DexFile::kDexTypeProtoIdItem: case DexFile::kDexTypeFieldIdItem: case DexFile::kDexTypeMethodIdItem: case DexFile::kDexTypeClassDefItem: return false; } return true; } static bool CheckShortyDescriptorMatch(char shorty_char, const char* descriptor, bool is_return_type) { switch (shorty_char) { case 'V': if (!is_return_type) { LOG(ERROR) << "Invalid use of void"; return false; } // Intentional fallthrough. case 'B': case 'C': case 'D': case 'F': case 'I': case 'J': case 'S': case 'Z': if ((descriptor[0] != shorty_char) || (descriptor[1] != '\0')) { LOG(ERROR) << StringPrintf("Shorty vs. primitive type mismatch: '%c', '%s'", shorty_char, descriptor); return false; } break; case 'L': if ((descriptor[0] != 'L') && (descriptor[0] != '[')) { LOG(ERROR) << StringPrintf("Shorty vs. type mismatch: '%c', '%s'", shorty_char, descriptor); return false; } break; default: LOG(ERROR) << "Bad shorty character: '" << shorty_char << "'"; return false; } return true; } bool DexFileVerifier::Verify(const DexFile* dex_file, const byte* begin, size_t size) { UniquePtr<DexFileVerifier> verifier(new DexFileVerifier(dex_file, begin, size)); return verifier->Verify(); } bool DexFileVerifier::CheckPointerRange(const void* start, const void* end, const char* label) const { uint32_t range_start = reinterpret_cast<uint32_t>(start); uint32_t range_end = reinterpret_cast<uint32_t>(end); uint32_t file_start = reinterpret_cast<uint32_t>(begin_); uint32_t file_end = file_start + size_; if ((range_start < file_start) || (range_start > file_end) || (range_end < file_start) || (range_end > file_end)) { LOG(ERROR) << StringPrintf("Bad range for %s: %x to %x", label, range_start - file_start, range_end - file_start); return false; } return true; } bool DexFileVerifier::CheckListSize(const void* start, uint32_t count, uint32_t element_size, const char* label) const { const byte* list_start = reinterpret_cast<const byte*>(start); return CheckPointerRange(list_start, list_start + (count * element_size), label); } bool DexFileVerifier::CheckIndex(uint32_t field, uint32_t limit, const char* label) const { if (field >= limit) { LOG(ERROR) << StringPrintf("Bad index for %s: %x >= %x", label, field, limit); return false; } return true; } bool DexFileVerifier::CheckHeader() const { // Check file size from the header. uint32_t expected_size = header_->file_size_; if (size_ != expected_size) { LOG(ERROR) << "Bad file size (" << size_ << ", expected " << expected_size << ")"; return false; } // Compute and verify the checksum in the header. uint32_t adler_checksum = adler32(0L, Z_NULL, 0); const uint32_t non_sum = sizeof(header_->magic_) + sizeof(header_->checksum_); const byte* non_sum_ptr = reinterpret_cast<const byte*>(header_) + non_sum; adler_checksum = adler32(adler_checksum, non_sum_ptr, expected_size - non_sum); if (adler_checksum != header_->checksum_) { LOG(ERROR) << StringPrintf("Bad checksum (%08x, expected %08x)", adler_checksum, header_->checksum_); return false; } // Check the contents of the header. if (header_->endian_tag_ != DexFile::kDexEndianConstant) { LOG(ERROR) << StringPrintf("Unexpected endian_tag: %x", header_->endian_tag_); return false; } if (header_->header_size_ != sizeof(DexFile::Header)) { LOG(ERROR) << "Bad header size: " << header_->header_size_; return false; } return true; } bool DexFileVerifier::CheckMap() const { const DexFile::MapList* map = reinterpret_cast<const DexFile::MapList*>(begin_ + header_->map_off_); const DexFile::MapItem* item = map->list_; uint32_t count = map->size_; uint32_t last_offset = 0; uint32_t data_item_count = 0; uint32_t data_items_left = header_->data_size_; uint32_t used_bits = 0; // Sanity check the size of the map list. if (!CheckListSize(item, count, sizeof(DexFile::MapItem), "map size")) { return false; } // Check the items listed in the map. for (uint32_t i = 0; i < count; i++) { if (last_offset >= item->offset_ && i != 0) { LOG(ERROR) << StringPrintf("Out of order map item: %x then %x", last_offset, item->offset_); return false; } if (item->offset_ >= header_->file_size_) { LOG(ERROR) << StringPrintf("Map item after end of file: %x, size %x", item->offset_, header_->file_size_); return false; } if (IsDataSectionType(item->type_)) { uint32_t icount = item->size_; if (icount > data_items_left) { LOG(ERROR) << "Too many items in data section: " << data_item_count + icount; return false; } data_items_left -= icount; data_item_count += icount; } uint32_t bit = MapTypeToBitMask(item->type_); if (bit == 0) { LOG(ERROR) << StringPrintf("Unknown map section type %x", item->type_); return false; } if ((used_bits & bit) != 0) { LOG(ERROR) << StringPrintf("Duplicate map section of type %x", item->type_); return false; } used_bits |= bit; last_offset = item->offset_; item++; } // Check for missing sections in the map. if ((used_bits & MapTypeToBitMask(DexFile::kDexTypeHeaderItem)) == 0) { LOG(ERROR) << "Map is missing header entry"; return false; } if ((used_bits & MapTypeToBitMask(DexFile::kDexTypeMapList)) == 0) { LOG(ERROR) << "Map is missing map_list entry"; return false; } if ((used_bits & MapTypeToBitMask(DexFile::kDexTypeStringIdItem)) == 0 && ((header_->string_ids_off_ != 0) || (header_->string_ids_size_ != 0))) { LOG(ERROR) << "Map is missing string_ids entry"; return false; } if ((used_bits & MapTypeToBitMask(DexFile::kDexTypeTypeIdItem)) == 0 && ((header_->type_ids_off_ != 0) || (header_->type_ids_size_ != 0))) { LOG(ERROR) << "Map is missing type_ids entry"; return false; } if ((used_bits & MapTypeToBitMask(DexFile::kDexTypeProtoIdItem)) == 0 && ((header_->proto_ids_off_ != 0) || (header_->proto_ids_size_ != 0))) { LOG(ERROR) << "Map is missing proto_ids entry"; return false; } if ((used_bits & MapTypeToBitMask(DexFile::kDexTypeFieldIdItem)) == 0 && ((header_->field_ids_off_ != 0) || (header_->field_ids_size_ != 0))) { LOG(ERROR) << "Map is missing field_ids entry"; return false; } if ((used_bits & MapTypeToBitMask(DexFile::kDexTypeMethodIdItem)) == 0 && ((header_->method_ids_off_ != 0) || (header_->method_ids_size_ != 0))) { LOG(ERROR) << "Map is missing method_ids entry"; return false; } if ((used_bits & MapTypeToBitMask(DexFile::kDexTypeClassDefItem)) == 0 && ((header_->class_defs_off_ != 0) || (header_->class_defs_size_ != 0))) { LOG(ERROR) << "Map is missing class_defs entry"; return false; } return true; } uint32_t DexFileVerifier::ReadUnsignedLittleEndian(uint32_t size) { uint32_t result = 0; if (!CheckPointerRange(ptr_, ptr_ + size, "encoded_value")) { return 0; } for (uint32_t i = 0; i < size; i++) { result |= ((uint32_t) *(ptr_++)) << (i * 8); } return result; } bool DexFileVerifier::CheckAndGetHandlerOffsets(const DexFile::CodeItem* code_item, uint32_t* handler_offsets, uint32_t