/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dlmalloc_space.h" #include "large_object_space.h" #include "common_test.h" #include "globals.h" #include "UniquePtr.h" #include <stdint.h> namespace art { namespace gc { namespace space { class SpaceTest : public CommonTest { public: void SizeFootPrintGrowthLimitAndTrimBody(DlMallocSpace* space, intptr_t object_size, int round, size_t growth_limit); void SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size); void AddContinuousSpace(ContinuousSpace* space) { Runtime::Current()->GetHeap()->AddContinuousSpace(space); } }; static size_t test_rand(size_t* seed) { *seed = *seed * 1103515245 + 12345; return *seed; } TEST_F(SpaceTest, Init) { { // Init < max == growth UniquePtr<Space> space(DlMallocSpace::Create("test", 16 * MB, 32 * MB, 32 * MB, NULL)); EXPECT_TRUE(space.get() != NULL); } { // Init == max == growth UniquePtr<Space> space(DlMallocSpace::Create("test", 16 * MB, 16 * MB, 16 * MB, NULL)); EXPECT_TRUE(space.get() != NULL); } { // Init > max == growth UniquePtr<Space> space(DlMallocSpace::Create("test", 32 * MB, 16 * MB, 16 * MB, NULL)); EXPECT_TRUE(space.get() == NULL); } { // Growth == init < max UniquePtr<Space> space(DlMallocSpace::Create("test", 16 * MB, 16 * MB, 32 * MB, NULL)); EXPECT_TRUE(space.get() != NULL); } { // Growth < init < max UniquePtr<Space> space(DlMallocSpace::Create("test", 16 * MB, 8 * MB, 32 * MB, NULL)); EXPECT_TRUE(space.get() == NULL); } { // Init < growth < max UniquePtr<Space> space(DlMallocSpace::Create("test", 8 * MB, 16 * MB, 32 * MB, NULL)); EXPECT_TRUE(space.get() != NULL); } { // Init < max < growth UniquePtr<Space> space(DlMallocSpace::Create("test", 8 * MB, 32 * MB, 16 * MB, NULL)); EXPECT_TRUE(space.get() == NULL); } } // TODO: This test is not very good, we should improve it. // The test should do more allocations before the creation of the ZygoteSpace, and then do // allocations after the ZygoteSpace is created. The test should also do some GCs to ensure that // the GC works with the ZygoteSpace. TEST_F(SpaceTest, ZygoteSpace) { size_t dummy = 0; DlMallocSpace* space(DlMallocSpace::Create("test", 4 * MB, 16 * MB, 16 * MB, NULL)); ASSERT_TRUE(space != NULL); // Make space findable to the heap, will also delete space when runtime is cleaned up AddContinuousSpace(space); Thread* self = Thread::Current(); // Succeeds, fits without adjusting the footprint limit. mirror::Object* ptr1 = space->Alloc(self, 1 * MB, &dummy); EXPECT_TRUE(ptr1 != NULL); // Fails, requires a higher footprint limit. mirror::Object* ptr2 = space->Alloc(self, 8 * MB, &dummy); EXPECT_TRUE(ptr2 == NULL); // Succeeds, adjusts the footprint. size_t ptr3_bytes_allocated; mirror::Object* ptr3 = space->AllocWithGrowth(self, 8 * MB, &ptr3_bytes_allocated); EXPECT_TRUE(ptr3 != NULL); EXPECT_LE(8U * MB, ptr3_bytes_allocated); // Fails, requires a higher footprint limit. mirror::Object* ptr4 = space->Alloc(self, 8 * MB, &dummy); EXPECT_TRUE(ptr4 == NULL); // Also fails, requires a higher allowed footprint. mirror::Object* ptr5 = space->AllocWithGrowth(self, 8 * MB, &dummy); EXPECT_TRUE(ptr5 == NULL); // Release some memory. size_t free3 = space->AllocationSize(ptr3); EXPECT_EQ(free3, ptr3_bytes_allocated); EXPECT_EQ(free3, space->Free(self, ptr3)); EXPECT_LE(8U * MB, free3); // Succeeds, now that memory has been freed. void* ptr6 = space->AllocWithGrowth(self, 9 * MB, &dummy); EXPECT_TRUE(ptr6 != NULL); // Final clean up. size_t free1 = space->AllocationSize(ptr1); space->Free(self, ptr1); EXPECT_LE(1U * MB, free1); // Make sure that the zygote space isn't directly at the start of the space. space->Alloc(self, 1U * MB, &dummy); space = space->CreateZygoteSpace("alloc space"); // Make space findable to the heap, will also delete space when runtime is cleaned up AddContinuousSpace(space); // Succeeds, fits without adjusting the footprint limit. ptr1 = space->Alloc(self, 1 * MB, &dummy); EXPECT_TRUE(ptr1 != NULL); // Fails, requires a higher footprint limit. ptr2 = space->Alloc(self, 8 * MB, &dummy); EXPECT_TRUE(ptr2 == NULL); // Succeeds, adjusts the footprint. ptr3 = space->AllocWithGrowth(self, 2 * MB, &dummy); EXPECT_TRUE(ptr3 != NULL); space->Free(self, ptr3); // Final clean up. free1 = space->AllocationSize(ptr1); space->Free(self, ptr1); EXPECT_LE(1U * MB, free1); } TEST_F(SpaceTest, AllocAndFree) { size_t dummy = 0; DlMallocSpace* space(DlMallocSpace::Create("test", 4 * MB, 16 * MB, 16 * MB, NULL)); ASSERT_TRUE(space != NULL); Thread* self = Thread::Current(); // Make space findable to the heap, will also delete space when runtime is cleaned up AddContinuousSpace(space); // Succeeds, fits without adjusting the footprint limit. mirror::Object* ptr1 = space->Alloc(self, 1 * MB, &dummy); EXPECT_TRUE(ptr1 != NULL); // Fails, requires a higher footprint limit. mirror::Object* ptr2 = space->Alloc(self, 8 * MB, &dummy); EXPECT_TRUE(ptr2 == NULL); // Succeeds, adjusts the footprint. size_t ptr3_bytes_allocated; mirror::Object* ptr3 = space->AllocWithGrowth(self, 8 * MB, &ptr3_bytes_allocated); EXPECT_TRUE(ptr3 != NULL); EXPECT_LE(8U * MB, ptr3_bytes_allocated); // Fails, requires a higher footprint limit. mirror::Object* ptr4 = space->Alloc(self, 8 * MB, &dummy); EXPECT_TRUE(ptr4 == NULL); // Also fails, requires a higher allowed footprint. mirror::Object* ptr5 = space->AllocWithGrowth(self, 8 * MB, &dummy); EXPECT_TRUE(ptr5 == NULL); // Release some memory. size_t free3 = space->AllocationSize(ptr3); EXPECT_EQ(free3, ptr3_bytes_allocated); space->Free(self, ptr3); EXPECT_LE(8U * MB, free3); // Succeeds, now that memory has been freed. void* ptr6 = space->AllocWithGrowth(self, 9 * MB, &dummy); EXPECT_TRUE(ptr6 != NULL); // Final clean up. size_t free1 = space->AllocationSize(ptr1); space->Free(self, ptr1); EXPECT_LE(1U * MB, free1); } TEST_F(SpaceTest, LargeObjectTest) { size_t rand_seed = 0; for (size_t i = 0; i < 2; ++i) { LargeObjectSpace* los = NULL; if (i == 0) { los = space::LargeObjectMapSpace::Create("large object space"); } else { los = space::FreeListSpace::Create("large object space", NULL, 128 * MB); } static const size_t num_allocations = 64; static const size_t max_allocation_size = 0x100000; std::vector<std::pair<mirror::Object*, size_t> > requests; for (size_t phase = 0; phase < 2; ++phase) { while (requests.size() < num_allocations) { size_t request_size = test_rand(&rand_seed) % max_allocation_size; size_t allocation_size = 0; mirror::Object* obj = los->Alloc(Thread::Current(), request_size, &allocation_size); ASSERT_TRUE(obj != NULL); ASSERT_EQ(allocation_size, los->AllocationSize(obj)); ASSERT_GE(allocation_size, request_size); // Fill in our magic value. byte magic = (request_size & 0xFF) | 1; memset(obj, magic, request_size); requests.push_back(std::make_pair(obj, request_size)); } // "Randomly" shuffle the requests. for (size_t k = 0; k < 10; ++k) { for (size_t j = 0; j < requests.size(); ++j) { std::swap(requests[j], requests[test_rand(&rand_seed) % requests.size()]); } } // Free 1 / 2 the allocations the first phase, and all the second phase. size_t limit = !phase ? requests.size() / 2 : 0; while (requests.size() > limit) { mirror::Object* obj = requests.back().first; size_t request_size = requests.back().second; requests.pop_back(); byte magic = (request_size & 0xFF) | 1; for (size_t k = 0; k < request_size; ++k) { ASSERT_EQ(reinterpret_cast<const byte*>(obj)[k], magic); } ASSERT_GE(los->Free(Thread::Current(), obj), request_size); } } size_t bytes_allocated = 0; // Checks that the coalescing works. mirror::Object* obj = los->Alloc(Thread::Current(), 100 * MB, &bytes_allocated); EXPECT_TRUE(obj != NULL); los->Free(Thread::Current(), obj); EXPECT_EQ(0U, los->GetBytesAllocated()); EXPECT_EQ(0U, los->GetObjectsAllocated()); delete los; } } TEST_F(SpaceTest, AllocAndFreeList) { DlMallocSpace* space(DlMallocSpace::Create("test", 4 * MB, 16 * MB, 16 * MB, NULL)); ASSERT_TRUE(space != NULL); // Make space findable to the heap, will also delete space when runtime is