// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/base/x509_certificate.h" #include <openssl/asn1.h> #include <openssl/crypto.h> #include <openssl/obj_mac.h> #include <openssl/pem.h> #include <openssl/pkcs7.h> #include <openssl/sha.h> #include <openssl/ssl.h> #include <openssl/x509v3.h> #include "base/memory/singleton.h" #include "base/pickle.h" #include "base/sha1.h" #include "base/string_number_conversions.h" #include "crypto/openssl_util.h" #include "net/base/asn1_util.h" #include "net/base/cert_status_flags.h" #include "net/base/cert_verify_result.h" #include "net/base/net_errors.h" #include "net/base/x509_openssl_util.h" namespace net { namespace nxou = net::x509_openssl_util; namespace { void CreateOSCertHandlesFromPKCS7Bytes( const char* data, int length, X509Certificate::OSCertHandles* handles) { crypto::EnsureOpenSSLInit(); const unsigned char* der_data = reinterpret_cast<const unsigned char*>(data); crypto::ScopedOpenSSL<PKCS7, PKCS7_free> pkcs7_cert( d2i_PKCS7(NULL, &der_data, length)); if (!pkcs7_cert.get()) return; STACK_OF(X509)* certs = NULL; int nid = OBJ_obj2nid(pkcs7_cert.get()->type); if (nid == NID_pkcs7_signed) { certs = pkcs7_cert.get()->d.sign->cert; } else if (nid == NID_pkcs7_signedAndEnveloped) { certs = pkcs7_cert.get()->d.signed_and_enveloped->cert; } if (certs) { for (int i = 0; i < sk_X509_num(certs); ++i) { X509* x509_cert = X509Certificate::DupOSCertHandle(sk_X509_value(certs, i)); handles->push_back(x509_cert); } } } void ParsePrincipalValues(X509_NAME* name, int nid, std::vector<std::string>* fields) { for (int index = -1; (index = X509_NAME_get_index_by_NID(name, nid, index)) != -1;) { std::string field; if (!nxou::ParsePrincipalValueByIndex(name, index, &field)) break; fields->push_back(field); } } void ParsePrincipal(X509Certificate::OSCertHandle cert, X509_NAME* x509_name, CertPrincipal* principal) { if (!x509_name) return; ParsePrincipalValues(x509_name, NID_streetAddress, &principal->street_addresses); ParsePrincipalValues(x509_name, NID_organizationName, &principal->organization_names); ParsePrincipalValues(x509_name, NID_organizationalUnitName, &principal->organization_unit_names); ParsePrincipalValues(x509_name, NID_domainComponent, &principal->domain_components); nxou::ParsePrincipalValueByNID(x509_name, NID_commonName, &principal->common_name); nxou::ParsePrincipalValueByNID(x509_name, NID_localityName, &principal->locality_name); nxou::ParsePrincipalValueByNID(x509_name, NID_stateOrProvinceName, &principal->state_or_province_name); nxou::ParsePrincipalValueByNID(x509_name, NID_countryName, &principal->country_name); } void ParseSubjectAltNames(X509Certificate::OSCertHandle cert, std::vector<std::string>* dns_names) { int index = X509_get_ext_by_NID(cert, NID_subject_alt_name, -1); X509_EXTENSION* alt_name_ext = X509_get_ext(cert, index); if (!alt_name_ext) return; crypto::ScopedOpenSSL<GENERAL_NAMES, GENERAL_NAMES_free> alt_names( reinterpret_cast<GENERAL_NAMES*>(X509V3_EXT_d2i(alt_name_ext))); if (!alt_names.get()) return; for (int i = 0; i < sk_GENERAL_NAME_num(alt_names.get()); ++i) { const GENERAL_NAME* name = sk_GENERAL_NAME_value(alt_names.get(), i); if (name->type == GEN_DNS) { unsigned char* dns_name = ASN1_STRING_data(name->d.dNSName); if (!dns_name) continue; int dns_name_len = ASN1_STRING_length(name->d.dNSName); dns_names->push_back( std::string(reinterpret_cast<char*>(dns_name), dns_name_len)); } } } // Maps X509_STORE_CTX_get_error() return values to our cert status flags. int MapCertErrorToCertStatus(int err) { switch (err) { case