/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "Dalvik.h" #include "Dataflow.h" #include "Loop.h" #include "libdex/DexOpcodes.h" /* Enter the node to the dfsOrder list then visit its successors */ static void recordDFSPreOrder(CompilationUnit *cUnit, BasicBlock *block) { if (block->visited || block->hidden) return; block->visited = true; /* Enqueue the block id */ dvmInsertGrowableList(&cUnit->dfsOrder, block->id); if (block->fallThrough) recordDFSPreOrder(cUnit, block->fallThrough); if (block->taken) recordDFSPreOrder(cUnit, block->taken); if (block->successorBlockList.blockListType != kNotUsed) { GrowableListIterator iterator; dvmGrowableListIteratorInit(&block->successorBlockList.blocks, &iterator); while (true) { SuccessorBlockInfo *successorBlockInfo = (SuccessorBlockInfo *) dvmGrowableListIteratorNext(&iterator); if (successorBlockInfo == NULL) break; BasicBlock *succBB = successorBlockInfo->block; recordDFSPreOrder(cUnit, succBB); } } return; } /* Sort the blocks by the Depth-First-Search pre-order */ static void computeDFSOrder(CompilationUnit *cUnit) { /* Initialize or reset the DFS order list */ if (cUnit->dfsOrder.elemList == NULL) { dvmInitGrowableList(&cUnit->dfsOrder, cUnit->numBlocks); } else { /* Just reset the used length on the counter */ cUnit->dfsOrder.numUsed = 0; } dvmCompilerDataFlowAnalysisDispatcher(cUnit, dvmCompilerClearVisitedFlag, kAllNodes, false /* isIterative */); recordDFSPreOrder(cUnit, cUnit->entryBlock); cUnit->numReachableBlocks = cUnit->dfsOrder.numUsed; } /* * Mark block bit on the per-Dalvik register vector to denote that Dalvik * register idx is defined in BasicBlock bb. */ static bool fillDefBlockMatrix(CompilationUnit *cUnit, BasicBlock *bb) { if (bb->dataFlowInfo == NULL) return false; BitVectorIterator iterator; dvmBitVectorIteratorInit(bb->dataFlowInfo->defV, &iterator); while (true) { int idx = dvmBitVectorIteratorNext(&iterator); if (idx == -1) break; /* Block bb defines register idx */ dvmCompilerSetBit(cUnit->defBlockMatrix[idx], bb->id); } return true; } static void computeDefBlockMatrix(CompilationUnit *cUnit) { int numRegisters = cUnit->numDalvikRegisters; /* Allocate numDalvikRegisters bit vector pointers */ cUnit->defBlockMatrix = (BitVector **) dvmCompilerNew(sizeof(BitVector *) * numRegisters, true); int i; /* Initialize numRegister vectors with numBlocks bits each */ for (i = 0; i < numRegisters; i++) { cUnit->defBlockMatrix[i] = dvmCompilerAllocBitVector(cUnit->numBlocks, false); } dvmCompilerDataFlowAnalysisDispatcher(cUnit, dvmCompilerFindLocalLiveIn, kAllNodes, false /* isIterative */); dvmCompilerDataFlowAnalysisDispatcher(cUnit, fillDefBlockMatrix, kAllNodes, false /* isIterative */); if (cUnit->jitMode == kJitMethod) { /* * Also set the incoming parameters as defs in the entry block. * Only need to handle the parameters for the outer method. */ int inReg = cUnit->method->registersSize - cUnit->method->insSize; for (; inReg < cUnit->method->registersSize; inReg++) { dvmCompilerSetBit(cUnit->defBlockMatrix[inReg], cUnit->entryBlock->id); } } } /* Compute the post-order traversal of the CFG */ static void computeDomPostOrderTraversal(CompilationUnit *cUnit, BasicBlock *bb) { BitVectorIterator bvIterator; dvmBitVectorIteratorInit(bb->iDominated, &bvIterator); GrowableList *blockList = &cUnit->blockList; /* Iterate through the dominated blocks first */ while (true) { int bbIdx = dvmBitVectorIteratorNext(&bvIterator); if (bbIdx == -1) break; BasicBlock *dominatedBB = (BasicBlock *) dvmGrowableListGetElement(blockList, bbIdx); computeDomPostOrderTraversal(cUnit, dominatedBB); } /* Enter the current block id */ dvmInsertGrowableList(&cUnit->domPostOrderTraversal, bb->id); /* hacky loop