cleaned up AddContinuousSpace(space); Thread* self = Thread::Current(); // Succeeds, fits without adjusting the max allowed footprint. mirror::Object* lots_of_objects[1024]; for (size_t i = 0; i < arraysize(lots_of_objects); i++) { size_t allocation_size = 0; lots_of_objects[i] = space->Alloc(self, 16, &allocation_size); EXPECT_EQ(allocation_size, space->AllocationSize(lots_of_objects[i])); EXPECT_TRUE(lots_of_objects[i] != NULL); } // Release memory and check pointers are NULL space->FreeList(self, arraysize(lots_of_objects), lots_of_objects); for (size_t i = 0; i < arraysize(lots_of_objects); i++) { EXPECT_TRUE(lots_of_objects[i] == NULL); } // Succeeds, fits by adjusting the max allowed footprint. for (size_t i = 0; i < arraysize(lots_of_objects); i++) { size_t allocation_size = 0; lots_of_objects[i] = space->AllocWithGrowth(self, 1024, &allocation_size); EXPECT_EQ(allocation_size, space->AllocationSize(lots_of_objects[i])); EXPECT_TRUE(lots_of_objects[i] != NULL); } // Release memory and check pointers are NULL space->FreeList(self, arraysize(lots_of_objects), lots_of_objects); for (size_t i = 0; i < arraysize(lots_of_objects); i++) { EXPECT_TRUE(lots_of_objects[i] == NULL); } } void SpaceTest::SizeFootPrintGrowthLimitAndTrimBody(DlMallocSpace* space, intptr_t object_size, int round, size_t growth_limit) { if (((object_size > 0 && object_size >= static_cast<intptr_t>(growth_limit))) || ((object_size < 0 && -object_size >= static_cast<intptr_t>(growth_limit)))) { // No allocation can succeed return; } // Mspace for raw dlmalloc operations void* mspace = space->GetMspace(); // mspace's footprint equals amount of resources requested from system size_t footprint = mspace_footprint(mspace); // mspace must at least have its book keeping allocated EXPECT_GT(footprint, 0u); // mspace but it shouldn't exceed the initial size EXPECT_LE(footprint, growth_limit); // space's size shouldn't exceed the initial size EXPECT_LE(space->Size(), growth_limit); // this invariant should always hold or else the mspace has grown to be larger than what the // space believes its size is (which will break invariants) EXPECT_GE(space->Size(), footprint); // Fill the space with lots of small objects up to the growth limit size_t max_objects = (growth_limit / (object_size > 0 ? object_size : 8)) + 1; UniquePtr<mirror::Object*[]> lots_of_objects(new mirror::Object*[max_objects]); size_t last_object = 0; // last object for which allocation succeeded size_t amount_allocated = 0; // amount of space allocated Thread* self = Thread::Current(); size_t rand_seed = 123456789; for (size_t i = 0; i < max_objects; i++) { size_t alloc_fails = 0; // number of failed allocations size_t max_fails = 30; // number of times we fail allocation before giving up for (; alloc_fails < max_fails; alloc_fails++) { size_t alloc_size; if (object_size > 0) { alloc_size = object_size; } else { alloc_size = test_rand(&rand_seed) % static_cast<size_t>(-object_size); if (alloc_size < 8) { alloc_size = 8; } } mirror::Object* object; size_t bytes_allocated = 0; if (round <= 1) { object = space->Alloc(self, alloc_size, &bytes_allocated); } else { object = space->AllocWithGrowth(self, alloc_size, &bytes_allocated); } footprint = mspace_footprint(mspace); EXPECT_GE(space->Size(), footprint); // invariant if (object != NULL) { // allocation succeeded lots_of_objects.get()[i] = object; size_t allocation_size = space->AllocationSize(object); EXPECT_EQ(bytes_allocated, allocation_size); if (object_size > 0) { EXPECT_GE(allocation_size, static_cast<size_t>(object_size)); } else { EXPECT_GE(allocation_size, 8u); } amount_allocated += allocation_size; break; } } if (alloc_fails == max_fails) { last_object = i; break; } } CHECK_NE(last_object, 0u); // we should have filled the space EXPECT_GT(amount_allocated, 0u); // We shouldn't have gone past the growth_limit EXPECT_LE(amount_allocated, growth_limit); EXPECT_LE(footprint, growth_limit); EXPECT_LE(space->Size(), growth_limit); // footprint and