handlers_size) { const byte* handlers_base = DexFile::GetCatchHandlerData(*code_item, 0); for (uint32_t i = 0; i < handlers_size; i++) { bool catch_all; uint32_t offset = reinterpret_cast<uint32_t>(ptr_) - reinterpret_cast<uint32_t>(handlers_base); int32_t size = DecodeSignedLeb128(&ptr_); if ((size < -65536) || (size > 65536)) { LOG(ERROR) << "Invalid exception handler size: " << size; return false; } if (size <= 0) { catch_all = true; size = -size; } else { catch_all = false; } handler_offsets[i] = offset; while (size-- > 0) { uint32_t type_idx = DecodeUnsignedLeb128(&ptr_); if (!CheckIndex(type_idx, header_->type_ids_size_, "handler type_idx")) { return false; } uint32_t addr = DecodeUnsignedLeb128(&ptr_); if (addr >= code_item->insns_size_in_code_units_) { LOG(ERROR) << StringPrintf("Invalid handler addr: %x", addr); return false; } } if (catch_all) { uint32_t addr = DecodeUnsignedLeb128(&ptr_); if (addr >= code_item->insns_size_in_code_units_) { LOG(ERROR) << StringPrintf("Invalid handler catch_all_addr: %x", addr); return false; } } } return true; } bool DexFileVerifier::CheckClassDataItemField(uint32_t idx, uint32_t access_flags, bool expect_static) const { if (!CheckIndex(idx, header_->field_ids_size_, "class_data_item field_idx")) { return false; } bool is_static = (access_flags & kAccStatic) != 0; if (is_static != expect_static) { LOG(ERROR) << "Static/instance field not in expected list"; return false; } uint32_t access_field_mask = kAccPublic | kAccPrivate | kAccProtected | kAccStatic | kAccFinal | kAccVolatile | kAccTransient | kAccSynthetic | kAccEnum; if ((access_flags & ~access_field_mask) != 0) { LOG(ERROR) << StringPrintf("Bad class_data_item field access_flags %x", access_flags); return false; } return true; } bool DexFileVerifier::CheckClassDataItemMethod(uint32_t idx, uint32_t access_flags, uint32_t code_offset, bool expect_direct) const { if (!CheckIndex(idx, header_->method_ids_size_, "class_data_item method_idx")) { return false; } bool is_direct = (access_flags & (kAccStatic | kAccPrivate | kAccConstructor)) != 0; bool expect_code = (access_flags & (kAccNative | kAccAbstract)) == 0; bool is_synchronized = (access_flags & kAccSynchronized) != 0; bool allow_synchronized = (access_flags & kAccNative) != 0; if (is_direct != expect_direct) { LOG(ERROR) << "Direct/virtual method not in expected list"; return false; } uint32_t access_method_mask = kAccPublic | kAccPrivate | kAccProtected | kAccStatic | kAccFinal | kAccSynchronized | kAccBridge | kAccVarargs | kAccNative | kAccAbstract | kAccStrict | kAccSynthetic | kAccConstructor | kAccDeclaredSynchronized; if (((access_flags & ~access_method_mask) != 0) || (is_synchronized && !allow_synchronized)) { LOG(ERROR) << StringPrintf("Bad class_data_item method access_flags %x", access_flags); return false; } if (expect_code && code_offset == 0) { LOG(ERROR)<< StringPrintf("Unexpected zero value for class_data_item method code_off" " with access flags %x", access_flags); return false; } else if (!expect_code && code_offset != 0) { LOG(ERROR) << StringPrintf("Unexpected non-zero value %x for class_data_item method code_off" " with access flags %x", code_offset, access_flags); return false; } return true; } bool DexFileVerifier::CheckPadding(uint32_t offset, uint32_t aligned_offset) { if (offset < aligned_offset) { if (!CheckPointerRange(begin_ + offset, begin_ + aligned_offset, "section")) { return false; } while (offset < aligned_offset) { if (*ptr_ != '\0') { LOG(ERROR) << StringPrintf("Non-zero padding %x before section start at %x", *ptr_, offset); return false; } ptr_++; offset++; } } return true; } bool DexFileVerifier::CheckEncodedValue() { if (!CheckPointerRange(ptr_, ptr_ + 1, "encoded_value header")) { return false; } uint8_t header_byte = *(ptr_++); uint32_t value_type = header_byte & DexFile::kDexAnnotationValueTypeMask; uint32_t value_arg = header_byte >> DexFile::kDexAnnotationValueArgShift; switch (value_type) { case DexFile::kDexAnnotationByte: if (value_arg != 0) { LOG(ERROR) << StringPrintf("Bad encoded_value byte size %x", value_arg); return false; } ptr_++; break; case DexFile::kDexAnnotationShort: case DexFile::kDexAnnotationChar: if (value_arg > 1) { LOG(ERROR) << StringPrintf("Bad encoded_value char/short size %x", value_arg); return false; } ptr_ += value_arg + 1; break; case DexFile::kDexAnnotationInt: case DexFile::kDexAnnotationFloat: if (value_arg > 3) { LOG(ERROR) << StringPrintf("Bad encoded_value int/float size %x", value_arg); return false; } ptr_ += value_arg + 1; break; case DexFile::kDexAnnotationLong: case DexFile::kDexAnnotationDouble: ptr_ += value_arg + 1; break; case DexFile::kDexAnnotationString: { if (value_arg > 3) { LOG(ERROR) << StringPrintf("Bad encoded_value string size %x", value_arg); return false; } uint32_t idx = ReadUnsignedLittleEndian(value_arg + 1); if (!CheckIndex(idx, header_->string_ids_size_, "encoded_value string")) { return false; } break; } case DexFile::kDexAnnotationType: { if (value_arg > 3) { LOG(ERROR) << StringPrintf("Bad encoded_value type size %x", value_arg); return false; } uint32_t idx = ReadUnsignedLittleEndian(value_arg + 1); if (!CheckIndex(idx, header_->type_ids_size_, "encoded_value type")) { return false; } break; } case DexFile::kDexAnnotationField: case DexFile::kDexAnnotationEnum: { if (value_arg > 3) { LOG(ERROR) << StringPrintf("Bad encoded_value field/enum size %x", value_arg); return false; } uint32_t idx = ReadUnsignedLittleEndian(value_arg + 1); if (!CheckIndex(idx, header_->field_ids_size_, "encoded_value field")) { return false; } break; } case DexFile::kDexAnnotationMethod: { if (value_arg > 3) { LOG(ERROR) << StringPrintf("Bad encoded_value method size %x", value_arg); return false; } uint32_t idx = ReadUnsignedLittleEndian(value_arg + 1); if (!CheckIndex(idx, header_->method_ids_size_, "encoded_value method")) { return false; } break; } case DexFile::kDexAnnotationArray: if (value_arg != 0) { LOG(ERROR) << StringPrintf("Bad encoded_value array value_arg %x", value_arg); return false; } if (!CheckEncodedArray()) { return false; } break; case DexFile::kDexAnnotationAnnotation: if (value_arg != 0) { LOG(ERROR) << StringPrintf("Bad encoded_value annotation value_arg %x", value_arg); return false; } if (!CheckEncodedAnnotation()) { return false; } break; case DexFile::kDexAnnotationNull: if (value_arg != 0) { LOG(ERROR) << StringPrintf("Bad encoded_value null value_arg %x", value_arg); return false; } break; case DexFile::kDexAnnotationBoolean: if (value_arg > 1) { LOG(ERROR) << StringPrintf("Bad encoded_value boolean size %x", value_arg); return false; } break; default: LOG(ERROR) << StringPrintf("Bogus encoded_value value_type %x", value_type); return false; } return true; } bool DexFileVerifier::CheckEncodedArray() { uint32_t size = DecodeUnsignedLeb128(&ptr_); while (size--) { if (!CheckEncodedValue()) { LOG(ERROR) << "Bad encoded_array value"; return false; } } return true; } bool DexFileVerifier::CheckEncodedAnnotation() { uint32_t idx = DecodeUnsignedLeb128(&ptr_); if (!CheckIndex(idx, header_->type_ids_size_, "encoded_annotation type_idx")) { return false; } uint32_t size = DecodeUnsignedLeb128(&ptr_); uint32_t last_idx = 0; for (uint32_t i = 0; i < size; i++) { idx = DecodeUnsignedLeb128(&ptr_); if (!CheckIndex(idx, header_->string_ids_size_, "annotation_element name_idx")) { return false; } if (last_idx >= idx && i != 0) { LOG(ERROR) << StringPrintf("Out-of-order annotation_element name_idx: %x then %x", last_idx, idx); return false; } if (!CheckEncodedValue()) { return false; } last_idx = idx; } return true; } bool DexFileVerifier::CheckIntraClassDataItem() { ClassDataItemIterator it(*dex_file_, ptr_); for (; it.HasNextStaticField(); it.Next()) { if (!CheckClassDataItemField(it.GetMemberIndex(), it.GetMemberAccessFlags(), true)) { return false; } } for (; it.HasNextInstanceField(); it.Next()) { if (!CheckClassDataItemField(it.GetMemberIndex(), it.GetMemberAccessFlags(), false)) { return false; } } for (; it.HasNextDirectMethod(); it.Next()) { if (!CheckClassDataItemMethod(it.GetMemberIndex(), it.GetMemberAccessFlags(), it.GetMethodCodeItemOffset(), true)) { return false; } } for (; it.HasNextVirtualMethod(); it.Next()) { if (!CheckClassDataItemMethod(it.GetMemberIndex(), it.GetMemberAccessFlags(), it.GetMethodCodeItemOffset(), false)) { return false; } } ptr_ = it.EndDataPointer(); return true; } bool DexFileVerifier::CheckIntraCodeItem() { const DexFile::CodeItem* code_item = reinterpret_cast<const DexFile::CodeItem*>(ptr_); if (!CheckPointerRange(code_item, code_item + 1, "code")) { return false; } if (code_item->ins_size_ > code_item->registers_size_) { LOG(ERROR) << "ins_size (" << code_item->ins_size_ << ") > registers_size (" << code_item->registers_size_ << ")"; return false; } if ((code_item->outs_size_ > 5) && (code_item->outs_size_ > code_item->registers_size_)) { /* * outs_size can be up to 5, even if registers_size is smaller, since the * short forms of method invocation allow repetitions of a register multiple * times within a single parameter list. However, longer parameter lists * need to be represented in-order in the register file. */ LOG(ERROR) << "outs_size (" << code_item->outs_size_ << ") > registers_size (" << code_item->registers_size_ << ")"; return false; } const uint16_t* insns = code_item->insns_; uint32_t insns_size = code_item->insns_size_in_code_units_; if (!CheckListSize(insns, insns_size, sizeof(uint16_t), "insns size")) { return false; } // Grab the end of the insns if there are no try_items. uint32_t try_items_size = code_item->tries_size_; if (try_items_size == 0) { ptr_ = reinterpret_cast<const byte*>(&insns[insns_size]); return true; } // try_items are 4-byte aligned. Verify the spacer is 0. if ((((uint32_t) &insns[insns_size] & 3) != 0) && (insns[insns_size] != 0)) { LOG(ERROR) << StringPrintf("Non-zero padding: %x", insns[insns_size]); return false; } const DexFile::TryItem* try_items = DexFile::GetTryItems(*code_item, 0); ptr_ = DexFile::GetCatchHandlerData(*code_item, 0); uint32_t handlers_size = DecodeUnsignedLeb128(&ptr_); if (!CheckListSize(try_items, try_items_size, sizeof(DexFile::TryItem), "try_items size")) { return false; } if ((handlers_size == 0) || (handlers_size >= 65536)) { LOG(ERROR) << "Invalid handlers_size: " << handlers_size; return false; } UniquePtr<uint32_t[]> handler_offsets(new uint32_t[handlers_size]); if (!CheckAndGetHandlerOffsets(code_item, &handler_offsets[0], handlers_size)) { return false; } uint32_t last_addr = 0; while (try_items_size--) { if (try_items->start_addr_ < last_addr) { LOG(ERROR) << StringPrintf("Out-of_order try_item with start_addr: %x", try_items->start_addr_); return false; } if (try_items->start_addr_ >= insns_size) { LOG(ERROR) << StringPrintf("Invalid try_item start_addr: %x", try_items->start_addr_); return false; } uint32_t i; for (i = 0; i < handlers_size; i++) { if (try_items->handler_off_ == handler_offsets[i]) { break; } } if (i == handlers_size) { LOG(ERROR) << StringPrintf("Bogus handler offset: %x", try_items->handler_off_); return false; } last_addr = try_items->start_addr_ + try_items->insn_count_; if (last_addr > insns_size) { LOG(ERROR) << StringPrintf("Invalid try_item insn_count: %x", try_items->insn_count_); return false; } try_items++; } return true; } bool DexFileVerifier::CheckIntraStringDataItem() { uint32_t size = DecodeUnsignedLeb128(&ptr_); const byte* file_end = begin_ + size_; for (uint32_t i = 0; i < size; i++) { if (ptr_ >= file_end) { LOG(ERROR) << "String data would go beyond end-of-file"; return false; } uint8_t byte = *(ptr_++); // Switch on the high 4 bits. switch (byte >> 4) { case 0x00: // Special case of bit pattern 0xxx. if (byte == 0) { LOG(ERROR) << StringPrintf("String data shorter than indicated utf16_size %x", size); return false; } break; case 0x01: case 0x02: case 0x03: case 0x04: case 0x05: case 0x06: case 0x07: // No extra checks necessary for bit pattern 0xxx. break; case 0x08: case 0x09: case 0x0a: case 0x0b: case 0x0f: // Illegal bit patterns 10xx or 1111. // Note: 1111 is valid for normal UTF-8, but not here. LOG(ERROR) << StringPrintf("Illegal start byte %x in string data", byte); return false; case 0x0c: case 0x0d: { // Bit pattern 110x has an additional byte. uint8_t byte2 = *(ptr_++); if ((byte2 & 0xc0) != 0x80) { LOG(ERROR) << StringPrintf("Illegal continuation byte %x in string data", byte2); return false; } uint16_t value = ((byte & 0x1f) << 6) | (byte2 & 0x3f); if ((value != 0) && (value < 0x80)) { LOG(ERROR) << StringPrintf("Illegal representation for value %x in string data", value); return false; } break; } case 0x0e: { // Bit pattern 1110 has 2 additional bytes. uint8_t byte2 = *(ptr_++); if ((byte2 & 0xc0) != 0x80) { LOG(ERROR) << StringPrintf("Illegal continuation byte %x in string data", byte2); return false; } uint8_t byte3 = *(ptr_++); if ((byte3 & 0xc0) != 0x80) { LOG(ERROR) << StringPrintf("Illegal continuation byte %x in string data", byte3); return false; } uint16_t value = ((byte & 0x0f) << 12) | ((byte2 & 0x3f) << 6) | (byte3 & 0x3f); if (value < 0x800) { LOG(ERROR) << StringPrintf("Illegal representation for value %x in string data", value); return false; } break; } } } if (*(ptr_++) != '\0') { LOG(ERROR) << StringPrintf("String longer than indicated size %x", size); return false; } return true; } bool