/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dlmalloc_space.h" #include "dlmalloc_space-inl.h" #include "gc/accounting/card_table.h" #include "gc/heap.h" #include "mirror/object-inl.h" #include "runtime.h" #include "thread.h" #include "utils.h" #include <valgrind.h> #include <../memcheck/memcheck.h> namespace art { namespace gc { namespace space { // TODO: Remove define macro #define CHECK_MEMORY_CALL(call, args, what) \ do { \ int rc = call args; \ if (UNLIKELY(rc != 0)) { \ errno = rc; \ PLOG(FATAL) << # call << " failed for " << what; \ } \ } while (false) static const bool kPrefetchDuringDlMallocFreeList = true; // Number of bytes to use as a red zone (rdz). A red zone of this size will be placed before and // after each allocation. 8 bytes provides long/double alignment. const size_t kValgrindRedZoneBytes = 8; // A specialization of DlMallocSpace that provides information to valgrind wrt allocations. class ValgrindDlMallocSpace : public DlMallocSpace { public: virtual mirror::Object* AllocWithGrowth(Thread* self, size_t num_bytes, size_t* bytes_allocated) { void* obj_with_rdz = DlMallocSpace::AllocWithGrowth(self, num_bytes + 2 * kValgrindRedZoneBytes, bytes_allocated); if (obj_with_rdz == NULL) { return NULL; } mirror::Object* result = reinterpret_cast<mirror::Object*>( reinterpret_cast<byte*>(obj_with_rdz) + kValgrindRedZoneBytes); // Make redzones as no access. VALGRIND_MAKE_MEM_NOACCESS(obj_with_rdz, kValgrindRedZoneBytes); VALGRIND_MAKE_MEM_NOACCESS(reinterpret_cast<byte*>(result) + num_bytes, kValgrindRedZoneBytes); return result; } virtual mirror::Object* Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated) { void* obj_with_rdz = DlMallocSpace::Alloc(self, num_bytes + 2 * kValgrindRedZoneBytes, bytes_allocated); if (obj_with_rdz == NULL) { return NULL; } mirror::Object* result = reinterpret_cast<mirror::Object*>( reinterpret_cast<byte*>(obj_with_rdz) + kValgrindRedZoneBytes); // Make redzones as no access. VALGRIND_MAKE_MEM_NOACCESS(obj_with_rdz, kValgrindRedZoneBytes); VALGRIND_MAKE_MEM_NOACCESS(reinterpret_cast<byte*>(result) + num_bytes, kValgrindRedZoneBytes); return result; } virtual size_t AllocationSize(const mirror::Object* obj) { size_t result = DlMallocSpace::AllocationSize(reinterpret_cast<const mirror::Object*>( reinterpret_cast<const byte*>(obj) - kValgrindRedZoneBytes)); return result - 2 * kValgrindRedZoneBytes; } virtual size_t Free(Thread* self, mirror::Object* ptr) { void* obj_after_rdz = reinterpret_cast<void*>(ptr); void* obj_with_rdz = reinterpret_cast<byte*>(obj_after_rdz) - kValgrindRedZoneBytes; // Make redzones undefined. size_t allocation_size = DlMallocSpace::AllocationSize( reinterpret_cast<mirror::Object*>(obj_with_rdz)); VALGRIND_MAKE_MEM_UNDEFINED(obj_with_rdz, allocation_size); size_t freed = DlMallocSpace::Free(self, reinterpret_cast<mirror::Object*>(obj_with_rdz)); return freed - 2 * kValgrindRedZoneBytes; } virtual size_t FreeList(Thread* self, size_t num_ptrs, mirror::Object** ptrs) { size_t freed = 0; for (size_t i = 0; i < num_ptrs; i++) { freed += Free(self, ptrs[i]); } return freed; } ValgrindDlMallocSpace(const std::string& name, MemMap* mem_map, void* mspace, byte* begin, byte* end, size_t growth_limit, size_t initial_size) : DlMallocSpace(name, mem_map, mspace, begin, end, growth_limit) { VALGRIND_MAKE_MEM_UNDEFINED(mem_map->Begin() + initial_size, mem_map->Size() - initial_size); } virtual ~ValgrindDlMallocSpace() { } private: DISALLOW_COPY_AND_ASSIGN(ValgrindDlMallocSpace); }; size_t DlMallocSpace::bitmap_index_ = 0; DlMallocSpace::DlMallocSpace(const