/* * Copyright (C) 2009 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* this implements a sensors hardware library for the Android emulator. * the following code should be built as a shared library that will be * placed into /system/lib/hw/sensors.goldfish.so * * it will be loaded by the code in hardware/libhardware/hardware.c * which is itself called from com_android_server_SensorService.cpp */ /* we connect with the emulator through the "sensors" qemud service */ #define SENSORS_SERVICE_NAME "sensors" #define LOG_TAG "QemuSensors" #include <unistd.h> #include <fcntl.h> #include <errno.h> #include <string.h> #include <cutils/log.h> #include <cutils/native_handle.h> #include <cutils/sockets.h> #include <hardware/sensors.h> #if 0 #define D(...) ALOGD(__VA_ARGS__) #else #define D(...) ((void)0) #endif #define E(...) ALOGE(__VA_ARGS__) #include <hardware/qemud.h> /** SENSOR IDS AND NAMES **/ #define MAX_NUM_SENSORS 5 #define SUPPORTED_SENSORS ((1<<MAX_NUM_SENSORS)-1) #define ID_BASE SENSORS_HANDLE_BASE #define ID_ACCELERATION (ID_BASE+0) #define ID_MAGNETIC_FIELD (ID_BASE+1) #define ID_ORIENTATION (ID_BASE+2) #define ID_TEMPERATURE (ID_BASE+3) #define ID_PROXIMITY (ID_BASE+4) #define SENSORS_ACCELERATION (1 << ID_ACCELERATION) #define SENSORS_MAGNETIC_FIELD (1 << ID_MAGNETIC_FIELD) #define SENSORS_ORIENTATION (1 << ID_ORIENTATION) #define SENSORS_TEMPERATURE (1 << ID_TEMPERATURE) #define SENSORS_PROXIMITY (1 << ID_PROXIMITY) #define ID_CHECK(x) ((unsigned)((x)-ID_BASE) < MAX_NUM_SENSORS) #define SENSORS_LIST \ SENSOR_(ACCELERATION,"acceleration") \ SENSOR_(MAGNETIC_FIELD,"magnetic-field") \ SENSOR_(ORIENTATION,"orientation") \ SENSOR_(TEMPERATURE,"temperature") \ SENSOR_(PROXIMITY,"proximity") \ static const struct { const char* name; int id; } _sensorIds[MAX_NUM_SENSORS] = { #define SENSOR_(x,y) { y, ID_##x }, SENSORS_LIST #undef SENSOR_ }; static const char* _sensorIdToName( int id ) { int nn; for (nn = 0; nn < MAX_NUM_SENSORS; nn++) if (id == _sensorIds[nn].id) return _sensorIds[nn].name; return "<UNKNOWN>"; } static int _sensorIdFromName( const char* name ) { int nn; if (name == NULL) return -1; for (nn = 0; nn < MAX_NUM_SENSORS; nn++) if (!strcmp(name, _sensorIds[nn].name)) return _sensorIds[nn].id; return -1; } /** SENSORS POLL DEVICE ** ** This one is used to read sensor data from the hardware. ** We implement this by simply reading the data from the ** emulator through the QEMUD channel. **/ typedef struct SensorPoll { struct sensors_poll_device_t device; sensors_event_t sensors[MAX_NUM_SENSORS]; int events_fd; uint32_t pendingSensors; int64_t timeStart; int64_t timeOffset; int fd; uint32_t active_sensors; } SensorPoll; /* this must return a file descriptor that will be used to read * the sensors data (it is passed to data__data_open() below */ static native_handle_t* control__open_data_source(struct sensors_poll_device_t *dev) { SensorPoll* ctl = (void*)dev; native_handle_t* handle; if (ctl->fd < 0) { ctl->fd = qemud_channel_open(SENSORS_SERVICE_NAME); } D("%s: fd=%d", __FUNCTION__, ctl->fd); handle = native_handle_create(1, 0); handle->data[0] = dup(ctl->fd); return handle; } static int control__activate(struct sensors_poll_device_t *dev, int handle, int enabled) { SensorPoll* ctl = (void*)dev; uint32_t mask, sensors, active, new_sensors, changed; char command[128]; int ret; D("%s: handle=%s (%d) fd=%d enabled=%d", __FUNCTION__, _sensorIdToName(handle), handle, ctl->fd, enabled); if (!ID_CHECK(handle)) { E("%s: bad handle ID", __FUNCTION__); return -1; } mask = (1<<handle); sensors = enabled ? mask : 0; active = ctl->active_sensors; new_sensors = (active & ~mask) | (sensors & mask); changed = active ^ new_sensors; if (!changed) return 0; snprintf(command, sizeof command, "set:%s:%d", _sensorIdToName(handle), enabled != 0); if (ctl->fd < 0) { ctl->fd = qemud_channel_open(SENSORS_SERVICE_NAME); } ret = qemud_channel_send(ctl->fd, command, -1); if (ret < 0) { E("%s: when sending command errno=%d: %s", __FUNCTION__, errno, strerror(errno)); return -1; } ctl->active_sensors = new_sensors; return 0; } static int control__set_delay(struct sensors_poll_device_t *dev, int32_t ms) { SensorPoll* ctl = (void*)dev; char command[128]; D("%s: dev=%p delay-ms=%d", __FUNCTION__, dev, ms); snprintf(command, sizeof command, "set-delay:%d", ms); return qemud_channel_send(ctl->fd, command, -1); } static int control__close(struct hw_device_t *dev) { SensorPoll* ctl = (void*)dev; close(ctl->fd); free(ctl); return 0; } /* return the current time in nanoseconds */ static int64_t data__now_ns(void) { struct timespec ts; clock_gettime(CLOCK_MONOTONIC, &ts); return (int64_t)ts.tv_sec * 1000000000 + ts.tv_nsec; } static int data__data_open(struct sensors_poll_device_t *dev, native_handle_t* handle) { SensorPoll* data = (void*)dev; int i; D("%s: dev=%p fd=%d", __FUNCTION__, dev, handle->data[0]); memset(&data->sensors, 0, sizeof(data->sensors)); data->pendingSensors = 0; data->timeStart = 0; data->timeOffset = 0; data->events_fd = dup(handle->data[0]); D("%s: dev=%p fd=%d (was %d)", __FUNCTION__, dev, data->events_fd, handle->data[0]); native_handle_close(handle); native_handle_delete(handle); return 0; } static int data__data_close(struct sensors_poll_device_t *dev) { SensorPoll* data = (void*)dev; D("%s: dev=%p", __FUNCTION__, dev); if (data->events_fd >= 0) { close(data->events_fd); data->events_fd = -1; } return 0; } static int pick_sensor(SensorPoll* data, sensors_event_t* values) { uint32_t mask = SUPPORTED_SENSORS; while (mask) { uint32_t i = 31 - __builtin_clz(mask); mask &= ~(1<<i); if (data->pendingSensors & (1<<i)) { data->pendingSensors &= ~(1<<i); *values = data->sensors[i]; values->sensor = i; values->version = sizeof(*values); D("%s: %d [%f, %f, %f]", __FUNCTION__, i, values->data[0], values->data[1], values->data[2]); return i; } } ALOGE("No sensor to return!!! pendingSensors=%08x", data->pendingSensors); // we may end-up in a busy loop, slow things down, just in case. usleep(100000); return -EINVAL; } static int data__poll(struct sensors_poll_device_t *dev, sensors_event_t* values) { SensorPoll* data = (void*)dev; int fd = data->events_fd; D("%s: data=%p", __FUNCTION__, dev); // there are pending sensors, returns them now... if (data->pendingSensors) { return pick_sensor(data, values); } // wait until we get a complete event for an enabled sensor uint32_t new_sensors = 0; while (1) { /* read the next event */ char buff[256]; int len = qemud_channel_recv(data->events_fd, buff, sizeof buff-1); float params[3]; int64_t event_time; if (len < 0) { E("%s: len=%d, errno=%d: %s", __FUNCTION__, len, errno, strerror(errno)); return -errno; } buff[len] = 0; /* "wake" is sent from the emulator to exit this loop. */ if (!strcmp((const char*)data, "wake")) { return 0x7FFFFFFF; } /* "acceleration:<x>:<y>:<z>" corresponds to an acceleration event */ if (sscanf(buff, "acceleration:%g:%g:%g", params+0, params+1, params+2) == 3) { new_sensors |= SENSORS_ACCELERATION; data->sensors[ID_ACCELERATION].acceleration.x = params[0]; data->sensors[ID_ACCELERATION].acceleration.y = params[1]; data->sensors[ID_ACCELERATION].acceleration.z = params[2]; continue; } /* "orientation:<azimuth>:<pitch>:<roll>" is sent when orientation