DexFileVerifier::CheckIntraDebugInfoItem() { DecodeUnsignedLeb128(&ptr_); uint32_t parameters_size = DecodeUnsignedLeb128(&ptr_); if (parameters_size > 65536) { LOG(ERROR) << StringPrintf("Invalid parameters_size: %x", parameters_size); return false; } for (uint32_t j = 0; j < parameters_size; j++) { uint32_t parameter_name = DecodeUnsignedLeb128(&ptr_); if (parameter_name != 0) { parameter_name--; if (!CheckIndex(parameter_name, header_->string_ids_size_, "debug_info_item parameter_name")) { return false; } } } while (true) { uint8_t opcode = *(ptr_++); switch (opcode) { case DexFile::DBG_END_SEQUENCE: { return true; } case DexFile::DBG_ADVANCE_PC: { DecodeUnsignedLeb128(&ptr_); break; } case DexFile::DBG_ADVANCE_LINE: { DecodeSignedLeb128(&ptr_); break; } case DexFile::DBG_START_LOCAL: { uint32_t reg_num = DecodeUnsignedLeb128(&ptr_); if (reg_num >= 65536) { LOG(ERROR) << StringPrintf("Bad reg_num for opcode %x", opcode); return false; } uint32_t name_idx = DecodeUnsignedLeb128(&ptr_); if (name_idx != 0) { name_idx--; if (!CheckIndex(name_idx, header_->string_ids_size_, "DBG_START_LOCAL name_idx")) { return false; } } uint32_t type_idx = DecodeUnsignedLeb128(&ptr_); if (type_idx != 0) { type_idx--; if (!CheckIndex(type_idx, header_->string_ids_size_, "DBG_START_LOCAL type_idx")) { return false; } } break; } case DexFile::DBG_END_LOCAL: case DexFile::DBG_RESTART_LOCAL: { uint32_t reg_num = DecodeUnsignedLeb128(&ptr_); if (reg_num >= 65536) { LOG(ERROR) << StringPrintf("Bad reg_num for opcode %x", opcode); return false; } break; } case DexFile::DBG_START_LOCAL_EXTENDED: { uint32_t reg_num = DecodeUnsignedLeb128(&ptr_); if (reg_num >= 65536) { LOG(ERROR) << StringPrintf("Bad reg_num for opcode %x", opcode); return false; } uint32_t name_idx = DecodeUnsignedLeb128(&ptr_); if (name_idx != 0) { name_idx--; if (!CheckIndex(name_idx, header_->string_ids_size_, "DBG_START_LOCAL_EXTENDED name_idx")) { return false; } } uint32_t type_idx = DecodeUnsignedLeb128(&ptr_); if (type_idx != 0) { type_idx--; if (!CheckIndex(type_idx, header_->string_ids_size_, "DBG_START_LOCAL_EXTENDED type_idx")) { return false; } } uint32_t sig_idx = DecodeUnsignedLeb128(&ptr_); if (sig_idx != 0) { sig_idx--; if (!CheckIndex(sig_idx, header_->string_ids_size_, "DBG_START_LOCAL_EXTENDED sig_idx")) { return false; } } break; } case DexFile::DBG_SET_FILE: { uint32_t name_idx = DecodeUnsignedLeb128(&ptr_); if (name_idx != 0) { name_idx--; if (!CheckIndex(name_idx, header_->string_ids_size_, "DBG_SET_FILE name_idx")) { return false; } } break; } } } } bool DexFileVerifier::CheckIntraAnnotationItem() { if (!CheckPointerRange(ptr_, ptr_ + 1, "annotation visibility")) { return false; } // Check visibility switch (*(ptr_++)) { case DexFile::kDexVisibilityBuild: case DexFile::kDexVisibilityRuntime: case DexFile::kDexVisibilitySystem: break; default: LOG(ERROR) << StringPrintf("Bad annotation visibility: %x", *ptr_); return false; } if (!CheckEncodedAnnotation()) { return false; } return true; } bool DexFileVerifier::CheckIntraAnnotationsDirectoryItem() { const DexFile::AnnotationsDirectoryItem* item = reinterpret_cast<const DexFile::AnnotationsDirectoryItem*>(ptr_); if (!CheckPointerRange(item, item + 1, "annotations_directory")) { return false; } // Field annotations follow immediately after the annotations directory. const DexFile::FieldAnnotationsItem* field_item = reinterpret_cast<const DexFile::FieldAnnotationsItem*>(item + 1); uint32_t field_count = item->fields_size_; if (!CheckListSize(field_item, field_count, sizeof(DexFile::FieldAnnotationsItem), "field_annotations list")) { return false; } uint32_t last_idx = 0; for (uint32_t i = 0; i < field_count; i++) { if (last_idx >= field_item->field_idx_ && i != 0) { LOG(ERROR) << StringPrintf("Out-of-order field_idx for annotation: %x then %x", last_idx, field_item->field_idx_); return false; } last_idx = field_item->field_idx_; field_item++; } // Method annotations follow immediately after field annotations. const DexFile::MethodAnnotationsItem* method_item = reinterpret_cast<const DexFile::MethodAnnotationsItem*>(field_item); uint32_t method_count = item->methods_size_; if (!CheckListSize(method_item, method_count, sizeof(DexFile::MethodAnnotationsItem), "method_annotations list")) { return false; } last_idx = 0; for (uint32_t i = 0; i < method_count; i++) { if (last_idx >= method_item->method_idx_ && i != 0) { LOG(ERROR) << StringPrintf("Out-of-order method_idx for annotation: %x then %x", last_idx, method_item->method_idx_); return false; } last_idx = method_item->method_idx_; method_item++; } // Parameter annotations follow immediately after method annotations. const DexFile::ParameterAnnotationsItem* parameter_item = reinterpret_cast<const DexFile::ParameterAnnotationsItem*>(method_item); uint32_t parameter_count = item->parameters_size_; if (!CheckListSize(parameter_item, parameter_count, sizeof(DexFile::ParameterAnnotationsItem), "parameter_annotations list")) { return false; } last_idx = 0; for (uint32_t i = 0; i < parameter_count; i++) { if (last_idx >= parameter_item->method_idx_ && i != 0) { LOG(ERROR) << StringPrintf("Out-of-order method_idx for annotation: %x then %x", last_idx, parameter_item->method_idx_); return false; } last_idx = parameter_item->method_idx_; parameter_item++; } // Return a pointer to the end of the annotations. ptr_ = reinterpret_cast<const byte*>(parameter_item); return true; } bool DexFileVerifier::CheckIntraSectionIterate(uint32_t offset, uint32_t count, uint16_t type) { // Get the right alignment mask for the type of section. uint32_t alignment_mask; switch (type) { case DexFile::kDexTypeClassDataItem: case DexFile::kDexTypeStringDataItem: case DexFile::kDexTypeDebugInfoItem: case DexFile::kDexTypeAnnotationItem: case DexFile::kDexTypeEncodedArrayItem: alignment_mask = sizeof(uint8_t) - 1; break; default: alignment_mask = sizeof(uint32_t) - 1; break; } // Iterate through the items in the section. for (uint32_t i = 0; i < count; i++) { uint32_t aligned_offset = (offset + alignment_mask) & ~alignment_mask; // Check the padding between items. if (!CheckPadding(offset, aligned_offset)) { return false; } // Check depending on the section type. switch (type) { case DexFile::kDexTypeStringIdItem: { if (!CheckPointerRange(ptr_, ptr_ + sizeof(DexFile::StringId), "string_ids")) { return false; } ptr_ += sizeof(DexFile::StringId); break; } case DexFile::kDexTypeTypeIdItem: { if (!CheckPointerRange(ptr_, ptr_ + sizeof(DexFile::TypeId), "type_ids")) { return false; } ptr_ += sizeof(DexFile::TypeId); break; } case DexFile::kDexTypeProtoIdItem: { if (!CheckPointerRange(ptr_, ptr_ + sizeof(DexFile::ProtoId), "proto_ids")) { return false; } ptr_ += sizeof(DexFile::ProtoId); break; } case