// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/base/x509_certificate.h" #include "base/lazy_instance.h" #include "base/logging.h" #include "base/pickle.h" #include "base/sha1.h" #include "base/string_tokenizer.h" #include "base/string_util.h" #include "base/utf_string_conversions.h" #include "crypto/rsa_private_key.h" #include "crypto/scoped_capi_types.h" #include "net/base/asn1_util.h" #include "net/base/cert_status_flags.h" #include "net/base/cert_verify_result.h" #include "net/base/ev_root_ca_metadata.h" #include "net/base/net_errors.h" #include "net/base/scoped_cert_chain_context.h" #include "net/base/test_root_certs.h" #include "net/base/x509_certificate_known_roots_win.h" #pragma comment(lib, "crypt32.lib") using base::Time; namespace net { namespace { typedef crypto::ScopedCAPIHandle< HCERTSTORE, crypto::CAPIDestroyerWithFlags<HCERTSTORE, CertCloseStore, 0> > ScopedHCERTSTORE; struct FreeChainEngineFunctor { void operator()(HCERTCHAINENGINE engine) const { if (engine) CertFreeCertificateChainEngine(engine); } }; typedef crypto::ScopedCAPIHandle<HCERTCHAINENGINE, FreeChainEngineFunctor> ScopedHCERTCHAINENGINE; //----------------------------------------------------------------------------- // TODO(wtc): This is a copy of the MapSecurityError function in // ssl_client_socket_win.cc. Another function that maps Windows error codes // to our network error codes is WinInetUtil::OSErrorToNetError. We should // eliminate the code duplication. int MapSecurityError(SECURITY_STATUS err) { // There are numerous security error codes, but these are the ones we thus // far find interesting. switch (err) { case SEC_E_WRONG_PRINCIPAL: // Schannel case CERT_E_CN_NO_MATCH: // CryptoAPI return ERR_CERT_COMMON_NAME_INVALID; case SEC_E_UNTRUSTED_ROOT: // Schannel case CERT_E_UNTRUSTEDROOT: // CryptoAPI return ERR_CERT_AUTHORITY_INVALID; case SEC_E_CERT_EXPIRED: // Schannel case CERT_E_EXPIRED: // CryptoAPI return ERR_CERT_DATE_INVALID; case CRYPT_E_NO_REVOCATION_CHECK: return ERR_CERT_NO_REVOCATION_MECHANISM; case CRYPT_E_REVOCATION_OFFLINE: return ERR_CERT_UNABLE_TO_CHECK_REVOCATION; case CRYPT_E_REVOKED: // Schannel and CryptoAPI return ERR_CERT_REVOKED; case SEC_E_CERT_UNKNOWN: case CERT_E_ROLE: return ERR_CERT_INVALID; case CERT_E_WRONG_USAGE: // TODO(wtc): Should we add ERR_CERT_WRONG_USAGE? return ERR_CERT_INVALID; // We received an unexpected_message or illegal_parameter alert message // from the server. case SEC_E_ILLEGAL_MESSAGE: return ERR_SSL_PROTOCOL_ERROR; case SEC_E_ALGORITHM_MISMATCH: return ERR_SSL_VERSION_OR_CIPHER_MISMATCH; case SEC_E_INVALID_HANDLE: return ERR_UNEXPECTED; case SEC_E_OK: return OK; default: LOG(WARNING) << "Unknown error " << err << " mapped to net::ERR_FAILED"; return ERR_FAILED; } } // Map the errors in the chain_context->TrustStatus.dwErrorStatus returned by // CertGetCertificateChain to our certificate status flags. int MapCertChainErrorStatusToCertStatus(DWORD error_status) { int cert_status = 0; // We don't include CERT_TRUST_IS_NOT_TIME_NESTED because it's obsolete and // we wouldn't consider it an error anyway const DWORD kDateInvalidErrors = CERT_TRUST_IS_NOT_TIME_VALID | CERT_TRUST_CTL_IS_NOT_TIME_VALID; if (error_status & kDateInvalidErrors) cert_status |= CERT_STATUS_DATE_INVALID; const DWORD kAuthorityInvalidErrors = CERT_TRUST_IS_UNTRUSTED_ROOT | CERT_TRUST_IS_EXPLICIT_DISTRUST | CERT_TRUST_IS_PARTIAL_CHAIN; if (error_status & kAuthorityInvalidErrors) cert_status |= CERT_STATUS_AUTHORITY_INVALID; if ((error_status & CERT_TRUST_REVOCATION_STATUS_UNKNOWN) && !(error_status & CERT_TRUST_IS_OFFLINE_REVOCATION)) cert_status |= CERT_STATUS_NO_REVOCATION_MECHANISM; if (error_status & CERT_TRUST_IS_OFFLINE_REVOCATION) cert_status |= CERT_STATUS_UNABLE_TO_CHECK_REVOCATION; if (error_status & CERT_TRUST_IS_REVOKED) cert_status |= CERT_STATUS_REVOKED; const DWORD kWrongUsageErrors = CERT_TRUST_IS_NOT_VALID_FOR_USAGE | CERT_TRUST_CTL_IS_NOT_VALID_FOR_USAGE; if (error_status & kWrongUsageErrors) { // TODO(wtc): Should we add CERT_STATUS_WRONG_USAGE? cert_status |= CERT_STATUS_INVALID; } // The rest of the errors. const DWORD kCertInvalidErrors = CERT_TRUST_IS_NOT_SIGNATURE_VALID | CERT_TRUST_IS_CYCLIC | CERT_TRUST_INVALID_EXTENSION | CERT_TRUST_INVALID_POLICY_CONSTRAINTS | CERT_TRUST_INVALID_BASIC_CONSTRAINTS | CERT_TRUST_INVALID_NAME_CONSTRAINTS | CERT_TRUST_CTL_IS_NOT_SIGNATURE_VALID | CERT_TRUST_HAS_NOT_SUPPORTED_NAME_CONSTRAINT | CERT_TRUST_HAS_NOT_DEFINED_NAME_CONSTRAINT | CERT_TRUST_HAS_NOT_PERMITTED_NAME_CONSTRAINT | CERT_TRUST_HAS_EXCLUDED_NAME_CONSTRAINT | CERT_TRUST_NO_ISSUANCE_CHAIN_POLICY | CERT_TRUST_HAS_NOT_SUPPORTED_CRITICAL_EXT; if (error_status & kCertInvalidErrors) cert_status |= CERT_STATUS_INVALID; return cert_status; } void ExplodedTimeToSystemTime(const base::Time::Exploded& exploded, SYSTEMTIME* system_time) { system_time->wYear = exploded.year; system_time->wMonth = exploded.month; system_time->wDayOfWeek = exploded.day_of_week; system_time->wDay = exploded.day_of_month; system_time->wHour = exploded.hour; system_time->wMinute = exploded.minute; system_time->wSecond = exploded.second; system_time->wMilliseconds = exploded.millisecond; } //----------------------------------------------------------------------------- // Wrappers of malloc and free for CRYPT_DECODE_PARA, which requires the // WINAPI calling convention. void* WINAPI MyCryptAlloc(size_t size) { return malloc(size); } void WINAPI MyCryptFree(void* p) { free(p); } // Decodes the cert's subjectAltName extension into a CERT_ALT_NAME_INFO // structure and stores it in *output. void GetCertSubjectAltName(PCCERT_CONTEXT cert, scoped_ptr_malloc<CERT_ALT_NAME_INFO>* output) { PCERT_EXTENSION extension = CertFindExtension(szOID_SUBJECT_ALT_NAME2, cert->pCertInfo->cExtension, cert->pCertInfo->rgExtension); if (!extension) return; CRYPT_DECODE_PARA decode_para; decode_para.cbSize = sizeof(decode_para); decode_para.pfnAlloc = MyCryptAlloc; decode_para.pfnFree = MyCryptFree; CERT_ALT_NAME_INFO* alt_name_info = NULL; DWORD alt_name_info_size = 0; BOOL rv; rv = CryptDecodeObjectEx(X509_ASN_ENCODING | PKCS_7_ASN_ENCODING, szOID_SUBJECT_ALT_NAME2, extension->Value.pbData, extension->Value.cbData, CRYPT_DECODE_ALLOC_FLAG | CRYPT_DECODE_NOCOPY_FLAG, &decode_para, &alt_name_info, &alt_name_info_size); if (rv) output->reset(alt_name_info); } // Returns true if any common name in the certificate's Subject field contains // a NULL character. bool CertSubjectCommonNameHasNull(PCCERT_CONTEXT cert) { CRYPT_DECODE_PARA decode_para; decode_para.cbSize = sizeof(decode_para); decode_para.pfnAlloc = MyCryptAlloc; decode_para.pfnFree = MyCryptFree; CERT_NAME_INFO* name_info = NULL; DWORD name_info_size = 0; BOOL rv; rv = CryptDecodeObjectEx(X509_ASN_ENCODING | PKCS_7_ASN_ENCODING, X509_NAME, cert->pCertInfo->Subject.pbData, cert->pCertInfo->Subject.cbData, CRYPT_DECODE_ALLOC_FLAG | CRYPT_DECODE_NOCOPY_FLAG, &decode_para, &name_info, &name_info_size); if (rv) { scoped_ptr_malloc<CERT_NAME_INFO> scoped_name_info(name_info); // The Subject field may have multiple common names. According to the // "PKI Layer Cake" paper, CryptoAPI uses every common name in the // Subject field, so we inspect every common name. // // From RFC 5280: // X520CommonName ::= CHOICE { // teletexString TeletexString (SIZE (1..ub-common-name)), // printableString PrintableString (SIZE (1..ub-common-name)), // universalString UniversalString (SIZE (1..ub-common-name)), // utf8String UTF8String (SIZE (1..ub-common-name)), // bmpString BMPString (SIZE (1..ub-common-name)) } // // We also check IA5String and VisibleString. for (DWORD i = 0; i < name_info->cRDN; ++i) { PCERT_RDN rdn = &name_info->rgRDN[i]; for (DWORD j = 0; j < rdn->cRDNAttr; ++j) { PCERT_RDN_ATTR rdn_attr = &rdn->rgRDNAttr[j]; if (strcmp(rdn_attr->pszObjId, szOID_COMMON_NAME) == 0) { switch (rdn_attr->dwValueType) { // After the CryptoAPI ASN.1 security vulnerabilities described in // http://www.microsoft.com/technet/security/Bulletin/MS09-056.mspx // were patched, we get CERT_RDN_ENCODED_BLOB for a common name // that contains a NULL character. case CERT_RDN_ENCODED_BLOB: break; // Array of 8-bit characters. case CERT_RDN_PRINTABLE_STRING: case CERT_RDN_TELETEX_STRING: case CERT_RDN_IA5_STRING: case CERT_RDN_VISIBLE_STRING: for (DWORD k = 0; k < rdn_attr->Value.cbData; ++k) { if (rdn_attr->Value.pbData[k] == '\0') return true; } break; // Array of 16-bit characters. case CERT_RDN_BMP_STRING: case CERT_RDN_UTF8_STRING: { DWORD