detection */ if (bb->taken && dvmIsBitSet(bb->dominators, bb->taken->id)) { cUnit->hasLoop = true; } } static void checkForDominanceFrontier(BasicBlock *domBB, const BasicBlock *succBB) { /* * TODO - evaluate whether phi will ever need to be inserted into exit * blocks. */ if (succBB->iDom != domBB && succBB->blockType == kDalvikByteCode && succBB->hidden == false) { dvmSetBit(domBB->domFrontier, succBB->id); } } /* Worker function to compute the dominance frontier */ static bool computeDominanceFrontier(CompilationUnit *cUnit, BasicBlock *bb) { GrowableList *blockList = &cUnit->blockList; /* Calculate DF_local */ if (bb->taken) { checkForDominanceFrontier(bb, bb->taken); } if (bb->fallThrough) { checkForDominanceFrontier(bb, bb->fallThrough); } if (bb->successorBlockList.blockListType != kNotUsed) { GrowableListIterator iterator; dvmGrowableListIteratorInit(&bb->successorBlockList.blocks, &iterator); while (true) { SuccessorBlockInfo *successorBlockInfo = (SuccessorBlockInfo *) dvmGrowableListIteratorNext(&iterator); if (successorBlockInfo == NULL) break; BasicBlock *succBB = successorBlockInfo->block; checkForDominanceFrontier(bb, succBB); } } /* Calculate DF_up */ BitVectorIterator bvIterator; dvmBitVectorIteratorInit(bb->iDominated, &bvIterator); while (true) { int dominatedIdx = dvmBitVectorIteratorNext(&bvIterator); if (dominatedIdx == -1) break; BasicBlock *dominatedBB = (BasicBlock *) dvmGrowableListGetElement(blockList, dominatedIdx); BitVectorIterator dfIterator; dvmBitVectorIteratorInit(dominatedBB->domFrontier, &dfIterator); while (true) { int dfUpIdx = dvmBitVectorIteratorNext(&dfIterator); if (dfUpIdx == -1) break; BasicBlock *dfUpBlock = (BasicBlock *) dvmGrowableListGetElement(blockList, dfUpIdx); checkForDominanceFrontier(bb, dfUpBlock); } } return true; } /* Worker function for initializing domination-related data structures */ static bool initializeDominationInfo(CompilationUnit *cUnit, BasicBlock *bb) { int numTotalBlocks = cUnit->blockList.numUsed; if (bb->dominators == NULL ) { bb->dominators = dvmCompilerAllocBitVector(numTotalBlocks, false /* expandable */); bb->iDominated = dvmCompilerAllocBitVector(numTotalBlocks, false /* expandable */); bb->domFrontier = dvmCompilerAllocBitVector(numTotalBlocks, false /* expandable */); } else { dvmClearAllBits(bb->dominators); dvmClearAllBits(bb->iDominated); dvmClearAllBits(bb->domFrontier); } /* Set all bits in the dominator vector */ dvmSetInitialBits(bb->dominators, numTotalBlocks); return true; } /* Worker function to compute each block's dominators */ static bool computeBlockDominators(CompilationUnit *cUnit, BasicBlock *bb) { GrowableList *blockList = &cUnit->blockList; int numTotalBlocks = blockList->numUsed; BitVector *tempBlockV = cUnit->tempBlockV; BitVectorIterator bvIterator; /* * The dominator of the entry block has been preset to itself and we need * to skip the calculation here. */ if (bb == cUnit->entryBlock) return false; dvmSetInitialBits(tempBlockV, numTotalBlocks); /* Iterate through the predecessors */ dvmBitVectorIteratorInit(bb->predecessors, &bvIterator); while (true) { int predIdx = dvmBitVectorIteratorNext(&bvIterator); if (predIdx == -1) break; BasicBlock *predBB = (BasicBlock *) dvmGrowableListGetElement( blockList, predIdx); /* tempBlockV = tempBlockV ^ dominators */ dvmIntersectBitVectors(tempBlockV, tempBlockV, predBB->dominators); } dvmSetBit(tempBlockV, bb->id); if (dvmCompareBitVectors(tempBlockV, bb->dominators)) { dvmCopyBitVector(bb->dominators, tempBlockV); return true; } return false; } /* Worker function to compute the idom */ static bool computeImmediateDominator(CompilationUnit *cUnit, BasicBlock *bb) { GrowableList *blockList = &cUnit->blockList; BitVector *tempBlockV = cUnit->tempBlockV; BitVectorIterator bvIterator; BasicBlock *iDom; if (bb == cUnit->entryBlock) return false; dvmCopyBitVector(tempBlockV, bb->dominators); dvmClearBit(tempBlockV, bb->id); dvmBitVectorIteratorInit(tempBlockV, &bvIterator); /* Should not see any dead block */ assert(dvmCountSetBits(tempBlockV) != 0); if (dvmCountSetBits(tempBlockV) == 1) { iDom = (BasicBlock *) dvmGrowableListGetElement( blockList, dvmBitVectorIteratorNext(&bvIterator)); bb->iDom = iDom; } else { int iDomIdx = dvmBitVectorIteratorNext(&bvIterator); assert(iDomIdx != -1); while (true) { int nextDom = dvmBitVectorIteratorNext(&bvIterator); if (nextDom == -1) break; BasicBlock *nextDomBB = (BasicBlock *) dvmGrowableListGetElement(blockList, nextDom); /* iDom dominates nextDom - set new iDom */ if (dvmIsBitSet(nextDomBB->dominators, iDomIdx)) { iDomIdx = nextDom; } } iDom = (BasicBlock *) dvmGrowableListGetElement(blockList, iDomIdx); /* Set the immediate dominator block for bb */ bb->iDom = iDom; } /* Add bb to the iDominated set of the immediate dominator block */ dvmCompilerSetBit(iDom->iDominated, bb->id); return true; } /* Compute dominators, immediate dominator, and dominance fronter */ static void computeDominators(CompilationUnit *cUnit) { int numReachableBlocks = cUnit->numReachableBlocks; int numTotalBlocks = cUnit->blockList.numUsed; /* Initialize domination-related data structures */ dvmCompilerDataFlowAnalysisDispatcher(cUnit, initializeDominationInfo, kReachableNodes, false /* isIterative */); /* Set the dominator for the root node */ dvmClearAllBits(cUnit->entryBlock->dominators); dvmSetBit(cUnit->entryBlock->dominators, cUnit->entryBlock->id); if (cUnit->tempBlockV == NULL) { cUnit->tempBlockV = dvmCompilerAllocBitVector(numTotalBlocks, false /* expandable */); } else { dvmClearAllBits(cUnit->tempBlockV); } dvmCompilerDataFlowAnalysisDispatcher(cUnit, computeBlockDominators, kPreOrderDFSTraversal, true /* isIterative */); cUnit->entryBlock->iDom = NULL; dvmCompilerDataFlowAnalysisDispatcher(cUnit, computeImmediateDominator, kReachableNodes, false /* isIterative */); /* * Now go ahead and compute the post order traversal based on the * iDominated sets. */ if (cUnit->domPostOrderTraversal.elemList == NULL) { dvmInitGrowableList(&cUnit->domPostOrderTraversal, numReachableBlocks); } else { cUnit->domPostOrderTraversal.numUsed = 0; } computeDomPostOrderTraversal(cUnit, cUnit->entryBlock); assert(cUnit->domPostOrderTraversal.numUsed == (unsigned) cUnit->numReachableBlocks); /* Now compute the dominance frontier for each block */ dvmCompilerDataFlowAnalysisDispatcher(cUnit, computeDominanceFrontier, kPostOrderDOMTraversal, false /* isIterative */); } /* * Perform dest U= src1 ^ ~src2 * This is probably not general enough to be placed in BitVector.[ch]. */ static void computeSuccLiveIn(BitVector *dest, const BitVector *src1, const BitVector *src2) { if (dest->storageSize != src1->storageSize || dest->storageSize != src2->storageSize || dest->expandable != src1->expandable || dest->expandable != src2->expandable) { ALOGE("Incompatible set properties"); dvmAbort(); } unsigned int idx; for (idx = 0; idx < dest->storageSize; idx++) { dest->storage[idx] |= src1->storage[idx] & ~src2->storage[idx]; } } /* * Iterate through all successor blocks and propagate up the live-in sets. * The calculated result is used for phi-node pruning - where we only need to * insert a phi node if the variable is live-in to the block. */ static bool computeBlockLiveIns(CompilationUnit *cUnit, BasicBlock *bb) { BitVector *tempDalvikRegisterV = cUnit->tempDalvikRegisterV; if (bb->dataFlowInfo == NULL) return false; dvmCopyBitVector(tempDalvikRegisterV, bb->dataFlowInfo->liveInV); if (bb->taken && bb->taken->dataFlowInfo) computeSuccLiveIn(tempDalvikRegisterV, bb->taken->dataFlowInfo->liveInV, bb->dataFlowInfo->defV); if (bb->fallThrough && bb->fallThrough->dataFlowInfo) computeSuccLiveIn(tempDalvikRegisterV, bb->fallThrough->dataFlowInfo->liveInV, bb->dataFlowInfo->defV); if (bb->successorBlockList.blockListType != kNotUsed) { GrowableListIterator iterator; dvmGrowableListIteratorInit(&bb->successorBlockList.blocks, &iterator); while (true) { SuccessorBlockInfo *successorBlockInfo = (SuccessorBlockInfo *) dvmGrowableListIteratorNext(&iterator); if (successorBlockInfo == NULL) break; BasicBlock *succBB = successorBlockInfo->block; if (succBB->dataFlowInfo) { computeSuccLiveIn(tempDalvikRegisterV, succBB->dataFlowInfo->liveInV, bb->dataFlowInfo->defV); } } } if (dvmCompareBitVectors(tempDalvikRegisterV, bb->dataFlowInfo->liveInV)) { dvmCopyBitVector(bb->dataFlowInfo->liveInV, tempDalvikRegisterV); return true; } return false; } /* Insert phi nodes to for each variable to the dominance frontiers */ static void insertPhiNodes(CompilationUnit *cUnit) { int dalvikReg; const GrowableList *blockList = &cUnit->blockList; BitVector *phiBlocks = dvmCompilerAllocBitVector(cUnit->numBlocks, false); BitVector *tmpBlocks = dvmCompilerAllocBitVector(cUnit->numBlocks, false); BitVector *inputBlocks = dvmCompilerAllocBitVector(cUnit->numBlocks, false); cUnit->tempDalvikRegisterV = dvmCompilerAllocBitVector(cUnit->numDalvikRegisters, false); dvmCompilerDataFlowAnalysisDispatcher(cUnit, computeBlockLiveIns, kPostOrderDFSTraversal, true /* isIterative */); /* Iterate through each Dalvik register */ for (dalvikReg = 0; dalvikReg < cUnit->numDalvikRegisters; dalvikReg++) { bool change; BitVectorIterator iterator; dvmCopyBitVector(inputBlocks, cUnit->defBlockMatrix[dalvikReg]); dvmClearAllBits(phiBlocks); /* Calculate the phi blocks for each Dalvik register */ do { change = false; dvmClearAllBits(tmpBlocks); dvmBitVectorIteratorInit(inputBlocks, &iterator); while (true) { int idx = dvmBitVectorIteratorNext(&iterator); if (idx == -1) break; BasicBlock *defBB = (BasicBlock *) dvmGrowableListGetElement(blockList, idx); /* Merge the dominance frontier to tmpBlocks */ dvmUnifyBitVectors(tmpBlocks, tmpBlocks, defBB->domFrontier); } if (dvmCompareBitVectors(phiBlocks, tmpBlocks)) { change = true; dvmCopyBitVector(phiBlocks, tmpBlocks); /* * Iterate through the original blocks plus the new ones in * the dominance frontier. */ dvmCopyBitVector(inputBlocks, phiBlocks); dvmUnifyBitVectors(inputBlocks, inputBlocks, cUnit->defBlockMatrix[dalvikReg]); } } while (change); /* * Insert a phi node for dalvikReg in the phiBlocks if the Dalvik * register is in the live-in set. */ dvmBitVectorIteratorInit(phiBlocks, &iterator); while (true) { int idx = dvmBitVectorIteratorNext(&iterator); if (idx == -1) break; BasicBlock *phiBB = (BasicBlock *) dvmGrowableListGetElement(blockList, idx); /* Variable will be clobbered before being used - no need for phi */ if (!dvmIsBitSet(phiBB->dataFlowInfo->liveInV, dalvikReg)) continue; MIR *phi = (MIR *) dvmCompilerNew(sizeof(MIR), true); phi->dalvikInsn.opcode = (Opcode)kMirOpPhi; phi->dalvikInsn.vA = dalvikReg; phi->offset = phiBB->startOffset; dvmCompilerPrependMIR(phiBB, phi); } } } /* * Worker function to insert phi-operands with latest SSA names from * predecessor blocks */ static bool insertPhiNodeOperands(CompilationUnit *cUnit, BasicBlock *bb) { BitVector *ssaRegV = cUnit->tempSSARegisterV; BitVectorIterator bvIterator; GrowableList *blockList = &cUnit->blockList; MIR *mir; /* Phi nodes are at the beginning of each block */ for (mir = bb->firstMIRInsn; mir; mir = mir->next) { if (mir->dalvikInsn.opcode != (Opcode)kMirOpPhi) return true; int ssaReg = mir->ssaRep->defs[0]; int encodedDalvikValue = (int) dvmGrowableListGetElement(cUnit->ssaToDalvikMap, ssaReg); int dalvikReg = DECODE_REG(encodedDalvikValue); dvmClearAllBits(ssaRegV); /* Iterate through the predecessors */ dvmBitVectorIteratorInit(bb->predecessors, &bvIterator); while (true) { int predIdx = dvmBitVectorIteratorNext(&bvIterator); if (predIdx == -1) break; BasicBlock *predBB = (BasicBlock *) dvmGrowableListGetElement( blockList, predIdx); int encodedSSAValue = predBB->dataFlowInfo->dalvikToSSAMap[dalvikReg]; int ssaReg = DECODE_REG(encodedSSAValue); dvmSetBit(ssaRegV, ssaReg); } /* Count the number of SSA registers for a Dalvik register */ int numUses = dvmCountSetBits(ssaRegV); mir->ssaRep->numUses = numUses; mir->ssaRep->uses = (int *) dvmCompilerNew(sizeof(int) * numUses, false); mir->ssaRep->fpUse = (bool *) dvmCompilerNew(sizeof(bool) * numUses, true); BitVectorIterator phiIterator; dvmBitVectorIteratorInit(ssaRegV, &phiIterator); int *usePtr = mir->ssaRep->uses; /* Set the uses array for the phi node */ while (true) { int ssaRegIdx = dvmBitVectorIteratorNext(&phiIterator); if (ssaRegIdx == -1) break; *usePtr++ = ssaRegIdx; } } return true; } /* Perform SSA transformation for the whole method */ void dvmCompilerMethodSSATransformation(CompilationUnit *cUnit) { /* Compute the DFS order */ computeDFSOrder(cUnit); /* Compute the dominator info */ computeDominators(cUnit); /* Allocate data structures in preparation for SSA conversion */ dvmInitializeSSAConversion(cUnit); /* Find out the "Dalvik reg def x block" relation */ computeDefBlockMatrix(cUnit); /* Insert phi nodes to dominance frontiers for all variables */ insertPhiNodes(cUnit); /* Rename register names by local defs and phi nodes */ dvmCompilerDataFlowAnalysisDispatcher(cUnit, dvmCompilerDoSSAConversion, kPreOrderDFSTraversal, false /* isIterative */); /* * Shared temp bit vector used by each block to count the number of defs * from all the predecessor blocks. */ cUnit->tempSSARegisterV = dvmCompilerAllocBitVector(cUnit->numSSARegs, false); /* Insert phi-operands with latest SSA names from predecessor blocks */ dvmCompilerDataFlowAnalysisDispatcher(cUnit, insertPhiNodeOperands, kReachableNodes, false /* isIterative */); } /* Build a loop. Return true if a loop structure is successfully identified. */ bool dvmCompilerBuildLoop(CompilationUnit *cUnit) { /* Compute the DFS order */ computeDFSOrder(cUnit); /* Compute the dominator info */ computeDominators(cUnit); /* Loop structure not recognized/supported - return false */ if (dvmCompilerFilterLoopBlocks(cUnit) == false) return false; /* Re-compute the DFS order just for the loop */ computeDFSOrder(cUnit); /* Re-compute the dominator info just for the loop */ computeDominators(cUnit); /* Allocate data structures in preparation for SSA conversion */ dvmInitializeSSAConversion(cUnit); /* Find out the "Dalvik reg def x block" relation */ computeDefBlockMatrix(cUnit); /* Insert phi nodes to dominance frontiers for all variables */ insertPhiNodes(cUnit); /* Rename register names by local defs and phi nodes */ dvmCompilerDataFlowAnalysisDispatcher(cUnit, dvmCompilerDoSSAConversion, kPreOrderDFSTraversal, false /* isIterative */); /* * Shared temp bit vector used by each block to count the number of defs * from all the predecessor blocks. */ cUnit->tempSSARegisterV = dvmCompilerAllocBitVector(cUnit->numSSARegs, false); /* Insert phi-operands with latest SSA names from predecessor blocks */ dvmCompilerDataFlowAnalysisDispatcher(cUnit, insertPhiNodeOperands, kReachableNodes, false /* isIterative */); if (gDvmJit.receivedSIGUSR2 || gDvmJit.printMe) { dvmDumpCFG(cUnit, "/sdcard/cfg/"); } return true; }