DexFile::kDexTypeFieldIdItem: { if (!CheckPointerRange(ptr_, ptr_ + sizeof(DexFile::FieldId), "field_ids")) { return false; } ptr_ += sizeof(DexFile::FieldId); break; } case DexFile::kDexTypeMethodIdItem: { if (!CheckPointerRange(ptr_, ptr_ + sizeof(DexFile::MethodId), "method_ids")) { return false; } ptr_ += sizeof(DexFile::MethodId); break; } case DexFile::kDexTypeClassDefItem: { if (!CheckPointerRange(ptr_, ptr_ + sizeof(DexFile::ClassDef), "class_defs")) { return false; } ptr_ += sizeof(DexFile::ClassDef); break; } case DexFile::kDexTypeTypeList: { const DexFile::TypeList* list = reinterpret_cast<const DexFile::TypeList*>(ptr_); const DexFile::TypeItem* item = &list->GetTypeItem(0); uint32_t count = list->Size(); if (!CheckPointerRange(list, list + 1, "type_list") || !CheckListSize(item, count, sizeof(DexFile::TypeItem), "type_list size")) { return false; } ptr_ = reinterpret_cast<const byte*>(item + count); break; } case DexFile::kDexTypeAnnotationSetRefList: { const DexFile::AnnotationSetRefList* list = reinterpret_cast<const DexFile::AnnotationSetRefList*>(ptr_); const DexFile::AnnotationSetRefItem* item = list->list_; uint32_t count = list->size_; if (!CheckPointerRange(list, list + 1, "annotation_set_ref_list") || !CheckListSize(item, count, sizeof(DexFile::AnnotationSetRefItem), "annotation_set_ref_list size")) { return false; } ptr_ = reinterpret_cast<const byte*>(item + count); break; } case DexFile::kDexTypeAnnotationSetItem: { const DexFile::AnnotationSetItem* set = reinterpret_cast<const DexFile::AnnotationSetItem*>(ptr_); const uint32_t* item = set->entries_; uint32_t count = set->size_; if (!CheckPointerRange(set, set + 1, "annotation_set_item") || !CheckListSize(item, count, sizeof(uint32_t), "annotation_set_item size")) { return false; } ptr_ = reinterpret_cast<const byte*>(item + count); break; } case DexFile::kDexTypeClassDataItem: { if (!CheckIntraClassDataItem()) { return false; } break; } case DexFile::kDexTypeCodeItem: { if (!CheckIntraCodeItem()) { return false; } break; } case DexFile::kDexTypeStringDataItem: { if (!CheckIntraStringDataItem()) { return false; } break; } case DexFile::kDexTypeDebugInfoItem: { if (!CheckIntraDebugInfoItem()) { return false; } break; } case DexFile::kDexTypeAnnotationItem: { if (!CheckIntraAnnotationItem()) { return false; } break; } case DexFile::kDexTypeEncodedArrayItem: { if (!CheckEncodedArray()) { return false; } break; } case DexFile::kDexTypeAnnotationsDirectoryItem: { if (!CheckIntraAnnotationsDirectoryItem()) { return false; } break; } default: LOG(ERROR) << StringPrintf("Unknown map item type %x", type); return false; } if (IsDataSectionType(type)) { offset_to_type_map_.Put(aligned_offset, type); } aligned_offset = reinterpret_cast<uint32_t>(ptr_) - reinterpret_cast<uint32_t>(begin_); if (aligned_offset > size_) { LOG(ERROR) << StringPrintf("Item %d at ends out of bounds", i); return false; } offset = aligned_offset; } return true; } bool DexFileVerifier::CheckIntraIdSection(uint32_t offset, uint32_t count, uint16_t type) { uint32_t expected_offset; uint32_t expected_size; // Get the expected offset and size from the header. switch (type) { case DexFile::kDexTypeStringIdItem: expected_offset = header_->string_ids_off_; expected_size = header_->string_ids_size_; break; case DexFile::kDexTypeTypeIdItem: expected_offset = header_->type_ids_off_; expected_size = header_->type_ids_size_; break; case DexFile::kDexTypeProtoIdItem: expected_offset = header_->proto_ids_off_; expected_size = header_->proto_ids_size_; break; case DexFile::kDexTypeFieldIdItem: expected_offset = header_->field_ids_off_; expected_size = header_->field_ids_size_; break; case DexFile::kDexTypeMethodIdItem: expected_offset = header_->method_ids_off_; expected_size = header_->method_ids_size_; break; case DexFile::kDexTypeClassDefItem: expected_offset = header_->class_defs_off_; expected_size = header_->class_defs_size_; break; default: LOG(ERROR) << StringPrintf("Bad type for id section: %x", type); return false; } // Check that the offset and size are what were expected from the header. if (offset != expected_offset) { LOG(ERROR) << StringPrintf("Bad offset for section: got %x, expected %x", offset, expected_offset); return false; } if (count != expected_size) { LOG(ERROR) << StringPrintf("Bad size for section: got %x, expected %x", count, expected_size); return false; } return CheckIntraSectionIterate(offset, count, type); } bool DexFileVerifier::CheckIntraDataSection(uint32_t offset, uint32_t count, uint16_t type) { uint32_t data_start = header_->data_off_; uint32_t data_end = data_start + header_->data_size_; // Sanity check the offset of the section. if ((offset < data_start) || (offset > data_end)) { LOG(ERROR) << StringPrintf("Bad offset for data subsection: %x", offset); return false; } if (!CheckIntraSectionIterate(offset, count, type)) { return false; } uint32_t next_offset = reinterpret_cast<uint32_t>(ptr_) - reinterpret_cast<uint32_t>(begin_); if (next_offset > data_end) { LOG(ERROR) << StringPrintf("Out-of-bounds end of data subsection: %x", next_offset); return false; } return true; } bool DexFileVerifier::CheckIntraSection() { const DexFile::MapList* map = reinterpret_cast<const DexFile::MapList*>(begin_ + header_->map_off_); const DexFile::MapItem* item = map->list_; uint32_t count = map->size_; uint32_t offset = 0; ptr_ = begin_; // Check the items listed in the map. while (count--) { uint32_t section_offset = item->offset_; uint32_t section_count = item->size_; uint16_t type = item->type_; // Check for padding and overlap between items. if (!CheckPadding(offset, section_offset)) { return false; } else if (offset > section_offset) { LOG(ERROR) << StringPrintf("Section overlap or out-of-order map: %x, %x", offset, section_offset); return false; } // Check each item based on its type. switch (type) { case DexFile::kDexTypeHeaderItem: if (section_count != 1) { LOG(ERROR) << "Multiple header items"; return false; } if (section_offset != 0) { LOG(ERROR) << StringPrintf("Header at %x, not at start of file", section_offset); return false; } ptr_ = begin_ + header_->header_size_; offset = header_->header_size_; break; case DexFile::kDexTypeStringIdItem: case DexFile::kDexTypeTypeIdItem: case DexFile::kDexTypeProtoIdItem: case DexFile::kDexTypeFieldIdItem: case DexFile::kDexTypeMethodIdItem: case DexFile::kDexTypeClassDefItem: if (!CheckIntraIdSection(section_offset, section_count, type)) { return false; } offset = reinterpret_cast<uint32_t>(ptr_) - reinterpret_cast<uint32_t>(begin_); break; case DexFile::kDexTypeMapList: if (section_count != 1) { LOG(ERROR) << "Multiple map list items"; return false; } if (section_offset != header_->map_off_) { LOG(ERROR) << StringPrintf("Map