num_wchars = rdn_attr->Value.cbData / 2; wchar_t* common_name = reinterpret_cast<wchar_t*>(rdn_attr->Value.pbData); for (DWORD k = 0; k < num_wchars; ++k) { if (common_name[k] == L'\0') return true; } break; } // Array of ints (32-bit). case CERT_RDN_UNIVERSAL_STRING: { DWORD num_ints = rdn_attr->Value.cbData / 4; int* common_name = reinterpret_cast<int*>(rdn_attr->Value.pbData); for (DWORD k = 0; k < num_ints; ++k) { if (common_name[k] == 0) return true; } break; } default: NOTREACHED(); break; } } } } } return false; } // Saves some information about the certificate chain chain_context in // *verify_result. The caller MUST initialize *verify_result before calling // this function. void GetCertChainInfo(PCCERT_CHAIN_CONTEXT chain_context, CertVerifyResult* verify_result) { PCERT_SIMPLE_CHAIN first_chain = chain_context->rgpChain[0]; int num_elements = first_chain->cElement; PCERT_CHAIN_ELEMENT* element = first_chain->rgpElement; // Each chain starts with the end entity certificate (i = 0) and ends with // the root CA certificate (i = num_elements - 1). Do not inspect the // signature algorithm of the root CA certificate because the signature on // the trust anchor is not important. for (int i = 0; i < num_elements - 1; ++i) { PCCERT_CONTEXT cert = element[i]->pCertContext; const char* algorithm = cert->pCertInfo->SignatureAlgorithm.pszObjId; if (strcmp(algorithm, szOID_RSA_MD5RSA) == 0) { // md5WithRSAEncryption: 1.2.840.113549.1.1.4 verify_result->has_md5 = true; if (i != 0) verify_result->has_md5_ca = true; } else if (strcmp(algorithm, szOID_RSA_MD2RSA) == 0) { // md2WithRSAEncryption: 1.2.840.113549.1.1.2 verify_result->has_md2 = true; if (i != 0) verify_result->has_md2_ca = true; } else if (strcmp(algorithm, szOID_RSA_MD4RSA) == 0) { // md4WithRSAEncryption: 1.2.840.113549.1.1.3 verify_result->has_md4 = true; } } } // Decodes the cert's certificatePolicies extension into a CERT_POLICIES_INFO // structure and stores it in *output. void GetCertPoliciesInfo(PCCERT_CONTEXT cert, scoped_ptr_malloc<CERT_POLICIES_INFO>* output) { PCERT_EXTENSION extension = CertFindExtension(szOID_CERT_POLICIES, cert->pCertInfo->cExtension, cert->pCertInfo->rgExtension); if (!extension) return; CRYPT_DECODE_PARA decode_para; decode_para.cbSize = sizeof(decode_para); decode_para.pfnAlloc = MyCryptAlloc; decode_para.pfnFree = MyCryptFree; CERT_POLICIES_INFO* policies_info = NULL; DWORD policies_info_size = 0; BOOL rv; rv = CryptDecodeObjectEx(X509_ASN_ENCODING | PKCS_7_ASN_ENCODING, szOID_CERT_POLICIES, extension->Value.pbData, extension->Value.cbData, CRYPT_DECODE_ALLOC_FLAG | CRYPT_DECODE_NOCOPY_FLAG, &decode_para, &policies_info, &policies_info_size); if (rv) output->reset(policies_info); } // Helper function to parse a principal from a WinInet description of that // principal. void ParsePrincipal(const std::string& description, CertPrincipal* principal) { // The description of the principal is a string with each LDAP value on // a separate line. const std::string kDelimiters("\r\n"); std::vector<std::string> common_names, locality_names, state_names, country_names; // TODO(jcampan): add business_category and serial_number. const std::string kPrefixes[] = { std::string("CN="), std::string("L="), std::string("S="), std::string("C="), std::string("STREET="), std::string("O="), std::string("OU="), std::string("DC=") }; std::vector<std::string>* values[] = { &common_names, &locality_names, &state_names, &country_names, &(principal->street_addresses), &(principal->organization_names), &(principal->organization_unit_names), &(principal->domain_components) }; DCHECK(arraysize(kPrefixes) == arraysize(values)); StringTokenizer str_tok(description, kDelimiters); while (str_tok.GetNext()) { std::string entry = str_tok.token(); for (int i = 0; i < arraysize(kPrefixes); i++) { if (!entry.compare(0, kPrefixes[i].length(), kPrefixes[i])) { std::string value = entry.substr(kPrefixes[i].length()); // Remove enclosing double-quotes if any. if (value.size() >= 2 && value[0] == '"' && value[value.size() - 1] == '"') value = value.substr(1, value.size() - 2); values[i]->push_back(value); break; } } } // We don't expect to have more than one CN, L, S, and C. If there is more // than one entry for CN, L, S, and C, we will