std::string& name, MemMap* mem_map, void* mspace, byte* begin, byte* end, size_t growth_limit) : MemMapSpace(name, mem_map, end - begin, kGcRetentionPolicyAlwaysCollect), recent_free_pos_(0), num_bytes_allocated_(0), num_objects_allocated_(0), total_bytes_allocated_(0), total_objects_allocated_(0), lock_("allocation space lock", kAllocSpaceLock), mspace_(mspace), growth_limit_(growth_limit) { CHECK(mspace != NULL); size_t bitmap_index = bitmap_index_++; static const uintptr_t kGcCardSize = static_cast<uintptr_t>(accounting::CardTable::kCardSize); CHECK(IsAligned<kGcCardSize>(reinterpret_cast<uintptr_t>(mem_map->Begin()))); CHECK(IsAligned<kGcCardSize>(reinterpret_cast<uintptr_t>(mem_map->End()))); live_bitmap_.reset(accounting::SpaceBitmap::Create( StringPrintf("allocspace %s live-bitmap %d", name.c_str(), static_cast<int>(bitmap_index)), Begin(), Capacity())); DCHECK(live_bitmap_.get() != NULL) << "could not create allocspace live bitmap #" << bitmap_index; mark_bitmap_.reset(accounting::SpaceBitmap::Create( StringPrintf("allocspace %s mark-bitmap %d", name.c_str(), static_cast<int>(bitmap_index)), Begin(), Capacity())); DCHECK(live_bitmap_.get() != NULL) << "could not create allocspace mark bitmap #" << bitmap_index; for (auto& freed : recent_freed_objects_) { freed.first = nullptr; freed.second = nullptr; } } DlMallocSpace* DlMallocSpace::Create(const std::string& name, size_t initial_size, size_t growth_limit, size_t capacity, byte* requested_begin) { // Memory we promise to dlmalloc before it asks for morecore. // Note: making this value large means that large allocations are unlikely to succeed as dlmalloc // will ask for this memory from sys_alloc which will fail as the footprint (this value plus the // size of the large allocation) will be greater than the footprint limit. size_t starting_size = kPageSize; uint64_t start_time = 0; if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) { start_time = NanoTime(); VLOG(startup) << "Space::CreateAllocSpace entering " << name << " initial_size=" << PrettySize(initial_size) << " growth_limit=" << PrettySize(growth_limit) << " capacity=" << PrettySize(capacity) << " requested_begin=" << reinterpret_cast<void*>(requested_begin); } // Sanity check arguments if (starting_size > initial_size) { initial_size = starting_size; } if (initial_size > growth_limit) { LOG(ERROR) << "Failed to create alloc space (" << name << ") where the initial size (" << PrettySize(initial_size) << ") is larger than its capacity (" << PrettySize(growth_limit) << ")"; return NULL; } if (growth_limit > capacity) { LOG(ERROR) << "Failed to create alloc space (" << name << ") where the growth limit capacity (" << PrettySize(growth_limit) << ") is larger than the capacity (" << PrettySize(capacity) << ")"; return NULL; } // Page align growth limit and capacity which will be used to manage mmapped storage growth_limit = RoundUp(growth_limit, kPageSize); capacity = RoundUp(capacity, kPageSize); UniquePtr<MemMap> mem_map(MemMap::MapAnonymous(name.c_str(), requested_begin, capacity, PROT_READ | PROT_WRITE)); if (mem_map.get() == NULL) { LOG(ERROR) << "Failed to allocate pages for alloc space (" << name << ") of size " << PrettySize(capacity); return NULL; } void* mspace = CreateMallocSpace(mem_map->Begin(), starting_size, initial_size); if (mspace == NULL) { LOG(ERROR) << "Failed to initialize mspace for alloc space (" << name << ")"; return NULL; } // Protect memory beyond the initial size. byte* end = mem_map->Begin() + starting_size; if (capacity - initial_size > 0) { CHECK_MEMORY_CALL(mprotect, (end, capacity - initial_size, PROT_NONE), name); } // Everything is set so record in