not at header-defined offset: %x, expected %x", section_offset, header_->map_off_); return false; } ptr_ += sizeof(uint32_t) + (map->size_ * sizeof(DexFile::MapItem)); offset = section_offset + sizeof(uint32_t) + (map->size_ * sizeof(DexFile::MapItem)); break; case DexFile::kDexTypeTypeList: case DexFile::kDexTypeAnnotationSetRefList: case DexFile::kDexTypeAnnotationSetItem: case DexFile::kDexTypeClassDataItem: case DexFile::kDexTypeCodeItem: case DexFile::kDexTypeStringDataItem: case DexFile::kDexTypeDebugInfoItem: case DexFile::kDexTypeAnnotationItem: case DexFile::kDexTypeEncodedArrayItem: case DexFile::kDexTypeAnnotationsDirectoryItem: if (!CheckIntraDataSection(section_offset, section_count, type)) { return false; } offset = reinterpret_cast<uint32_t>(ptr_) - reinterpret_cast<uint32_t>(begin_); break; default: LOG(ERROR) << StringPrintf("Unknown map item type %x", type); return false; } item++; } return true; } bool DexFileVerifier::CheckOffsetToTypeMap(uint32_t offset, uint16_t type) { auto it = offset_to_type_map_.find(offset); if (it == offset_to_type_map_.end()) { LOG(ERROR) << StringPrintf("No data map entry found @ %x; expected %x", offset, type); return false; } if (it->second != type) { LOG(ERROR) << StringPrintf("Unexpected data map entry @ %x; expected %x, found %x", offset, type, it->second); return false; } return true; } uint16_t DexFileVerifier::FindFirstClassDataDefiner(const byte* ptr) const { ClassDataItemIterator it(*dex_file_, ptr); if (it.HasNextStaticField() || it.HasNextInstanceField()) { const DexFile::FieldId& field = dex_file_->GetFieldId(it.GetMemberIndex()); return field.class_idx_; } if (it.HasNextDirectMethod() || it.HasNextVirtualMethod()) { const DexFile::MethodId& method = dex_file_->GetMethodId(it.GetMemberIndex()); return method.class_idx_; } return DexFile::kDexNoIndex16; } uint16_t DexFileVerifier::FindFirstAnnotationsDirectoryDefiner(const byte* ptr) const { const DexFile::AnnotationsDirectoryItem* item = reinterpret_cast<const DexFile::AnnotationsDirectoryItem*>(ptr); if (item->fields_size_ != 0) { DexFile::FieldAnnotationsItem* field_items = (DexFile::FieldAnnotationsItem*) (item + 1); const DexFile::FieldId& field = dex_file_->GetFieldId(field_items[0].field_idx_); return field.class_idx_; } if (item->methods_size_ != 0) { DexFile::MethodAnnotationsItem* method_items = (DexFile::MethodAnnotationsItem*) (item + 1); const DexFile::MethodId& method = dex_file_->GetMethodId(method_items[0].method_idx_); return method.class_idx_; } if (item->parameters_size_ != 0) { DexFile::ParameterAnnotationsItem* parameter_items = (DexFile::ParameterAnnotationsItem*) (item + 1); const DexFile::MethodId& method = dex_file_->GetMethodId(parameter_items[0].method_idx_); return method.class_idx_; } return DexFile::kDexNoIndex16; } bool DexFileVerifier::CheckInterStringIdItem() { const DexFile::StringId* item = reinterpret_cast<const DexFile::StringId*>(ptr_); // Check the map to make sure it has the right offset->type. if (!CheckOffsetToTypeMap(item->string_data_off_, DexFile::kDexTypeStringDataItem)) { return false; } // Check ordering between items. if (previous_item_ != NULL) { const DexFile::StringId* prev_item = reinterpret_cast<const DexFile::StringId*>(previous_item_); const char* prev_str = dex_file_->GetStringData(*prev_item); const char* str = dex_file_->GetStringData(*item); if (CompareModifiedUtf8ToModifiedUtf8AsUtf16CodePointValues(prev_str, str) >= 0) { LOG(ERROR) << StringPrintf("Out-of-order string_ids: '%s' then '%s'", prev_str, str); return false; } } ptr_ += sizeof(DexFile::StringId); return true; } bool DexFileVerifier::CheckInterTypeIdItem() { const DexFile::TypeId* item = reinterpret_cast<const DexFile::TypeId*>(ptr_); const char* descriptor = dex_file_->StringDataByIdx(item->descriptor_idx_); // Check that the descriptor is a valid type. if (!IsValidDescriptor(descriptor)) { LOG(ERROR) << StringPrintf("Invalid type descriptor: '%s'", descriptor); return false; } // Check ordering between items. if (previous_item_ != NULL) { const DexFile::TypeId* prev_item = reinterpret_cast<const DexFile::TypeId*>(previous_item_); if (prev_item->descriptor_idx_ >= item->descriptor_idx_) { LOG(ERROR) << StringPrintf("Out-of-order type_ids: %x then %x", prev_item->descriptor_idx_, item->descriptor_idx_); return false; } } ptr_ += sizeof(DexFile::TypeId); return true; } bool DexFileVerifier::CheckInterProtoIdItem() { const DexFile::ProtoId* item = reinterpret_cast<const DexFile::ProtoId*>(ptr_); const char* shorty = dex_file_->StringDataByIdx(item->shorty_idx_); if (item->parameters_off_ != 0 && !CheckOffsetToTypeMap(item->parameters_off_, DexFile::kDexTypeTypeList)) { return false; } // Check the return type and advance the shorty. if (!CheckShortyDescriptorMatch(*shorty, dex_file_->StringByTypeIdx(item->return_type_idx_), true)) { return false; } shorty++; DexFileParameterIterator it(*dex_file_, *item); while (it.HasNext() && *shorty != '\0') { const char* descriptor = it.GetDescriptor(); if (!CheckShortyDescriptorMatch(*shorty, descriptor, false)) { return false; } it.Next(); shorty++; } if (it.HasNext() || *shorty != '\0') { LOG(ERROR) << "Mismatched length for parameters and shorty"; return false; } // Check ordering between items. This relies on type_ids being in order. if (previous_item_ != NULL) { const DexFile::ProtoId* prev = reinterpret_cast<const DexFile::ProtoId*>(previous_item_); if (prev->return_type_idx_ > item->return_type_idx_) { LOG(ERROR) << "Out-of-order proto_id return types"; return false; } else if (prev->return_type_idx_ == item->return_type_idx_) { DexFileParameterIterator curr_it(*dex_file_, *item); DexFileParameterIterator prev_it(*dex_file_, *prev); while (curr_it.HasNext() && prev_it.HasNext()) { uint16_t prev_idx = prev_it.GetTypeIdx(); uint16_t curr_idx = curr_it.GetTypeIdx(); if (prev_idx == DexFile::kDexNoIndex16) { break; } if (curr_idx == DexFile::kDexNoIndex16) { LOG(ERROR) << "Out-of-order proto_id arguments"; return false; } if (prev_idx < curr_idx) { break; } else if (prev_idx > curr_idx) { LOG(ERROR) << "Out-of-order proto_id arguments"; return false; } prev_it.Next(); curr_it.Next(); } } } ptr_ += sizeof(DexFile::ProtoId); return true; } bool DexFileVerifier::CheckInterFieldIdItem() { const DexFile::FieldId* item = reinterpret_cast<const DexFile::FieldId*>(ptr_); // Check that the class descriptor is valid. const char* descriptor = dex_file_->StringByTypeIdx(item->class_idx_); if (!IsValidDescriptor(descriptor) || descriptor[0] != 'L') { LOG(ERROR) << "Invalid descriptor for class_idx: '" << descriptor << '"'; return false; } // Check that the type descriptor is a valid field name. descriptor = dex_file_->StringByTypeIdx(item->type_idx_); if (!IsValidDescriptor(descriptor) || descriptor[0] == 'V') { LOG(ERROR) << "Invalid descriptor for type_idx: '" << descriptor << '"'; return false; } // Check that the name is valid. descriptor = dex_file_->StringDataByIdx(item->name_idx_); if (!IsValidMemberName(descriptor)) { LOG(ERROR) << "Invalid field name: '" << descriptor << '"'; return false; } // Check ordering between items. This relies on the other sections being in order. if (previous_item_ != NULL) { const DexFile::FieldId* prev_item = reinterpret_cast<const DexFile::FieldId*>(previous_item_); if (prev_item->class_idx_ > item->class_idx_) { LOG(ERROR) << "Out-of-order field_ids"; return false; } else if (prev_item->class_idx_ == item->class_idx_) { if (prev_item->name_idx_ > item->name_idx_) { LOG(ERROR) << "Out-of-order field_ids"; return false; } else if (prev_item->name_idx_ == item->name_idx_) { if (prev_item->type_idx_ >= item->type_idx_) { LOG(ERROR) << "Out-of-order field_ids"; return false; } } } } ptr_ += sizeof(DexFile::FieldId); return true; } bool DexFileVerifier::CheckInterMethodIdItem() { const DexFile::MethodId* item = reinterpret_cast<const DexFile::MethodId*>(ptr_); // Check that the class descriptor is a valid reference name. const char* descriptor = dex_file_->StringByTypeIdx(item->class_idx_); if (!IsValidDescriptor(descriptor) || (descriptor[0] != 'L' && descriptor[0] != '[')) { LOG(ERROR) << "Invalid descriptor for class_idx: '" << descriptor << '"'; return false; } // Check that the name is valid. descriptor = dex_file_->StringDataByIdx(item->name_idx_); if (!IsValidMemberName(descriptor)) { LOG(ERROR) << "Invalid method name: '" << descriptor << '"'; return false; } // Check ordering between items. This relies on the other sections being in order. if (previous_item_ != NULL) { const DexFile::MethodId* prev_item = reinterpret_cast<const DexFile::MethodId*>(previous_item_); if (prev_item->class_idx_ > item->class_idx_) { LOG(ERROR) << "Out-of-order method_ids"; return false; } else if (prev_item->class_idx_ == item->class_idx_) { if (prev_item->name_idx_ > item->name_idx_) { LOG(ERROR) << "Out-of-order method_ids"; return false; } else if (prev_item->name_idx_ == item->name_idx_) { if (prev_item->proto_idx_ >= item->proto_idx_) { LOG(ERROR) << "Out-of-order method_ids"; return false; } } } } ptr_ += sizeof(DexFile::MethodId); return true; } bool DexFileVerifier::CheckInterClassDefItem() { const DexFile::ClassDef* item = reinterpret_cast<const DexFile::ClassDef*>(ptr_); uint32_t class_idx = item->class_idx_; const char* descriptor = dex_file_->StringByTypeIdx(class_idx); if (!IsValidDescriptor(descriptor) || descriptor[0] != 'L') { LOG(ERROR) << "Invalid class descriptor: '" << descriptor << "'"; return false; } if (item->interfaces_off_ != 0 && !CheckOffsetToTypeMap(item->interfaces_off_, DexFile::kDexTypeTypeList)) { return false; } if (item->annotations_off_ != 0 && !CheckOffsetToTypeMap(item->annotations_off_, DexFile::kDexTypeAnnotationsDirectoryItem)) { return false; } if (item->class_data_off_ != 0 && !CheckOffsetToTypeMap(item->class_data_off_, DexFile::kDexTypeClassDataItem)) { return false; } if (item->static_values_off_ != 0 && !CheckOffsetToTypeMap(item->static_values_off_, DexFile::kDexTypeEncodedArrayItem)) { return false; } if (item->superclass_idx_ != DexFile::kDexNoIndex16) { descriptor = dex_file_->StringByTypeIdx(item->superclass_idx_); if (!IsValidDescriptor(descriptor) || descriptor[0] != 'L') { LOG(ERROR) << "Invalid superclass: '" << descriptor << "'"; return false; } } const DexFile::TypeList* interfaces = dex_file_->GetInterfacesList(*item); if (interfaces != NULL) { uint32_t size = interfaces->Size(); // Ensure that all interfaces refer to classes (not arrays or primitives). for (uint32_t i = 0; i < size; i++) { descriptor = dex_file_->StringByTypeIdx(interfaces->GetTypeItem(i).type_idx_); if (!IsValidDescriptor(descriptor) || descriptor[0] != 'L') { LOG(ERROR) << "Invalid interface: '" << descriptor << "'"; return false; } } /* * Ensure that there are no duplicates. This is an O(N^2) test, but in * practice the number of interfaces implemented by any given class is low. */ for (uint32_t i = 1; i < size; i++) { uint32_t idx1 = interfaces->GetTypeItem(i).type_idx_; for (uint32_t j =0; j < i; j++) { uint32_t idx2 = interfaces->GetTypeItem(j).type_idx_; if (idx1 == idx2) { LOG(ERROR) << "Duplicate interface: '" << dex_file_->StringByTypeIdx(idx1) << "'"; return false; } } } } // Check that references in class_data_item are to the right class. if (item->class_data_off_ != 0) { const byte* data = begin_ + item->class_data_off_; uint16_t data_definer = FindFirstClassDataDefiner(data); if ((data_definer != item->class_idx_) && (data_definer != DexFile::kDexNoIndex16)) { LOG(ERROR) << "Invalid class_data_item"; return false; } } // Check that references in annotations_directory_item are to right class. if (item->annotations_off_ != 0) { const byte* data = begin_ + item->annotations_off_; uint16_t annotations_definer = FindFirstAnnotationsDirectoryDefiner(data); if ((annotations_definer != item->class_idx_) && (annotations_definer != DexFile::kDexNoIndex16)) { LOG(ERROR) << "Invalid annotations_directory_item"; return false; } } ptr_ += sizeof(DexFile::ClassDef); return true; } bool DexFileVerifier::CheckInterAnnotationSetRefList() { const DexFile::AnnotationSetRefList* list = reinterpret_cast<const DexFile::AnnotationSetRefList*>(ptr_); const DexFile::AnnotationSetRefItem* item = list->list_; uint32_t count = list->size_; while (count--) { if (item->annotations_off_ != 0 && !CheckOffsetToTypeMap(item->annotations_off_, DexFile::kDexTypeAnnotationSetItem)) { return false; } item++; } ptr_ = reinterpret_cast<const byte*>(item); return true; } bool DexFileVerifier::CheckInterAnnotationSetItem() { const DexFile::AnnotationSetItem* set = reinterpret_cast<const DexFile::AnnotationSetItem*>(ptr_); const uint32_t* offsets = set->entries_; uint32_t count = set->size_; uint32_t last_idx = 0; for (uint32_t i = 0; i < count; i++) { if (*offsets != 0 && !CheckOffsetToTypeMap(*offsets, DexFile::kDexTypeAnnotationItem)) { return false; } // Get the annotation from the offset and the type index for the annotation. const DexFile::AnnotationItem* annotation = reinterpret_cast<const DexFile::AnnotationItem*>(begin_ + *offsets); const uint8_t* data = annotation->annotation_; uint32_t idx = DecodeUnsignedLeb128(&data); if (last_idx >= idx && i != 0) { LOG(ERROR) << StringPrintf("Out-of-order entry types: %x then %x", last_idx, idx); return false; } last_idx = idx; offsets++; } ptr_ = reinterpret_cast<const byte*>(offsets); return true; } bool