use the first entry. Although // RFC 2818 Section 3.1 says the "most specific" CN should be used, that term // has been removed in draft-saintandre-tls-server-id-check, which requires // that the Subject field contains only one CN. So it is fine for us to just // use the first CN. std::vector<std::string>* single_value_lists[4] = { &common_names, &locality_names, &state_names, &country_names }; std::string* single_values[4] = { &principal->common_name, &principal->locality_name, &principal->state_or_province_name, &principal->country_name }; for (int i = 0; i < arraysize(single_value_lists); ++i) { int length = static_cast<int>(single_value_lists[i]->size()); if (!single_value_lists[i]->empty()) *(single_values[i]) = (*(single_value_lists[i]))[0]; } } void AddCertsFromStore(HCERTSTORE store, X509Certificate::OSCertHandles* results) { PCCERT_CONTEXT cert = NULL; while ((cert = CertEnumCertificatesInStore(store, cert)) != NULL) { PCCERT_CONTEXT to_add = NULL; if (CertAddCertificateContextToStore( NULL, // The cert won't be persisted in any cert store. This breaks // any association the context currently has to |store|, which // allows us, the caller, to safely close |store| without // releasing the cert handles. cert, CERT_STORE_ADD_USE_EXISTING, &to_add) && to_add != NULL) { // When processing stores generated from PKCS#7/PKCS#12 files, it // appears that the order returned is the inverse of the order that it // appeared in the file. // TODO(rsleevi): Ensure this order is consistent across all Win // versions results->insert(results->begin(), to_add); } } } X509Certificate::OSCertHandles ParsePKCS7(const char* data, size_t length) { X509Certificate::OSCertHandles results; CERT_BLOB data_blob; data_blob.cbData = length; data_blob.pbData = reinterpret_cast<BYTE*>(const_cast<char*>(data)); HCERTSTORE out_store = NULL; DWORD expected_types = CERT_QUERY_CONTENT_FLAG_PKCS7_SIGNED | CERT_QUERY_CONTENT_FLAG_PKCS7_SIGNED_EMBED | CERT_QUERY_CONTENT_FLAG_PKCS7_UNSIGNED; if (!CryptQueryObject(CERT_QUERY_OBJECT_BLOB, &data_blob, expected_types, CERT_QUERY_FORMAT_FLAG_BINARY, 0, NULL, NULL, NULL, &out_store, NULL, NULL) || out_store == NULL) { return results; } AddCertsFromStore(out_store, &results); CertCloseStore(out_store, CERT_CLOSE_STORE_CHECK_FLAG); return results; } void AppendPublicKeyHashes(PCCERT_CHAIN_CONTEXT chain, std::vector<SHA1Fingerprint>* hashes) { if (chain->cChain == 0) return; PCERT_SIMPLE_CHAIN first_chain = chain->rgpChain[0]; PCERT_CHAIN_ELEMENT* const element = first_chain->rgpElement; const DWORD num_elements = first_chain->cElement; for (DWORD i = 0; i < num_elements; i++) { PCCERT_CONTEXT cert = element[i]->pCertContext; base::StringPiece der_bytes( reinterpret_cast<const char*>(cert->pbCertEncoded), cert->cbCertEncoded); base::StringPiece spki_bytes; if (!asn1::ExtractSPKIFromDERCert(der_bytes, &spki_bytes)) continue; SHA1Fingerprint hash; base::SHA1HashBytes(reinterpret_cast<const uint8*>(spki_bytes.data()), spki_bytes.size(), hash.data); hashes->push_back(hash); } } } // namespace void X509Certificate::Initialize() { std::wstring subject_info; std::wstring issuer_info; DWORD name_size; DCHECK(cert_handle_); name_size = CertNameToStr(cert_handle_->dwCertEncodingType, &cert_handle_->pCertInfo->Subject, CERT_X500_NAME_STR | CERT_NAME_STR_CRLF_FLAG, NULL, 0); name_size = CertNameToStr(cert_handle_->dwCertEncodingType, &cert_handle_->pCertInfo->Subject, CERT_X500_NAME_STR | CERT_NAME_STR_CRLF_FLAG, WriteInto(&subject_info, name_size), name_size); name_size = CertNameToStr(cert_handle_->dwCertEncodingType, &cert_handle_->pCertInfo->Issuer, CERT_X500_NAME_STR | CERT_NAME_STR_CRLF_FLAG, NULL, 0); name_size = CertNameToStr(cert_handle_->dwCertEncodingType, &cert_handle_->pCertInfo->Issuer, CERT_X500_NAME_STR | CERT_NAME_STR_CRLF_FLAG, WriteInto(&issuer_info, name_size), name_size); ParsePrincipal(WideToUTF8(subject_info), &subject_); ParsePrincipal(WideToUTF8(issuer_info), &issuer_); valid_start_ = Time::FromFileTime(cert_handle_->pCertInfo->NotBefore); valid_expiry_ = Time::FromFileTime(cert_handle_->pCertInfo->NotAfter); fingerprint_ = CalculateFingerprint(cert_handle_); const CRYPT_INTEGER_BLOB* serial = &cert_handle_->pCertInfo->SerialNumber; scoped_array<uint8> serial_bytes(new