changes */ if (sscanf(buff, "orientation:%g:%g:%g", params+0, params+1, params+2) == 3) { new_sensors |= SENSORS_ORIENTATION; data->sensors[ID_ORIENTATION].orientation.azimuth = params[0]; data->sensors[ID_ORIENTATION].orientation.pitch = params[1]; data->sensors[ID_ORIENTATION].orientation.roll = params[2]; data->sensors[ID_ORIENTATION].orientation.status = SENSOR_STATUS_ACCURACY_HIGH; continue; } /* "magnetic:<x>:<y>:<z>" is sent for the params of the magnetic field */ if (sscanf(buff, "magnetic:%g:%g:%g", params+0, params+1, params+2) == 3) { new_sensors |= SENSORS_MAGNETIC_FIELD; data->sensors[ID_MAGNETIC_FIELD].magnetic.x = params[0]; data->sensors[ID_MAGNETIC_FIELD].magnetic.y = params[1]; data->sensors[ID_MAGNETIC_FIELD].magnetic.z = params[2]; data->sensors[ID_MAGNETIC_FIELD].magnetic.status = SENSOR_STATUS_ACCURACY_HIGH; continue; } /* "temperature:<celsius>" */ if (sscanf(buff, "temperature:%g", params+0) == 1) { new_sensors |= SENSORS_TEMPERATURE; data->sensors[ID_TEMPERATURE].temperature = params[0]; continue; } /* "proximity:<value>" */ if (sscanf(buff, "proximity:%g", params+0) == 1) { new_sensors |= SENSORS_PROXIMITY; data->sensors[ID_PROXIMITY].distance = params[0]; continue; } /* "sync:<time>" is sent after a series of sensor events. * where 'time' is expressed in micro-seconds and corresponds * to the VM time when the real poll occured. */ if (sscanf(buff, "sync:%lld", &event_time) == 1) { if (new_sensors) { data->pendingSensors = new_sensors; int64_t t = event_time * 1000LL; /* convert to nano-seconds */ /* use the time at the first sync: as the base for later * time values */ if (data->timeStart == 0) { data->timeStart = data__now_ns(); data->timeOffset = data->timeStart - t; } t += data->timeOffset; while (new_sensors) { uint32_t i = 31 - __builtin_clz(new_sensors); new_sensors &= ~(1<<i); data->sensors[i].timestamp = t; } return pick_sensor(data, values); } else { D("huh ? sync without any sensor data ?"); } continue; } D("huh ? unsupported command"); } return -1; } static int data__close(struct hw_device_t *dev) { SensorPoll* data = (SensorPoll*)dev; if (data) { if (data->events_fd >= 0) { //ALOGD("(device close) about to close fd=%d", data->events_fd); close(data->events_fd); } free(data); } return 0; } /** SENSORS POLL DEVICE FUNCTIONS **/ static int poll__close(struct hw_device_t* dev) { SensorPoll* ctl = (void*)dev; close(ctl->fd); if (ctl->fd >= 0) { close(ctl->fd); } if (ctl->events_fd >= 0) { close(ctl->events_fd); } free(ctl); return 0; } static int poll__poll(struct sensors_poll_device_t *dev, sensors_event_t* data, int count) { SensorPoll* datadev = (void*)dev; int ret; int i; D("%s: dev=%p data=%p count=%d ", __FUNCTION__, dev, data, count); for (i = 0; i < count; i++) { ret = data__poll(dev, data); data++; if (ret > MAX_NUM_SENSORS || ret < 0) { return i; } if (!datadev->pendingSensors) { return i + 1; } } return count; } static int poll__activate(struct sensors_poll_device_t *dev, int handle, int enabled) { int ret; native_handle_t* hdl; SensorPoll* ctl = (void*)dev; D("%s: dev=%p handle=%x enable=%d ", __FUNCTION__, dev, handle, enabled); if (ctl->fd < 0) { D("%s: OPEN CTRL and DATA ", __FUNCTION__); hdl = control__open_data_source(dev); ret = data__data_open(dev,hdl); } ret = control__activate(dev, handle, enabled); return ret; } static int poll__setDelay(struct sensors_poll_device_t *dev, int handle, int64_t ns) { // TODO return 0; } /** MODULE REGISTRATION SUPPORT ** ** This is required so that hardware/libhardware/hardware.c ** will dlopen() this library appropriately. **/ /* * the following is the list of all supported