DexFileVerifier::CheckInterClassDataItem() { ClassDataItemIterator it(*dex_file_, ptr_); uint16_t defining_class = FindFirstClassDataDefiner(ptr_); for (; it.HasNextStaticField() || it.HasNextInstanceField(); it.Next()) { const DexFile::FieldId& field = dex_file_->GetFieldId(it.GetMemberIndex()); if (field.class_idx_ != defining_class) { LOG(ERROR) << "Mismatched defining class for class_data_item field"; return false; } } for (; it.HasNextDirectMethod() || it.HasNextVirtualMethod(); it.Next()) { uint32_t code_off = it.GetMethodCodeItemOffset(); if (code_off != 0 && !CheckOffsetToTypeMap(code_off, DexFile::kDexTypeCodeItem)) { return false; } const DexFile::MethodId& method = dex_file_->GetMethodId(it.GetMemberIndex()); if (method.class_idx_ != defining_class) { LOG(ERROR) << "Mismatched defining class for class_data_item method"; return false; } } ptr_ = it.EndDataPointer(); return true; } bool DexFileVerifier::CheckInterAnnotationsDirectoryItem() { const DexFile::AnnotationsDirectoryItem* item = reinterpret_cast<const DexFile::AnnotationsDirectoryItem*>(ptr_); uint16_t defining_class = FindFirstAnnotationsDirectoryDefiner(ptr_); if (item->class_annotations_off_ != 0 && !CheckOffsetToTypeMap(item->class_annotations_off_, DexFile::kDexTypeAnnotationSetItem)) { return false; } // Field annotations follow immediately after the annotations directory. const DexFile::FieldAnnotationsItem* field_item = reinterpret_cast<const DexFile::FieldAnnotationsItem*>(item + 1); uint32_t field_count = item->fields_size_; for (uint32_t i = 0; i < field_count; i++) { const DexFile::FieldId& field = dex_file_->GetFieldId(field_item->field_idx_); if (field.class_idx_ != defining_class) { LOG(ERROR) << "Mismatched defining class for field_annotation"; return false; } if (!CheckOffsetToTypeMap(field_item->annotations_off_, DexFile::kDexTypeAnnotationSetItem)) { return false; } field_item++; } // Method annotations follow immediately after field annotations. const DexFile::MethodAnnotationsItem* method_item = reinterpret_cast<const DexFile::MethodAnnotationsItem*>(field_item); uint32_t method_count = item->methods_size_; for (uint32_t i = 0; i < method_count; i++) { const DexFile::MethodId& method = dex_file_->GetMethodId(method_item->method_idx_); if (method.class_idx_ != defining_class) { LOG(ERROR) << "Mismatched defining class for method_annotation"; return false; } if (!CheckOffsetToTypeMap(method_item->annotations_off_, DexFile::kDexTypeAnnotationSetItem)) { return false; } method_item++; } // Parameter annotations follow immediately after method annotations. const DexFile::ParameterAnnotationsItem* parameter_item = reinterpret_cast<const DexFile::ParameterAnnotationsItem*>(method_item); uint32_t parameter_count = item->parameters_size_; for (uint32_t i = 0; i < parameter_count; i++) { const DexFile::MethodId& parameter_method = dex_file_->GetMethodId(parameter_item->method_idx_); if (parameter_method.class_idx_ != defining_class) { LOG(ERROR) << "Mismatched defining class for parameter_annotation"; return false; } if (!CheckOffsetToTypeMap(parameter_item->annotations_off_, DexFile::kDexTypeAnnotationSetRefList)) { return false; } parameter_item++; } ptr_ = reinterpret_cast<const byte*>(parameter_item); return true; } bool DexFileVerifier::CheckInterSectionIterate(uint32_t offset, uint32_t count, uint16_t type) { // Get the right alignment mask for the type of section. uint32_t alignment_mask; switch (type) { case DexFile::kDexTypeClassDataItem: alignment_mask = sizeof(uint8_t) - 1; break; default: alignment_mask = sizeof(uint32_t) - 1; break; } // Iterate through the items in the section. previous_item_ = NULL; for (uint32_t i = 0; i < count; i++) { uint32_t new_offset = (offset + alignment_mask) & ~alignment_mask; ptr_ = begin_ + new_offset; const byte* prev_ptr = ptr_; // Check depending on the section type. switch (type) { case DexFile::kDexTypeStringIdItem: { if (!CheckInterStringIdItem()) { return false; } break; } case DexFile::kDexTypeTypeIdItem: { if (!CheckInterTypeIdItem()) { return false; } break; } case DexFile::kDexTypeProtoIdItem: { if (!CheckInterProtoIdItem()) { return false; } break; } case DexFile::kDexTypeFieldIdItem: { if (!CheckInterFieldIdItem()) { return false; } break; } case DexFile::kDexTypeMethodIdItem: { if (!CheckInterMethodIdItem()) { return false; } break; } case DexFile::kDexTypeClassDefItem: { if (!CheckInterClassDefItem()) { return false; } break; } case DexFile::kDexTypeAnnotationSetRefList: { if (!CheckInterAnnotationSetRefList()) { return false; } break; } case DexFile::kDexTypeAnnotationSetItem: { if (!CheckInterAnnotationSetItem()) { return false; } break; } case DexFile::kDexTypeClassDataItem: { if (!CheckInterClassDataItem()) { return false; } break; } case DexFile::kDexTypeAnnotationsDirectoryItem: { if (!CheckInterAnnotationsDirectoryItem()) { return false; } break; } default: LOG(ERROR) << StringPrintf("Unknown map item type %x", type); return false; } previous_item_ = prev_ptr; offset = reinterpret_cast<uint32_t>(ptr_) - reinterpret_cast<uint32_t>(begin_); } return true; } bool DexFileVerifier::CheckInterSection() { const DexFile::MapList* map = reinterpret_cast<const DexFile::MapList*>(begin_ + header_->map_off_); const DexFile::MapItem* item = map->list_; uint32_t count = map->size_; // Cross check the items listed in the map. while (count--) { uint32_t section_offset = item->offset_; uint32_t section_count = item->size_; uint16_t type = item->type_; switch (type) { case DexFile::kDexTypeHeaderItem: case DexFile::kDexTypeMapList: case DexFile::kDexTypeTypeList: case DexFile::kDexTypeCodeItem: case DexFile::kDexTypeStringDataItem: case DexFile::kDexTypeDebugInfoItem: case DexFile::kDexTypeAnnotationItem: case DexFile::kDexTypeEncodedArrayItem: break; case DexFile::kDexTypeStringIdItem: case DexFile::kDexTypeTypeIdItem: case DexFile::kDexTypeProtoIdItem: case DexFile::kDexTypeFieldIdItem: case DexFile::kDexTypeMethodIdItem: case DexFile::kDexTypeClassDefItem: case DexFile::kDexTypeAnnotationSetRefList: case DexFile::kDexTypeAnnotationSetItem: case DexFile::kDexTypeClassDataItem: case DexFile::kDexTypeAnnotationsDirectoryItem: { if (!CheckInterSectionIterate(section_offset, section_count, type)) { return false; } break; } default: LOG(ERROR) << StringPrintf("Unknown map item type %x", type); return false; } item++; } return true; } bool DexFileVerifier::Verify() { // Check the header. if (!CheckHeader()) { return false; } // Check the map section. if (!CheckMap()) { return false; } // Check structure within remaining sections. if (!CheckIntraSection()) { return false; } // Check references from one section to another. if (!CheckInterSection()) { return false; } return true; } } // namespace art