uint8[serial->cbData]); for (unsigned i = 0; i < serial->cbData; i++) serial_bytes[i] = serial->pbData[serial->cbData - i - 1]; serial_number_ = std::string( reinterpret_cast<char*>(serial_bytes.get()), serial->cbData); // Remove leading zeros. while (serial_number_.size() > 1 && serial_number_[0] == 0) serial_number_ = serial_number_.substr(1, serial_number_.size() - 1); } // IsIssuedByKnownRoot returns true if the given chain is rooted at a root CA // which we recognise as a standard root. // static bool X509Certificate::IsIssuedByKnownRoot(PCCERT_CHAIN_CONTEXT chain_context) { PCERT_SIMPLE_CHAIN first_chain = chain_context->rgpChain[0]; int num_elements = first_chain->cElement; if (num_elements < 1) return false; PCERT_CHAIN_ELEMENT* element = first_chain->rgpElement; PCCERT_CONTEXT cert = element[num_elements - 1]->pCertContext; SHA1Fingerprint hash = CalculateFingerprint(cert); return IsSHA1HashInSortedArray( hash, &kKnownRootCertSHA1Hashes[0][0], sizeof(kKnownRootCertSHA1Hashes)); } // static X509Certificate* X509Certificate::CreateSelfSigned( crypto::RSAPrivateKey* key, const std::string& subject, uint32 serial_number, base::TimeDelta valid_duration) { // Get the ASN.1 encoding of the certificate subject. std::wstring w_subject = ASCIIToWide(subject); DWORD encoded_subject_length = 0; if (!CertStrToName( X509_ASN_ENCODING, w_subject.c_str(), CERT_X500_NAME_STR, NULL, NULL, &encoded_subject_length, NULL)) { return NULL; } scoped_array<BYTE> encoded_subject(new BYTE[encoded_subject_length]); if (!CertStrToName( X509_ASN_ENCODING, w_subject.c_str(), CERT_X500_NAME_STR, NULL, encoded_subject.get(), &encoded_subject_length, NULL)) { return NULL; } CERT_NAME_BLOB subject_name; memset(&subject_name, 0, sizeof(subject_name)); subject_name.cbData = encoded_subject_length; subject_name.pbData = encoded_subject.get(); CRYPT_ALGORITHM_IDENTIFIER sign_algo; memset(&sign_algo, 0, sizeof(sign_algo)); sign_algo.pszObjId = szOID_RSA_SHA1RSA; base::Time not_before = base::Time::Now(); base::Time not_after = not_before + valid_duration; base::Time::Exploded exploded; // Create the system time structs representing our exploded times. not_before.UTCExplode(&exploded); SYSTEMTIME start_time; ExplodedTimeToSystemTime(exploded, &start_time); not_after.UTCExplode(&exploded); SYSTEMTIME end_time; ExplodedTimeToSystemTime(exploded, &end_time); PCCERT_CONTEXT cert_handle = CertCreateSelfSignCertificate(key->provider(), &subject_name, CERT_CREATE_SELFSIGN_NO_KEY_INFO, NULL, &sign_algo, &start_time, &end_time, NULL); DCHECK(cert_handle) << "Failed to create self-signed certificate: " << GetLastError(); if (!cert_handle) return NULL; X509Certificate* cert = CreateFromHandle(cert_handle, SOURCE_LONE_CERT_IMPORT, OSCertHandles()); FreeOSCertHandle(cert_handle); return cert; } void X509Certificate::GetDNSNames(std::vector<std::string>* dns_names) const { dns_names->clear(); if (cert_handle_) { scoped_ptr_malloc<CERT_ALT_NAME_INFO> alt_name_info; GetCertSubjectAltName(cert_handle_, &alt_name_info); CERT_ALT_NAME_INFO* alt_name = alt_name_info.get(); if (alt_name) { int num_entries = alt_name->cAltEntry; for (int i = 0; i < num_entries; i++) { // dNSName is an ASN.1 IA5String representing a string of ASCII // characters, so we can use WideToASCII here. if (alt_name->rgAltEntry[i].dwAltNameChoice == CERT_ALT_NAME_DNS_NAME) dns_names->push_back( WideToASCII(alt_name->rgAltEntry[i].pwszDNSName)); } } } if (dns_names->empty()) dns_names->push_back(subject_.common_name); } class GlobalCertStore { public: HCERTSTORE cert_store() { return cert_store_; } private: friend struct base::DefaultLazyInstanceTraits<GlobalCertStore>; GlobalCertStore() : cert_store_(CertOpenStore(CERT_STORE_PROV_MEMORY, 0, NULL, 0, NULL)) { } ~GlobalCertStore() { CertCloseStore(cert_store_, 0 /* flags */); } const HCERTSTORE cert_store_; DISALLOW_COPY_AND_ASSIGN(GlobalCertStore); }; static base::LazyInstance<GlobalCertStore> g_cert_store( base::LINKER_INITIALIZED); // static HCERTSTORE X509Certificate::cert_store() { return g_cert_store.Get().cert_store(); } int X509Certificate::Verify(const std::string& hostname, int flags, CertVerifyResult* verify_result) const { verify_result->Reset(); if (!cert_handle_) return