X509_V_ERR_SUBJECT_ISSUER_MISMATCH: return CERT_STATUS_COMMON_NAME_INVALID; case X509_V_ERR_CERT_NOT_YET_VALID: case X509_V_ERR_CERT_HAS_EXPIRED: case X509_V_ERR_CRL_NOT_YET_VALID: case X509_V_ERR_CRL_HAS_EXPIRED: case X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD: case X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD: case X509_V_ERR_ERROR_IN_CRL_LAST_UPDATE_FIELD: case X509_V_ERR_ERROR_IN_CRL_NEXT_UPDATE_FIELD: return CERT_STATUS_DATE_INVALID; case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT: case X509_V_ERR_UNABLE_TO_GET_CRL: case X509_V_ERR_INVALID_CA: case X509_V_ERR_UNABLE_TO_GET_CRL_ISSUER: case X509_V_ERR_INVALID_NON_CA: case X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT: case X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN: case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY: return CERT_STATUS_AUTHORITY_INVALID; #if 0 // TODO(bulach): what should we map to these status? return CERT_STATUS_NO_REVOCATION_MECHANISM; return CERT_STATUS_UNABLE_TO_CHECK_REVOCATION; return CERT_STATUS_NOT_IN_DNS; #endif case X509_V_ERR_CERT_REVOKED: return CERT_STATUS_REVOKED; case X509_V_ERR_KEYUSAGE_NO_CERTSIGN: return CERT_STATUS_WEAK_SIGNATURE_ALGORITHM; // All these status are mapped to CERT_STATUS_INVALID. case X509_V_ERR_UNABLE_TO_DECRYPT_CERT_SIGNATURE: case X509_V_ERR_UNABLE_TO_DECRYPT_CRL_SIGNATURE: case X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY: case X509_V_ERR_CERT_SIGNATURE_FAILURE: case X509_V_ERR_CRL_SIGNATURE_FAILURE: case X509_V_ERR_OUT_OF_MEM: case X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE: case X509_V_ERR_CERT_CHAIN_TOO_LONG: case X509_V_ERR_PATH_LENGTH_EXCEEDED: case X509_V_ERR_INVALID_PURPOSE: case X509_V_ERR_CERT_UNTRUSTED: case X509_V_ERR_CERT_REJECTED: case X509_V_ERR_AKID_SKID_MISMATCH: case X509_V_ERR_AKID_ISSUER_SERIAL_MISMATCH: case X509_V_ERR_UNHANDLED_CRITICAL_EXTENSION: case X509_V_ERR_KEYUSAGE_NO_CRL_SIGN: case X509_V_ERR_UNHANDLED_CRITICAL_CRL_EXTENSION: case X509_V_ERR_PROXY_PATH_LENGTH_EXCEEDED: case X509_V_ERR_KEYUSAGE_NO_DIGITAL_SIGNATURE: case X509_V_ERR_PROXY_CERTIFICATES_NOT_ALLOWED: case X509_V_ERR_INVALID_EXTENSION: case X509_V_ERR_INVALID_POLICY_EXTENSION: case X509_V_ERR_NO_EXPLICIT_POLICY: case X509_V_ERR_UNNESTED_RESOURCE: case X509_V_ERR_APPLICATION_VERIFICATION: return CERT_STATUS_INVALID; default: NOTREACHED() << "Invalid X509 err " << err; return CERT_STATUS_INVALID; } } // sk_X509_free is a function-style macro, so can't be used as a template // param directly. void sk_X509_free_fn(STACK_OF(X509)* st) { sk_X509_free(st); } struct DERCache { unsigned char* data; int data_length; }; void DERCache_free(void* parent, void* ptr, CRYPTO_EX_DATA* ad, int idx, long argl, void* argp) { DERCache* der_cache = static_cast<DERCache*>(ptr); if (!der_cache) return; if (der_cache->data) OPENSSL_free(der_cache->data); OPENSSL_free(der_cache); } class X509InitSingleton { public: static X509InitSingleton* GetInstance() { // We allow the X509 store to leak, because it is used from a non-joinable // worker that is not stopped on shutdown, hence may still be using // OpenSSL library after the AtExit runner has completed. return Singleton<X509InitSingleton, LeakySingletonTraits<X509InitSingleton> >::get(); } int der_cache_ex_index() const { return der_cache_ex_index_; } X509_STORE* store() const { return store_.get(); } void ResetCertStore() { store_.reset(X509_STORE_new()); DCHECK(store_.get()); X509_STORE_set_default_paths(store_.get()); // TODO(joth): Enable CRL (see X509_STORE_set_flags(X509_V_FLAG_CRL_CHECK)). } private: friend struct DefaultSingletonTraits<X509InitSingleton>; X509InitSingleton() { crypto::EnsureOpenSSLInit(); der_cache_ex_index_ = X509_get_ex_new_index(0, 0, 0, 0, DERCache_free); DCHECK_NE(der_cache_ex_index_, -1); ResetCertStore(); } int der_cache_ex_index_; crypto::ScopedOpenSSL<X509_STORE, X509_STORE_free> store_; DISALLOW_COPY_AND_ASSIGN(X509InitSingleton); }; // Takes ownership of |data| (which must have been allocated by OpenSSL). DERCache* SetDERCache(X509Certificate::OSCertHandle cert, int x509_der_cache_index, unsigned char* data, int data_length) { DERCache* internal_cache = static_cast<DERCache*>( OPENSSL_malloc(sizeof(*internal_cache))); if (!internal_cache) { // We took ownership of |data|, so we must free if we can't add it to // |cert|. OPENSSL_free(data); return NULL; } internal_cache->data = data; internal_cache->data_length = data_length; X509_set_ex_data(cert, x509_der_cache_index, internal_cache); return internal_cache; } // Returns true if |der_cache| points to valid data, false otherwise. // (note: the DER-encoded data in |der_cache| is owned by |cert|, callers should // not free it). bool GetDERAndCacheIfNeeded(X509Certificate::OSCertHandle cert, DERCache* der_cache) { int x509_der_cache_index = X509InitSingleton::GetInstance()->der_cache_ex_index(); // Re-encoding the DER data via i2d_X509 is an expensive operation, but it's // necessary for comparing two certificates. We re-encode at most once per // certificate and cache the data within the X509 cert using X509_set_ex_data. DERCache* internal_cache = static_cast<DERCache*>( X509_get_ex_data(cert, x509_der_cache_index)); if (!internal_cache) { unsigned char* data = NULL; int data_length = i2d_X509(cert, &data); if (data_length <= 0 || !data) return false; internal_cache = SetDERCache(cert, x509_der_cache_index, data, data_length); if (!internal_cache) return false; } *der_cache = *internal_cache; return true; } } // namespace // static X509Certificate::OSCertHandle X509Certificate::DupOSCertHandle( OSCertHandle cert_handle) { DCHECK(cert_handle); // Using X509_dup causes the entire certificate to be reparsed. This // conversion, besides being non-trivial, drops any associated // application-specific data set by X509_set_ex_data. Using CRYPTO_add // just bumps up the ref-count for the cert, without causing any allocations // or deallocations. CRYPTO_add(&cert_handle->references, 1, CRYPTO_LOCK_X509); return cert_handle; } // static void X509Certificate::FreeOSCertHandle(OSCertHandle cert_handle) { // Decrement the ref-count for the cert and, if all references are gone, // free the memory and any application-specific data associated with the // certificate. X509_free(cert_handle); } void X509Certificate::Initialize() { crypto::EnsureOpenSSLInit(); fingerprint_ = CalculateFingerprint(cert_handle_); ASN1_INTEGER* num = X509_get_serialNumber(cert_handle_); if (num) { serial_number_ = std::string( reinterpret_cast<char*>(num->data), num->length); // Remove leading zeros. while (serial_number_.size() > 1 && serial_number_[0] == 0) serial_number_ = serial_number_.substr(1, serial_number_.size() - 1); } ParsePrincipal(cert_handle_, X509_get_subject_name(cert_handle_), &subject_); ParsePrincipal(cert_handle_, X509_get_issuer_name(cert_handle_), &issuer_); nxou::ParseDate(X509_get_notBefore(cert_handle_), &valid_start_); nxou::ParseDate(X509_get_notAfter(cert_handle_), &valid_expiry_); } // static void X509Certificate::ResetCertStore() { X509InitSingleton::GetInstance()->ResetCertStore(); } SHA1Fingerprint