immutable structure and leave MemMap* mem_map_ptr = mem_map.release(); DlMallocSpace* space; if (RUNNING_ON_VALGRIND > 0) { space = new ValgrindDlMallocSpace(name, mem_map_ptr, mspace, mem_map_ptr->Begin(), end, growth_limit, initial_size); } else { space = new DlMallocSpace(name, mem_map_ptr, mspace, mem_map_ptr->Begin(), end, growth_limit); } if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) { LOG(INFO) << "Space::CreateAllocSpace exiting (" << PrettyDuration(NanoTime() - start_time) << " ) " << *space; } return space; } void* DlMallocSpace::CreateMallocSpace(void* begin, size_t morecore_start, size_t initial_size) { // clear errno to allow PLOG on error errno = 0; // create mspace using our backing storage starting at begin and with a footprint of // morecore_start. Don't use an internal dlmalloc lock (as we already hold heap lock). When // morecore_start bytes of memory is exhaused morecore will be called. void* msp = create_mspace_with_base(begin, morecore_start, false /*locked*/); if (msp != NULL) { // Do not allow morecore requests to succeed beyond the initial size of the heap mspace_set_footprint_limit(msp, initial_size); } else { PLOG(ERROR) << "create_mspace_with_base failed"; } return msp; } void DlMallocSpace::SwapBitmaps() { live_bitmap_.swap(mark_bitmap_); // Swap names to get more descriptive diagnostics. std::string temp_name(live_bitmap_->GetName()); live_bitmap_->SetName(mark_bitmap_->GetName()); mark_bitmap_->SetName(temp_name); } mirror::Object* DlMallocSpace::Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated) { return AllocNonvirtual(self, num_bytes, bytes_allocated); } mirror::Object* DlMallocSpace::AllocWithGrowth(Thread* self, size_t num_bytes, size_t* bytes_allocated) { mirror::Object* result; { MutexLock mu(self, lock_); // Grow as much as possible within the mspace. size_t max_allowed = Capacity(); mspace_set_footprint_limit(mspace_, max_allowed); // Try the allocation. result = AllocWithoutGrowthLocked(num_bytes, bytes_allocated); // Shrink back down as small as possible. size_t footprint = mspace_footprint(mspace_); mspace_set_footprint_limit(mspace_, footprint); } if (result != NULL) { // Zero freshly allocated memory, done while not holding the space's lock. memset(result, 0, num_bytes); } // Return the new allocation or NULL. CHECK(!kDebugSpaces || result == NULL || Contains(result)); return result; } void DlMallocSpace::SetGrowthLimit(size_t growth_limit) { growth_limit = RoundUp(growth_limit, kPageSize); growth_limit_ = growth_limit; if (Size() > growth_limit_) { end_ = begin_ + growth_limit; } } DlMallocSpace* DlMallocSpace::CreateZygoteSpace(const char* alloc_space_name) { end_ = reinterpret_cast<byte*>(RoundUp(reinterpret_cast<uintptr_t>(end_), kPageSize)); DCHECK(IsAligned<accounting::CardTable::kCardSize>(begin_)); DCHECK(IsAligned<accounting::CardTable::kCardSize>(end_)); DCHECK(IsAligned<kPageSize>(begin_)); DCHECK(IsAligned<kPageSize>(end_)); size_t size = RoundUp(Size(), kPageSize); // Trim the heap so that we minimize the size of the Zygote space. Trim(); // Trim our mem-map to free unused pages. GetMemMap()->UnMapAtEnd(end_); // TODO: Not hardcode these in? const size_t starting_size = kPageSize; const size_t initial_size = 2 * MB; // Remaining size is for the new alloc space. const size_t growth_limit = growth_limit_ - size; const size_t capacity = Capacity() - size; VLOG(heap) << "Begin " << reinterpret_cast<const void*>(begin_) << "\n" << "End " << reinterpret_cast<const void*>(end_) << "\n" << "Size " << size << "\n" << "GrowthLimit " << growth_limit_ << "\n" << "Capacity " << Capacity(); SetGrowthLimit(RoundUp(size, kPageSize)); SetFootprintLimit(RoundUp(size, kPageSize)); // FIXME: Do we need reference counted pointers here? // Make the two spaces share the same mark bitmaps since the bitmaps span both of the spaces. VLOG(heap) << "Creating new AllocSpace: "; VLOG(heap) << "Size " << GetMemMap()->Size(); VLOG(heap) << "GrowthLimit " << PrettySize(growth_limit); VLOG(heap) << "Capacity " << PrettySize(capacity); UniquePtr<MemMap> mem_map(MemMap::MapAnonymous(alloc_space_name, End(), capacity, PROT_READ | PROT_WRITE)); void* mspace = CreateMallocSpace(end_, starting_size, initial_size); // Protect memory beyond the initial size. byte* end = mem_map->Begin() + starting_size; if (capacity - initial_size > 0) { CHECK_MEMORY_CALL(mprotect, (end, capacity - initial_size, PROT_NONE), alloc_space_name); } DlMallocSpace* alloc_space = new DlMallocSpace(alloc_space_name, mem_map.release(), mspace, end_, end, growth_limit); live_bitmap_->SetHeapLimit(reinterpret_cast<uintptr_t>(End())); CHECK_EQ(live_bitmap_->HeapLimit(), reinterpret_cast<uintptr_t>(End())); mark_bitmap_->SetHeapLimit(reinterpret_cast<uintptr_t>(End())); CHECK_EQ(mark_bitmap_->HeapLimit(), reinterpret_cast<uintptr_t>(End())); VLOG(heap) << "zygote space creation done"; return alloc_space; } mirror::Class* DlMallocSpace::FindRecentFreedObject(const mirror::Object* obj) { size_t pos = recent_free_pos_; // Start at the most recently freed object and work our way back since there may be duplicates // caused by dlmalloc reusing memory. if (kRecentFreeCount > 0) { for (size_t i = 0; i + 1 < kRecentFreeCount + 1; ++i) { pos = pos != 0 ? pos - 1 : kRecentFreeMask; if (recent_freed_objects_[pos].first == obj) { return recent_freed_objects_[pos].second; } } } return nullptr; } void DlMallocSpace::RegisterRecentFree(mirror::Object* ptr) { recent_freed_objects_[recent_free_pos_].first = ptr; recent_freed_objects_[recent_free_pos_].second = ptr->GetClass(); recent_free_pos_ = (recent_free_pos_ + 1) & kRecentFreeMask; } size_t DlMallocSpace::Free(Thread* self, mirror::Object* ptr) { MutexLock mu(self, lock_); if (kDebugSpaces) { CHECK(ptr != NULL); CHECK(Contains(ptr)) << "Free (" << ptr << ") not in bounds of heap " << *this; } const size_t bytes_freed = InternalAllocationSize(ptr); num_bytes_allocated_ -= bytes_freed; --num_objects_allocated_; if (kRecentFreeCount > 0) { RegisterRecentFree(ptr); } mspace_free(mspace_, ptr); return bytes_freed; } size_t DlMallocSpace::FreeList(Thread* self, size_t num_ptrs, mirror::Object** ptrs) { DCHECK(ptrs != NULL); // Don't need the lock to calculate the size of the freed pointers. size_t bytes_freed = 0; for (size_t i = 0; i < num_ptrs; i++) { mirror::Object* ptr = ptrs[i]; const size_t look_ahead = 8; if (kPrefetchDuringDlMallocFreeList && i + look_ahead < num_ptrs) { // The head of chunk for the allocation is sizeof(size_t) behind the allocation. __builtin_prefetch(reinterpret_cast<char*>(ptrs[i + look_ahead]) - sizeof(size_t)); } bytes_freed += InternalAllocationSize(ptr); } if (kRecentFreeCount > 0) { MutexLock mu(self, lock_); for (size_t i = 0; i < num_ptrs; i++) { RegisterRecentFree(ptrs[i]); } } if (kDebugSpaces) { size_t num_broken_ptrs = 0; for (size_t i = 0; i < num_ptrs; i++) { if (!Contains(ptrs[i])) { num_broken_ptrs++; LOG(ERROR) << "FreeList[" << i << "] (" << ptrs[i] << ") not in bounds of heap " << *this; } else { size_t size = mspace_usable_size(ptrs[i]); memset(ptrs[i], 0xEF, size); } } CHECK_EQ(num_broken_ptrs, 0u); } { MutexLock mu(self, lock_); num_bytes_allocated_ -= bytes_freed; num_objects_allocated_ -= num_ptrs; mspace_bulk_free(mspace_, reinterpret_cast<void**>(ptrs), num_ptrs); return bytes_freed; } } // Callback from dlmalloc when it needs to increase the footprint extern "C" void* art_heap_morecore(void* mspace, intptr_t increment) { Heap* heap = Runtime::Current()->GetHeap(); DCHECK_EQ(heap->GetAllocSpace()->GetMspace(), mspace); return heap->GetAllocSpace()->MoreCore(increment); } void* DlMallocSpace::MoreCore(intptr_t increment) { lock_.AssertHeld(Thread::Current()); byte* original_end = end_; if (increment != 0) { VLOG(heap) << "DlMallocSpace::MoreCore " << PrettySize(increment); byte* new_end = original_end + increment; if (increment > 0) { // Should never be asked to increase the allocation beyond the capacity of the space. Enforced // by mspace_set_footprint_limit. CHECK_LE(new_end, Begin() + Capacity()); CHECK_MEMORY_CALL(mprotect, (original_end, increment, PROT_READ | PROT_WRITE), GetName()); } else { // Should never be asked for negative footprint (ie before begin) CHECK_GT(original_end + increment, Begin()); // Advise we don't need the pages and protect them // TODO: by removing permissions to the pages we may be causing TLB shoot-down which can be // expensive (note the same isn't true for giving permissions to a page as the protected // page shouldn't be in a TLB). We should investigate performance impact of just // removing ignoring the memory protection change here and in Space::CreateAllocSpace. It's // likely just a useful debug feature. size_t size = -increment; CHECK_MEMORY_CALL(madvise, (new_end, size, MADV_DONTNEED), GetName()); CHECK_MEMORY_CALL(mprotect, (new_end, size, PROT_NONE), GetName()); } // Update end_ end_ = new_end; } return original_end; } // Virtual functions can't get inlined. inline size_t DlMallocSpace::InternalAllocationSize(const mirror::Object* obj) { return AllocationSizeNonvirtual(obj); } size_t DlMallocSpace::AllocationSize(const mirror::Object* obj) { return InternalAllocationSize(obj); } size_t DlMallocSpace::Trim() { MutexLock mu(Thread::Current(), lock_); // Trim to release memory at the end of the space. mspace_trim(mspace_, 0); // Visit space looking for page-sized holes to advise the kernel we don't need. size_t reclaimed = 0; mspace_inspect_all(mspace_, DlmallocMadviseCallback, &reclaimed); return reclaimed; } void DlMallocSpace::Walk(void(*callback)(void *start, void *end, size_t num_bytes, void* callback_arg), void* arg) { MutexLock mu(Thread::Current(), lock_); mspace_inspect_all(mspace_, callback, arg); callback(NULL, NULL, 0, arg); // Indicate end of a space. } size_t DlMallocSpace::GetFootprint() { MutexLock mu(Thread::Current(), lock_); return mspace_footprint(mspace_); } size_t DlMallocSpace::GetFootprintLimit() { MutexLock mu(Thread::Current(), lock_); return mspace_footprint_limit(mspace_); } void DlMallocSpace::SetFootprintLimit(size_t new_size) { MutexLock mu(Thread::Current(), lock_); VLOG(heap) << "DLMallocSpace::SetFootprintLimit " << PrettySize(new_size); // Compare against the actual footprint, rather than the Size(), because the heap may not have // grown all the way to the allowed size yet. size_t current_space_size = mspace_footprint(mspace_); if (new_size < current_space_size) { // Don't let the space grow any more. new_size = current_space_size; } mspace_set_footprint_limit(mspace_, new_size); } void DlMallocSpace::Dump(std::ostream& os) const { os << GetType() << " begin=" << reinterpret_cast<void*>(Begin()) << ",end=" << reinterpret_cast<void*>(End()) << ",size=" << PrettySize(Size()) << ",capacity=" << PrettySize(Capacity()) << ",name=\"" << GetName() << "\"]"; } } // namespace space } // namespace gc } // namespace art