ERR_UNEXPECTED; if (IsBlacklisted()) { verify_result->cert_status |= CERT_STATUS_REVOKED; return ERR_CERT_REVOKED; } // Build and validate certificate chain. CERT_CHAIN_PARA chain_para; memset(&chain_para, 0, sizeof(chain_para)); chain_para.cbSize = sizeof(chain_para); // ExtendedKeyUsage. // We still need to request szOID_SERVER_GATED_CRYPTO and szOID_SGC_NETSCAPE // today because some certificate chains need them. IE also requests these // two usages. static const LPSTR usage[] = { szOID_PKIX_KP_SERVER_AUTH, szOID_SERVER_GATED_CRYPTO, szOID_SGC_NETSCAPE }; chain_para.RequestedUsage.dwType = USAGE_MATCH_TYPE_OR; chain_para.RequestedUsage.Usage.cUsageIdentifier = arraysize(usage); chain_para.RequestedUsage.Usage.rgpszUsageIdentifier = const_cast<LPSTR*>(usage); // We can set CERT_CHAIN_RETURN_LOWER_QUALITY_CONTEXTS to get more chains. DWORD chain_flags = CERT_CHAIN_CACHE_END_CERT; if (flags & VERIFY_REV_CHECKING_ENABLED) { verify_result->cert_status |= CERT_STATUS_REV_CHECKING_ENABLED; chain_flags |= CERT_CHAIN_REVOCATION_CHECK_CHAIN_EXCLUDE_ROOT; } else { chain_flags |= CERT_CHAIN_REVOCATION_CHECK_CACHE_ONLY; // EV requires revocation checking. flags &= ~VERIFY_EV_CERT; } // Get the certificatePolicies extension of the certificate. scoped_ptr_malloc<CERT_POLICIES_INFO> policies_info; LPSTR ev_policy_oid = NULL; if (flags & VERIFY_EV_CERT) { GetCertPoliciesInfo(cert_handle_, &policies_info); if (policies_info.get()) { EVRootCAMetadata* metadata = EVRootCAMetadata::GetInstance(); for (DWORD i = 0; i < policies_info->cPolicyInfo; ++i) { LPSTR policy_oid = policies_info->rgPolicyInfo[i].pszPolicyIdentifier; if (metadata->IsEVPolicyOID(policy_oid)) { ev_policy_oid = policy_oid; chain_para.RequestedIssuancePolicy.dwType = USAGE_MATCH_TYPE_AND; chain_para.RequestedIssuancePolicy.Usage.cUsageIdentifier = 1; chain_para.RequestedIssuancePolicy.Usage.rgpszUsageIdentifier = &ev_policy_oid; break; } } } } // For non-test scenarios, use the default HCERTCHAINENGINE, NULL, which // corresponds to HCCE_CURRENT_USER and is is initialized as needed by // crypt32. However, when testing, it is necessary to create a new // HCERTCHAINENGINE and use that instead. This is because each // HCERTCHAINENGINE maintains a cache of information about certificates // encountered, and each test run may modify the trust status of a // certificate. ScopedHCERTCHAINENGINE chain_engine(NULL); if (TestRootCerts::HasInstance()) chain_engine.reset(TestRootCerts::GetInstance()->GetChainEngine()); PCCERT_CHAIN_CONTEXT chain_context; // IE passes a non-NULL pTime argument that specifies the current system // time. IE passes CERT_CHAIN_REVOCATION_CHECK_CHAIN_EXCLUDE_ROOT as the // chain_flags argument. if (!CertGetCertificateChain( chain_engine, cert_handle_, NULL, // current system time cert_handle_->hCertStore, &chain_para, chain_flags, NULL, // reserved &chain_context)) { return MapSecurityError(GetLastError()); } if (chain_context->TrustStatus.dwErrorStatus & CERT_TRUST_IS_NOT_VALID_FOR_USAGE) { ev_policy_oid = NULL; chain_para.RequestedIssuancePolicy.Usage.cUsageIdentifier = 0; chain_para.RequestedIssuancePolicy.Usage.rgpszUsageIdentifier = NULL; CertFreeCertificateChain(chain_context); if (!CertGetCertificateChain( chain_engine, cert_handle_, NULL, // current system time cert_handle_->hCertStore, &chain_para, chain_flags, NULL, // reserved &chain_context)) { return MapSecurityError(GetLastError()); } } ScopedCertChainContext scoped_chain_context(chain_context); GetCertChainInfo(chain_context, verify_result); verify_result->cert_status |= MapCertChainErrorStatusToCertStatus( chain_context->TrustStatus.dwErrorStatus); // Treat certificates signed using broken signature algorithms as invalid. if (verify_result->has_md4) verify_result->cert_status |= CERT_STATUS_INVALID; // Flag certificates signed using weak signature algorithms. if (verify_result->has_md2) verify_result->cert_status |= CERT_STATUS_WEAK_SIGNATURE_ALGORITHM; // Flag certificates that have a Subject common name with a NULL character. if (CertSubjectCommonNameHasNull(cert_handle_)) verify_result->cert_status |= CERT_STATUS_INVALID; std::wstring wstr_hostname = ASCIIToWide(hostname); SSL_EXTRA_CERT_CHAIN_POLICY_PARA extra_policy_para; memset(&extra_policy_para, 