sensors. * this table is used to build sSensorList declared below * according to which hardware sensors are reported as * available from the emulator (see get_sensors_list below) * * note: numerical values for maxRange/resolution/power were * taken from the reference AK8976A implementation */ static const struct sensor_t sSensorListInit[] = { { .name = "Goldfish 3-axis Accelerometer", .vendor = "The Android Open Source Project", .version = 1, .handle = ID_ACCELERATION, .type = SENSOR_TYPE_ACCELEROMETER, .maxRange = 2.8f, .resolution = 1.0f/4032.0f, .power = 3.0f, .reserved = {} }, { .name = "Goldfish 3-axis Magnetic field sensor", .vendor = "The Android Open Source Project", .version = 1, .handle = ID_MAGNETIC_FIELD, .type = SENSOR_TYPE_MAGNETIC_FIELD, .maxRange = 2000.0f, .resolution = 1.0f, .power = 6.7f, .reserved = {} }, { .name = "Goldfish Orientation sensor", .vendor = "The Android Open Source Project", .version = 1, .handle = ID_ORIENTATION, .type = SENSOR_TYPE_ORIENTATION, .maxRange = 360.0f, .resolution = 1.0f, .power = 9.7f, .reserved = {} }, { .name = "Goldfish Temperature sensor", .vendor = "The Android Open Source Project", .version = 1, .handle = ID_TEMPERATURE, .type = SENSOR_TYPE_TEMPERATURE, .maxRange = 80.0f, .resolution = 1.0f, .power = 0.0f, .reserved = {} }, { .name = "Goldfish Proximity sensor", .vendor = "The Android Open Source Project", .version = 1, .handle = ID_PROXIMITY, .type = SENSOR_TYPE_PROXIMITY, .maxRange = 1.0f, .resolution = 1.0f, .power = 20.0f, .reserved = {} }, }; static struct sensor_t sSensorList[MAX_NUM_SENSORS]; static int sensors__get_sensors_list(struct sensors_module_t* module, struct sensor_t const** list) { int fd = qemud_channel_open(SENSORS_SERVICE_NAME); char buffer[12]; int mask, nn, count; int ret; if (fd < 0) { E("%s: no qemud connection", __FUNCTION__); return 0; } ret = qemud_channel_send(fd, "list-sensors", -1); if (ret < 0) { E("%s: could not query sensor list: %s", __FUNCTION__, strerror(errno)); close(fd); return 0; } ret = qemud_channel_recv(fd, buffer, sizeof buffer-1); if (ret < 0) { E("%s: could not receive sensor list: %s", __FUNCTION__, strerror(errno)); close(fd); return 0; } buffer[ret] = 0; close(fd); /* the result is a integer used as a mask for available sensors */ mask = atoi(buffer); count = 0; for (nn = 0; nn < MAX_NUM_SENSORS; nn++) { if (((1 << nn) & mask) == 0) continue; sSensorList[count++] = sSensorListInit[nn]; } D("%s: returned %d sensors (mask=%d)", __FUNCTION__, count, mask); *list = sSensorList; return count; } static int open_sensors(const struct hw_module_t* module, const char* name, struct hw_device_t* *device) { int status = -EINVAL; D("%s: name=%s", __FUNCTION__, name); if (!strcmp(name, SENSORS_HARDWARE_POLL)) { SensorPoll *dev = malloc(sizeof(*dev)); memset(dev, 0, sizeof(*dev)); dev->device.common.tag = HARDWARE_DEVICE_TAG; dev->device.common.version = 0; dev->device.common.module = (struct hw_module_t*) module; dev->device.common.close = poll__close; dev->device.poll = poll__poll; dev->device.activate = poll__activate; dev->device.setDelay = poll__setDelay; dev->events_fd = -1; dev->fd = -1; *device = &dev->device.common; status = 0; } return status; } static struct hw_module_methods_t sensors_module_methods = { .open = open_sensors }; struct sensors_module_t HAL_MODULE_INFO_SYM = { .common = { .tag = HARDWARE_MODULE_TAG, .version_major = 1, .version_minor = 0, .id = SENSORS_HARDWARE_MODULE_ID, .name = "Goldfish SENSORS Module", .author = "The Android Open Source Project", .methods = &sensors_module_methods, }, .get_sensors_list = sensors__get_sensors_list };