/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "common.h" #include "verifier.h" #include "ui.h" #include "mincrypt/rsa.h" #include "mincrypt/sha.h" #include "mincrypt/sha256.h" #include <string.h> #include <stdio.h> #include <errno.h> extern RecoveryUI* ui; // Look for an RSA signature embedded in the .ZIP file comment given // the path to the zip. Verify it matches one of the given public // keys. // // Return VERIFY_SUCCESS, VERIFY_FAILURE (if any error is encountered // or no key matches the signature). int verify_file(const char* path, const Certificate* pKeys, unsigned int numKeys) { ui->SetProgress(0.0); FILE* f = fopen(path, "rb"); if (f == NULL) { LOGE("failed to open %s (%s)\n", path, strerror(errno)); return VERIFY_FAILURE; } // An archive with a whole-file signature will end in six bytes: // // (2-byte signature start) $ff $ff (2-byte comment size) // // (As far as the ZIP format is concerned, these are part of the // archive comment.) We start by reading this footer, this tells // us how far back from the end we have to start reading to find // the whole comment. #define FOOTER_SIZE 6 if (fseek(f, -FOOTER_SIZE, SEEK_END) != 0) { LOGE("failed to seek in %s (%s)\n", path, strerror(errno)); fclose(f); return VERIFY_FAILURE; } unsigned char footer[FOOTER_SIZE]; if (fread(footer, 1, FOOTER_SIZE, f) != FOOTER_SIZE) { LOGE("failed to read footer from %s (%s)\n", path, strerror(errno)); fclose(f); return VERIFY_FAILURE; } if (footer[2] != 0xff || footer[3] != 0xff) { LOGE("footer is wrong\n"); fclose(f); return VERIFY_FAILURE; } size_t comment_size = footer[4] + (footer[5] << 8); size_t signature_start = footer[0] + (footer[1] << 8); LOGI("comment is %d bytes; signature %d bytes from end\n", comment_size, signature_start); if (signature_start - FOOTER_SIZE < RSANUMBYTES) { // "signature" block isn't big enough to contain an RSA block. LOGE("signature is too short\n"); fclose(f); return VERIFY_FAILURE; } #define EOCD_HEADER_SIZE 22 // The end-of-central-directory record is 22 bytes plus any // comment length. size_t eocd_size = comment_size + EOCD_HEADER_SIZE; if (fseek(f, -eocd_size, SEEK_END) != 0) { LOGE("failed to seek in %s (%s)\n", path, strerror(errno)); fclose(f); return VERIFY_FAILURE; } // Determine how much of the file is covered by the signature. // This is everything except the signature data and length, which // includes all of the EOCD except for the comment length field (2 // bytes) and the comment data. size_t signed_len = ftell(f) + EOCD_HEADER_SIZE - 2; unsigned char* eocd = (unsigned char*)malloc(eocd_size); if (eocd == NULL) { LOGE("malloc for EOCD record failed\n"); fclose(f); return VERIFY_FAILURE; } if (fread(eocd, 1, eocd_size, f) != eocd_size) { LOGE("failed to read eocd from %s (%s)\n", path, strerror(errno)); fclose(f); return VERIFY_FAILURE; } // If this is really is the EOCD record, it will begin with the // magic number $50 $4b $05 $06. if (eocd[0] != 0x50 || eocd[1] != 0x4b || eocd[2] != 0x05 || eocd[3] != 0x06) { LOGE("signature length doesn't match EOCD marker\n"); fclose(f); return VERIFY_FAILURE; } size_t i; for (i = 4; i < eocd_size-3; ++i) { if (eocd[i ] == 0x50 && eocd[i+1] == 0x4b && eocd[i+2] == 0x05 && eocd[i+3] == 0x06) { // if the sequence $50 $4b $05 $06 appears anywhere after // the real one, minzip will find the later (wrong) one, // which could be exploitable. Fail verification if // this sequence occurs anywhere after the real one. LOGE("EOCD marker occurs after start of EOCD\n"); fclose(f); return VERIFY_FAILURE; } } #define BUFFER_SIZE 4096 bool need_sha1 = false; bool need_sha256 = false; for (i = 0; i < numKeys; ++i) { switch (pKeys[i].hash_len) { case SHA_DIGEST_SIZE: need_sha1 = true; break; case SHA256_DIGEST_SIZE: need_sha256 = true; break; } } SHA_CTX sha1_ctx; SHA256_CTX sha256_ctx; SHA_init(&sha1_ctx); SHA256_init(&sha256_ctx); unsigned char* buffer = (unsigned char*)malloc(BUFFER_SIZE); if (buffer == NULL) { LOGE("failed to alloc memory for sha1 buffer\n"); fclose(f); return VERIFY_FAILURE; } double frac = -1.0; size_t so_far = 0; fseek(f, 0, SEEK_SET); while (so_far < signed_len) { size_t size = BUFFER_SIZE; if (signed_len - so_far < size) size = signed_len - so_far; if (fread(buffer, 1, size, f) != size) { LOGE("failed to read data from %s (%s)\n", path, strerror(errno)); fclose(f); return VERIFY_FAILURE; } if (need_sha1) SHA_update(&sha1_ctx, buffer, size); if (need_sha256) SHA256_update(&sha256_ctx, buffer, size); so_far += size; double f = so_far / (double)signed_len; if (f > frac + 0.02 || size == so_far) { ui->SetProgress(f); frac = f; } } fclose(f); free(buffer); const uint8_t* sha1 = SHA_final(&sha1_ctx); const uint8_t* sha256 = SHA256_final(&sha256_ctx); for (i = 0; i < numKeys; ++i) { const uint8_t* hash; switch (pKeys[i].hash_len) { case SHA_DIGEST_SIZE: hash = sha1; break; case SHA256_DIGEST_SIZE: hash = sha256; break; default: continue; } // The 6 bytes is the "(signature_start) $ff $ff (comment_size)" that // the signing tool appends after the signature itself. if (RSA_verify(pKeys[i].public_key, eocd + eocd_size - 6 - RSANUMBYTES, RSANUMBYTES, hash, pKeys[i].hash_len)) { LOGI("whole-file signature verified against key %d\n", i); free(eocd); return VERIFY_SUCCESS; } else { LOGI("failed to verify against key %d\n", i); } } free(eocd); LOGE("failed to verify whole-file signature\n"); return VERIFY_FAILURE; } // Reads a file containing one or more public keys as produced by // DumpPublicKey: this is an RSAPublicKey struct as it would appear // as a C source literal, eg: // // "{64,0xc926ad21,{1795090719,...,-695002876},{-857949815,...,1175080310}}" // // For key versions newer than the original 2048-bit e=3 keys // supported by Android, the string is preceded by a version // identifier, eg: // // "v2 {64,0xc926ad21,{1795090719,...,-695002876},{-857949815,...,1175080310}}" // // (Note that the braces and commas in this example are actual // characters the parser expects to find in the file; the ellipses // indicate more numbers omitted from this example.) // // The file may contain multiple keys in this format, separated by // commas. The last key must not be followed by a comma. // // A Certificate is a pair of an RSAPublicKey and a particular hash // (we support SHA-1 and SHA-256; we store the hash length to signify // which is being used). The hash used is implied by the version number. // // 1: 2048-bit RSA key with e=3 and SHA-1 hash // 2: 2048-bit RSA key with e=65537 and SHA-1 hash // 3: 2048-bit RSA key with e=3 and SHA-256 hash // 4: 2048-bit RSA key with e=65537 and SHA-256 hash // // Returns NULL if the file failed to parse, or if it contain zero keys. Certificate* load_keys(const char* filename, int* numKeys) { Certificate* out = NULL; *numKeys = 0; FILE* f = fopen(filename, "r"); if (f == NULL) { LOGE("opening %s: %s\n", filename, strerror(errno)); goto exit; } { int i; bool done = false; while (!done) { ++*numKeys; out = (Certificate*)realloc(out, *numKeys * sizeof(Certificate)); Certificate* cert = out + (*numKeys - 1); cert->public_key = (RSAPublicKey*)malloc(sizeof(RSAPublicKey)); char start_char; if (fscanf(f, " %c", &start_char) != 1) goto exit; if (start_char == '{') { // a version 1 key has no version specifier. cert->public_key->exponent = 3; cert->hash_len = SHA_DIGEST_SIZE; } else if (start_char == 'v') { int version; if (fscanf(f, "%d {", &version) != 1) goto exit; switch (version) { case 2: cert->public_key->exponent = 65537; cert->hash_len = SHA_DIGEST_SIZE; break; case 3: cert->public_key->exponent = 3; cert->hash_len = SHA256_DIGEST_SIZE; break; case 4: cert->public_key->exponent = 65537; cert->hash_len = SHA256_DIGEST_SIZE; break; default: goto exit; } } RSAPublicKey* key = cert->public_key; if (fscanf(f, " %i , 0x%x , { %u", &(key->len), &(key->n0inv), &(key->n[0])) != 3) { goto exit; } if (key->len != RSANUMWORDS) { LOGE("key length (%d) does not match expected size\n", key->len); goto exit; } for (i = 1; i < key->len; ++i) { if (fscanf(f, " , %u", &(key->n[i])) != 1) goto exit; } if (fscanf(f, " } , { %u", &(key->rr[0])) != 1) goto exit; for (i = 1; i < key->len; ++i) { if (fscanf(f, " , %u", &(key->rr[i])) != 1) goto exit; } fscanf(f, " } } "); // if the line ends in a comma, this file has more keys. switch (fgetc(f)) { case ',': // more keys to come. break; case EOF: done = true; break; default: LOGE("unexpected character between keys\n"); goto exit; } LOGI("read key e=%d hash=%d\n", key->exponent, cert->hash_len); } } fclose(f); return out; exit: if (f) fclose(f); free(out); *numKeys = 0; return NULL; }