0, sizeof(extra_policy_para)); extra_policy_para.cbSize = sizeof(extra_policy_para); extra_policy_para.dwAuthType = AUTHTYPE_SERVER; extra_policy_para.fdwChecks = 0; extra_policy_para.pwszServerName = const_cast<wchar_t*>(wstr_hostname.c_str()); CERT_CHAIN_POLICY_PARA policy_para; memset(&policy_para, 0, sizeof(policy_para)); policy_para.cbSize = sizeof(policy_para); policy_para.dwFlags = 0; policy_para.pvExtraPolicyPara = &extra_policy_para; CERT_CHAIN_POLICY_STATUS policy_status; memset(&policy_status, 0, sizeof(policy_status)); policy_status.cbSize = sizeof(policy_status); if (!CertVerifyCertificateChainPolicy( CERT_CHAIN_POLICY_SSL, chain_context, &policy_para, &policy_status)) { return MapSecurityError(GetLastError()); } if (policy_status.dwError) { verify_result->cert_status |= MapNetErrorToCertStatus( MapSecurityError(policy_status.dwError)); // CertVerifyCertificateChainPolicy reports only one error (in // policy_status.dwError) if the certificate has multiple errors. // CertGetCertificateChain doesn't report certificate name mismatch, so // CertVerifyCertificateChainPolicy is the only function that can report // certificate name mismatch. // // To prevent a potential certificate name mismatch from being hidden by // some other certificate error, if we get any other certificate error, // we call CertVerifyCertificateChainPolicy again, ignoring all other // certificate errors. Both extra_policy_para.fdwChecks and // policy_para.dwFlags allow us to ignore certificate errors, so we set // them both. if (policy_status.dwError != CERT_E_CN_NO_MATCH) { const DWORD extra_ignore_flags = 0x00000080 | // SECURITY_FLAG_IGNORE_REVOCATION 0x00000100 | // SECURITY_FLAG_IGNORE_UNKNOWN_CA 0x00002000 | // SECURITY_FLAG_IGNORE_CERT_DATE_INVALID 0x00000200; // SECURITY_FLAG_IGNORE_WRONG_USAGE extra_policy_para.fdwChecks = extra_ignore_flags; const DWORD ignore_flags = CERT_CHAIN_POLICY_IGNORE_ALL_NOT_TIME_VALID_FLAGS | CERT_CHAIN_POLICY_IGNORE_INVALID_BASIC_CONSTRAINTS_FLAG | CERT_CHAIN_POLICY_ALLOW_UNKNOWN_CA_FLAG | CERT_CHAIN_POLICY_IGNORE_WRONG_USAGE_FLAG | CERT_CHAIN_POLICY_IGNORE_INVALID_NAME_FLAG | CERT_CHAIN_POLICY_IGNORE_INVALID_POLICY_FLAG | CERT_CHAIN_POLICY_IGNORE_ALL_REV_UNKNOWN_FLAGS | CERT_CHAIN_POLICY_ALLOW_TESTROOT_FLAG | CERT_CHAIN_POLICY_TRUST_TESTROOT_FLAG | CERT_CHAIN_POLICY_IGNORE_NOT_SUPPORTED_CRITICAL_EXT_FLAG | CERT_CHAIN_POLICY_IGNORE_PEER_TRUST_FLAG; policy_para.dwFlags = ignore_flags; if (!CertVerifyCertificateChainPolicy( CERT_CHAIN_POLICY_SSL, chain_context, &policy_para, &policy_status)) { return MapSecurityError(GetLastError()); } if (policy_status.dwError) { verify_result->cert_status |= MapNetErrorToCertStatus( MapSecurityError(policy_status.dwError)); } } } // TODO(wtc): Suppress CERT_STATUS_NO_REVOCATION_MECHANISM for now to be // compatible with WinHTTP, which doesn't report this error (bug 3004). verify_result->cert_status &= ~CERT_STATUS_NO_REVOCATION_MECHANISM; if (IsCertStatusError(verify_result->cert_status)) return MapCertStatusToNetError(verify_result->cert_status); AppendPublicKeyHashes(chain_context, &verify_result->public_key_hashes); verify_result->is_issued_by_known_root = IsIssuedByKnownRoot(chain_context); if (ev_policy_oid && CheckEV(chain_context, ev_policy_oid)) verify_result->cert_status |= CERT_STATUS_IS_EV; if (IsPublicKeyBlacklisted(verify_result->public_key_hashes)) { verify_result->cert_status |= CERT_STATUS_AUTHORITY_INVALID; return MapCertStatusToNetError(verify_result->cert_status); } return OK; } bool X509Certificate::GetDEREncoded(std::string* encoded) { if (!cert_handle_->pbCertEncoded || !cert_handle_->cbCertEncoded) return false; encoded->clear(); encoded->append(reinterpret_cast<char*>(cert_handle_->pbCertEncoded), cert_handle_->cbCertEncoded); return true; } // Returns true if the certificate is an extended-validation certificate. // // This function checks the certificatePolicies extensions of the // certificates in the certificate chain according to Section 7 (pp. 11-12) // of the EV Certificate Guidelines Version 1.0 at // http://cabforum.org/EV_Certificate_Guidelines.pdf. bool X509Certificate::CheckEV(PCCERT_CHAIN_CONTEXT chain_context, const char* policy_oid) const { DCHECK(chain_context->cChain != 0); // If the