X509Certificate::CalculateFingerprint(OSCertHandle cert) { SHA1Fingerprint sha1; unsigned int sha1_size = static_cast<unsigned int>(sizeof(sha1.data)); int ret = X509_digest(cert, EVP_sha1(), sha1.data, &sha1_size); CHECK(ret); CHECK_EQ(sha1_size, sizeof(sha1.data)); return sha1; } // static X509Certificate::OSCertHandle X509Certificate::CreateOSCertHandleFromBytes( const char* data, int length) { if (length < 0) return NULL; crypto::EnsureOpenSSLInit(); const unsigned char* d2i_data = reinterpret_cast<const unsigned char*>(data); // Don't cache this data via SetDERCache as this wire format may be not be // identical from the i2d_X509 roundtrip. X509* cert = d2i_X509(NULL, &d2i_data, length); return cert; } // static X509Certificate::OSCertHandles X509Certificate::CreateOSCertHandlesFromBytes( const char* data, int length, Format format) { OSCertHandles results; if (length < 0) return results; switch (format) { case FORMAT_SINGLE_CERTIFICATE: { OSCertHandle handle = CreateOSCertHandleFromBytes(data, length); if (handle) results.push_back(handle); break; } case FORMAT_PKCS7: { CreateOSCertHandlesFromPKCS7Bytes(data, length, &results); break; } default: { NOTREACHED() << "Certificate format " << format << " unimplemented"; break; } } return results; } // static scoped_refptr<X509Certificate> X509Certificate::CreateSelfSigned( crypto::RSAPrivateKey* key, const std::string& subject, uint32 serial_number, base::TimeDelta valid_duration) { // TODO(port): Implement. return NULL; } void X509Certificate::GetDNSNames(std::vector<std::string>* dns_names) const { dns_names->clear(); ParseSubjectAltNames(cert_handle_, dns_names); if (dns_names->empty()) dns_names->push_back(subject_.common_name); } // static X509_STORE* X509Certificate::cert_store() { return X509InitSingleton::GetInstance()->store(); } #ifndef ANDROID int X509Certificate::Verify(const std::string& hostname, int flags, CertVerifyResult* verify_result) const { verify_result->Reset(); if (IsBlacklisted()) { verify_result->cert_status |= CERT_STATUS_REVOKED; return ERR_CERT_REVOKED; } // TODO(joth): We should fetch the subjectAltNames directly rather than via // GetDNSNames, so we can apply special handling for IP addresses vs DNS // names, etc. See http://crbug.com/62973. std::vector<std::string> cert_names; GetDNSNames(&cert_names); if (!VerifyHostname(hostname, cert_names)) verify_result->cert_status |= CERT_STATUS_COMMON_NAME_INVALID; crypto::ScopedOpenSSL<X509_STORE_CTX, X509_STORE_CTX_free> ctx( X509_STORE_CTX_new()); crypto::ScopedOpenSSL<STACK_OF(X509), sk_X509_free_fn> intermediates( sk_X509_new_null()); if (!intermediates.get()) return ERR_OUT_OF_MEMORY; for (OSCertHandles::const_iterator it = intermediate_ca_certs_.begin(); it != intermediate_ca_certs_.end(); ++it) { if (!sk_X509_push(intermediates.get(), *it)) return ERR_OUT_OF_MEMORY; } int rv = X509_STORE_CTX_init(ctx.get(), cert_store(), cert_handle_, intermediates.get()); CHECK_EQ(1, rv); if (X509_verify_cert(ctx.get()) != 1) { int x509_error = X509_STORE_CTX_get_error(ctx.get()); int cert_status = MapCertErrorToCertStatus(x509_error); LOG(ERROR) << "X509 Verification error " << X509_verify_cert_error_string(x509_error) << " : " << x509_error << " : " << X509_STORE_CTX_get_error_depth(ctx.get()) << " : " << cert_status; verify_result->cert_status |= cert_status; } if (IsCertStatusError(verify_result->cert_status)) return MapCertStatusToNetError(verify_result->cert_status); STACK_OF(X509)* chain = X509_STORE_CTX_get_chain(ctx.get()); for (int i = 0; i < sk_X509_num(chain); ++i) { X509* cert = sk_X509_value(chain, i); DERCache der_cache; if (!GetDERAndCacheIfNeeded(cert, &der_cache)) continue; base::StringPiece der_bytes(reinterpret_cast<const char*>(der_cache.data), der_cache.data_length); base::StringPiece spki_bytes; if (!asn1::ExtractSPKIFromDERCert(der_bytes, &spki_bytes)) continue; SHA1Fingerprint hash; base::SHA1HashBytes(reinterpret_cast<const uint8*>(spki_bytes.data()), spki_bytes.size(), hash.data); verify_result->public_key_hashes.push_back(hash); } if (IsPublicKeyBlacklisted(verify_result->public_key_hashes)) { verify_result->cert_status |= CERT_STATUS_AUTHORITY_INVALID; return MapCertStatusToNetError(verify_result->cert_status); } // Currently we only ues OpenSSL's default root CA paths, so treat all // correctly verified certs as being from a known root. TODO(joth): if the // motivations described in http://src.chromium.org/viewvc/chrome?view=rev&revision=80778 // become an issue on OpenSSL builds, we will need to embed a hardcoded list // of well known root CAs, as per the _mac and _win versions. verify_result->is_issued_by_known_root = true; return OK; } bool X509Certificate::GetDEREncoded(std::string* encoded) { DERCache der_cache; if (!GetDERAndCacheIfNeeded(cert_handle_, &der_cache)) return false; encoded->assign(reinterpret_cast<const char*>(der_cache.data), der_cache.data_length); return true; } #endif // static bool X509Certificate::IsSameOSCert(X509Certificate::OSCertHandle a, X509Certificate::OSCertHandle b) { DCHECK(a && b); if (a == b) return true; // X509_cmp only checks the fingerprint, but we want to compare the whole // DER data. Encoding it from OSCertHandle is an expensive operation, so we // cache the DER (if not already cached via X509_set_ex_data). DERCache der_cache_a, der_cache_b; return GetDERAndCacheIfNeeded(a, &der_cache_a) && GetDERAndCacheIfNeeded(b, &der_cache_b) && der_cache_a.data_length == der_cache_b.data_length && memcmp(der_cache_a.data, der_cache_b.data, der_cache_a.data_length) == 0; } // static X509Certificate::OSCertHandle X509Certificate::ReadCertHandleFromPickle(const Pickle& pickle, void** pickle_iter) { const char* data; int length; if (!pickle.ReadData(pickle_iter, &data, &length)) return NULL; return CreateOSCertHandleFromBytes(data, length); } // static bool X509Certificate::WriteCertHandleToPickle(OSCertHandle cert_handle, Pickle* pickle) { DERCache der_cache; if (!GetDERAndCacheIfNeeded(cert_handle, &der_cache)) return false; return pickle->WriteData( reinterpret_cast<const char*>(der_cache.data), der_cache.data_length); } #if defined(ANDROID) // static std::string X509Certificate::GetDEREncodedBytes(OSCertHandle handle) { DERCache der_cache = {0}; GetDERAndCacheIfNeeded(handle, &der_cache); return std::string(reinterpret_cast<const char*>(der_cache.data), der_cache.data_length); } #endif #if defined(ANDROID) void X509Certificate::GetChainDEREncodedBytes( std::vector<std::string>* chain_bytes) const { OSCertHandles cert_handles(intermediate_ca_certs_); // Make sure the peer's own cert is the first in the chain, if it's not // already there. if (cert_handles.empty() || cert_handles[0] != cert_handle_) cert_handles.insert(cert_handles.begin(), cert_handle_); chain_bytes->reserve(cert_handles.size()); for (OSCertHandles::const_iterator it = cert_handles.begin(); it != cert_handles.end(); ++it) { DERCache der_cache = {0}; GetDERAndCacheIfNeeded(*it, &der_cache); std::string cert_bytes = std::string( reinterpret_cast<const char*>(der_cache.data), der_cache.data_length); chain_bytes->push_back(cert_bytes); } } #endif } // namespace net