size should agree with amount allocated EXPECT_GE(footprint, amount_allocated); EXPECT_GE(space->Size(), amount_allocated); // Release storage in a semi-adhoc manner size_t free_increment = 96; while (true) { // Give the space a haircut space->Trim(); // Bounds sanity footprint = mspace_footprint(mspace); EXPECT_LE(amount_allocated, growth_limit); EXPECT_GE(footprint, amount_allocated); EXPECT_LE(footprint, growth_limit); EXPECT_GE(space->Size(), amount_allocated); EXPECT_LE(space->Size(), growth_limit); if (free_increment == 0) { break; } // Free some objects for (size_t i = 0; i < last_object; i += free_increment) { mirror::Object* object = lots_of_objects.get()[i]; if (object == NULL) { continue; } size_t allocation_size = space->AllocationSize(object); if (object_size > 0) { EXPECT_GE(allocation_size, static_cast<size_t>(object_size)); } else { EXPECT_GE(allocation_size, 8u); } space->Free(self, object); lots_of_objects.get()[i] = NULL; amount_allocated -= allocation_size; footprint = mspace_footprint(mspace); EXPECT_GE(space->Size(), footprint); // invariant } free_increment >>= 1; } // All memory was released, try a large allocation to check freed memory is being coalesced mirror::Object* large_object; size_t three_quarters_space = (growth_limit / 2) + (growth_limit / 4); size_t bytes_allocated = 0; if (round <= 1) { large_object = space->Alloc(self, three_quarters_space, &bytes_allocated); } else { large_object = space->AllocWithGrowth(self, three_quarters_space, &bytes_allocated); } EXPECT_TRUE(large_object != NULL); // Sanity check footprint footprint = mspace_footprint(mspace); EXPECT_LE(footprint, growth_limit); EXPECT_GE(space->Size(), footprint); EXPECT_LE(space->Size(), growth_limit); // Clean up space->Free(self, large_object); // Sanity check footprint footprint = mspace_footprint(mspace); EXPECT_LE(footprint, growth_limit); EXPECT_GE(space->Size(), footprint); EXPECT_LE(space->Size(), growth_limit); } void SpaceTest::SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size) { size_t initial_size = 4 * MB; size_t growth_limit = 8 * MB; size_t capacity = 16 * MB; DlMallocSpace* space(DlMallocSpace::Create("test", initial_size, growth_limit, capacity, NULL)); ASSERT_TRUE(space != NULL); // Basic sanity EXPECT_EQ(space->Capacity(), growth_limit); EXPECT_EQ(space->NonGrowthLimitCapacity(), capacity); // Make space findable to the heap, will also delete space when runtime is cleaned up AddContinuousSpace(space); // In this round we don't allocate with growth and therefore can't grow past the initial size. // This effectively makes the growth_limit the initial_size, so assert this. SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 1, initial_size); SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 2, growth_limit); // Remove growth limit space->ClearGrowthLimit(); EXPECT_EQ(space->Capacity(), capacity); SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 3, capacity); } #define TEST_SizeFootPrintGrowthLimitAndTrim(name, size) \ TEST_F(SpaceTest, SizeFootPrintGrowthLimitAndTrim_AllocationsOf_##name) { \ SizeFootPrintGrowthLimitAndTrimDriver(size); \ } \ TEST_F(SpaceTest, SizeFootPrintGrowthLimitAndTrim_RandomAllocationsWithMax_##name) { \ SizeFootPrintGrowthLimitAndTrimDriver(-size); \ } // Each size test is its own test so that we get a fresh heap each time TEST_F(SpaceTest, SizeFootPrintGrowthLimitAndTrim_AllocationsOf_8B) { SizeFootPrintGrowthLimitAndTrimDriver(8); } TEST_SizeFootPrintGrowthLimitAndTrim(16B, 16) TEST_SizeFootPrintGrowthLimitAndTrim(24B, 24) TEST_SizeFootPrintGrowthLimitAndTrim(32B, 32) TEST_SizeFootPrintGrowthLimitAndTrim(64B, 64) TEST_SizeFootPrintGrowthLimitAndTrim(128B, 128) TEST_SizeFootPrintGrowthLimitAndTrim(1KB, 1 * KB) TEST_SizeFootPrintGrowthLimitAndTrim(4KB, 4 * KB) TEST_SizeFootPrintGrowthLimitAndTrim(1MB, 1 * MB) TEST_SizeFootPrintGrowthLimitAndTrim(4MB, 4 * MB) TEST_SizeFootPrintGrowthLimitAndTrim(8MB, 8 * MB) } // namespace space } // namespace gc } // namespace art