cert doesn't match any of the policies, the // CERT_TRUST_IS_NOT_VALID_FOR_USAGE bit (0x10) in // chain_context->TrustStatus.dwErrorStatus is set. DWORD error_status = chain_context->TrustStatus.dwErrorStatus; DWORD info_status = chain_context->TrustStatus.dwInfoStatus; if (!chain_context->cChain || error_status != CERT_TRUST_NO_ERROR) return false; // Check the end certificate simple chain (chain_context->rgpChain[0]). // If the end certificate's certificatePolicies extension contains the // EV policy OID of the root CA, return true. PCERT_CHAIN_ELEMENT* element = chain_context->rgpChain[0]->rgpElement; int num_elements = chain_context->rgpChain[0]->cElement; if (num_elements < 2) return false; // Look up the EV policy OID of the root CA. PCCERT_CONTEXT root_cert = element[num_elements - 1]->pCertContext; SHA1Fingerprint fingerprint = CalculateFingerprint(root_cert); EVRootCAMetadata* metadata = EVRootCAMetadata::GetInstance(); return metadata->HasEVPolicyOID(fingerprint, policy_oid); } bool X509Certificate::VerifyEV() const { // We don't call this private method, but we do need to implement it because // it's defined in x509_certificate.h. We perform EV checking in the // Verify() above. NOTREACHED(); return false; } // static bool X509Certificate::IsSameOSCert(X509Certificate::OSCertHandle a, X509Certificate::OSCertHandle b) { DCHECK(a && b); if (a == b) return true; return a->cbCertEncoded == b->cbCertEncoded && memcmp(a->pbCertEncoded, b->pbCertEncoded, a->cbCertEncoded) == 0; } // static X509Certificate::OSCertHandle X509Certificate::CreateOSCertHandleFromBytes( const char* data, int length) { OSCertHandle cert_handle = NULL; if (!CertAddEncodedCertificateToStore( NULL, // the cert won't be persisted in any cert store X509_ASN_ENCODING, reinterpret_cast<const BYTE*>(data), length, CERT_STORE_ADD_USE_EXISTING, &cert_handle)) return NULL; return cert_handle; } X509Certificate::OSCertHandles X509Certificate::CreateOSCertHandlesFromBytes( const char* data, int length, Format format) { OSCertHandles results; switch (format) { case FORMAT_SINGLE_CERTIFICATE: { OSCertHandle handle = CreateOSCertHandleFromBytes(data, length); if (handle != NULL) results.push_back(handle); break; } case FORMAT_PKCS7: results = ParsePKCS7(data, length); break; default: NOTREACHED() << "Certificate format " << format << " unimplemented"; break; } return results; } // static X509Certificate::OSCertHandle X509Certificate::DupOSCertHandle( OSCertHandle cert_handle) { return CertDuplicateCertificateContext(cert_handle); } // static void X509Certificate::FreeOSCertHandle(OSCertHandle cert_handle) { CertFreeCertificateContext(cert_handle); } // static SHA1Fingerprint X509Certificate::CalculateFingerprint( OSCertHandle cert) { DCHECK(NULL != cert->pbCertEncoded); DCHECK(0 != cert->cbCertEncoded); BOOL rv; SHA1Fingerprint sha1; DWORD sha1_size = sizeof(sha1.data); rv = CryptHashCertificate(NULL, CALG_SHA1, 0, cert->pbCertEncoded, cert->cbCertEncoded, sha1.data, &sha1_size); DCHECK(rv && sha1_size == sizeof(sha1.data)); if (!rv) memset(sha1.data, 0, sizeof(sha1.data)); return sha1; } // static X509Certificate::OSCertHandle X509Certificate::ReadCertHandleFromPickle(const Pickle& pickle, void** pickle_iter) { const char* data; int length; if (!pickle.ReadData(pickle_iter, &data, &length)) return NULL; OSCertHandle cert_handle = NULL; if (!CertAddSerializedElementToStore( NULL, // the cert won't be persisted in any cert store reinterpret_cast<const BYTE*>(data), length, CERT_STORE_ADD_USE_EXISTING, 0, CERT_STORE_CERTIFICATE_CONTEXT_FLAG, NULL, reinterpret_cast<const void **>(&cert_handle))) { return NULL; } return cert_handle; } // static bool X509Certificate::WriteCertHandleToPickle(OSCertHandle cert_handle, Pickle* pickle) { DWORD length = 0; if (!CertSerializeCertificateStoreElement(cert_handle, 0, NULL, &length)) return false; std::vector<BYTE> buffer(length); // Serialize |cert_handle| in a way that will preserve any extended // attributes set on the handle, such as the location to the certificate's // private key. if (!CertSerializeCertificateStoreElement(cert_handle, 0, &buffer[0], &length)) { return false; } return pickle->WriteData(reinterpret_cast<const char*>(&buffer[0]), length); } } // namespace net