// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) // // Templated struct implementing the camera model and residual // computation for bundle adjustment used by Noah Snavely's Bundler // SfM system. This is also the camera model/residual for the bundle // adjustment problems in the BAL dataset. It is templated so that we // can use Ceres's automatic differentiation to compute analytic // jacobians. // // For details see: http://phototour.cs.washington.edu/bundler/ // and http://grail.cs.washington.edu/projects/bal/ #ifndef CERES_EXAMPLES_SNAVELY_REPROJECTION_ERROR_H_ #define CERES_EXAMPLES_SNAVELY_REPROJECTION_ERROR_H_ #include "ceres/rotation.h" namespace ceres { namespace examples { // Templated pinhole camera model for used with Ceres. The camera is // parameterized using 9 parameters: 3 for rotation, 3 for translation, 1 for // focal length and 2 for radial distortion. The principal point is not modeled // (i.e. it is assumed be located at the image center). struct SnavelyReprojectionError { SnavelyReprojectionError(double observed_x, double observed_y) : observed_x(observed_x), observed_y(observed_y) {} template <typename T> bool operator()(const T* const camera, const T* const point, T* residuals) const { // camera[0,1,2] are the angle-axis rotation. T p[3]; ceres::AngleAxisRotatePoint(camera, point, p); // camera[3,4,5] are the translation. p[0] += camera[3]; p[1] += camera[4]; p[2] += camera[5]; // Compute the center of distortion. The sign change comes from // the camera model that Noah Snavely's Bundler assumes, whereby // the camera coordinate system has a negative z axis. const T& focal = camera[6]; T xp = - p[0] / p[2]; T yp = - p[1] / p[2]; // Apply second and fourth order radial distortion. const T& l1 = camera[7]; const T& l2 = camera[8]; T r2 = xp*xp + yp*yp; T distortion = T(1.0) + r2 * (l1 + l2 * r2); // Compute final projected point position. T predicted_x = focal * distortion * xp; T predicted_y = focal * distortion * yp; // The error is the difference between the predicted and observed position. residuals[0] = predicted_x - T(observed_x); residuals[1] = predicted_y - T(observed_y); return true; } double observed_x; double observed_y; }; // Templated pinhole camera model for used with Ceres. The camera is // parameterized using 10 parameters. 4 for rotation, 3 for // translation, 1 for focal length and 2 for radial distortion. The // principal point is not modeled (i.e. it is assumed be located at // the image center). struct SnavelyReprojectionErrorWithQuaternions { // (u, v): the position of the observation with respect to the image // center point. SnavelyReprojectionErrorWithQuaternions(double observed_x, double observed_y) : observed_x(observed_x), observed_y(observed_y) {} template <typename T> bool operator()(const T* const camera_rotation, const T* const camera_translation_and_intrinsics, const T* const point, T* residuals) const { const T& focal = camera_translation_and_intrinsics[3]; const T& l1 = camera_translation_and_intrinsics[4]; const T& l2 = camera_translation_and_intrinsics[5]; // Use a quaternion rotation that doesn't assume the quaternion is // normalized, since one of the ways to run the bundler is to let Ceres // optimize all 4 quaternion parameters unconstrained. T p[3]; QuaternionRotatePoint(camera_rotation, point, p); p[0] += camera_translation_and_intrinsics[0]; p[1] += camera_translation_and_intrinsics[1]; p[2] += camera_translation_and_intrinsics[2]; // Compute the center of distortion. The sign change comes from // the camera model that Noah Snavely's Bundler assumes, whereby // the camera coordinate system has a negative z axis. T xp = - p[0] / p[2]; T yp = - p[1] / p[2]; // Apply second and fourth order radial distortion. T r2 = xp*xp + yp*yp; T distortion = T(1.0) + r2 * (l1 + l2 * r2); // Compute final projected point position. T predicted_x = focal * distortion * xp; T predicted_y = focal * distortion * yp; // The error is the difference between the predicted and observed position. residuals[0] = predicted_x - T(observed_x); residuals[1] = predicted_y - T(observed_y); return true; } double observed_x; double observed_y; }; } // namespace examples } // namespace ceres #endif // CERES_EXAMPLES_SNAVELY_REPROJECTION_ERROR_H_