// Copyright (c) 2010 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // This is a simple application that stress-tests the crash recovery of the disk // cache. The main application starts a copy of itself on a loop, checking the // exit code of the child process. When the child dies in an unexpected way, // the main application quits. // The child application has two threads: one to exercise the cache in an // infinite loop, and another one to asynchronously kill the process. // A regular build should never crash. // To test that the disk cache doesn't generate critical errors with regular // application level crashes, add the following code and re-compile: // // void BackendImpl::CriticalError(int error) { // NOTREACHED(); // // void BackendImpl::ReportError(int error) { // if (error && error != ERR_PREVIOUS_CRASH) { // NOTREACHED(); // } #include <string> #include <vector> #include "base/at_exit.h" #include "base/command_line.h" #include "base/debug/debugger.h" #include "base/file_path.h" #include "base/logging.h" #include "base/message_loop.h" #include "base/path_service.h" #include "base/process_util.h" #include "base/string_number_conversions.h" #include "base/string_util.h" #include "base/threading/platform_thread.h" #include "base/threading/thread.h" #include "base/utf_string_conversions.h" #include "net/base/net_errors.h" #include "net/base/test_completion_callback.h" #include "net/base/io_buffer.h" #include "net/disk_cache/backend_impl.h" #include "net/disk_cache/disk_cache.h" #include "net/disk_cache/disk_cache_test_util.h" using base::Time; const int kError = -1; const int kExpectedCrash = 100; // Starts a new process. int RunSlave(int iteration) { FilePath exe; PathService::Get(base::FILE_EXE, &exe); CommandLine cmdline(exe); cmdline.AppendArg(base::IntToString(iteration)); base::ProcessHandle handle; if (!base::LaunchApp(cmdline, false, false, &handle)) { printf("Unable to run test\n"); return kError; } int exit_code; if (!base::WaitForExitCode(handle, &exit_code)) { printf("Unable to get return code\n"); return kError; } return exit_code; } // Main loop for the master process. int MasterCode() { for (int i = 0; i < 100000; i++) { int ret = RunSlave(i); if (kExpectedCrash != ret) return ret; } printf("More than enough...\n"); return 0; } // ----------------------------------------------------------------------- // This thread will loop forever, adding and removing entries from the cache. // iteration is the current crash cycle, so the entries on the cache are marked // to know which instance of the application wrote them. void StressTheCache(int iteration) { int cache_size = 0x800000; // 8MB FilePath path = GetCacheFilePath().InsertBeforeExtensionASCII("_stress"); base::Thread cache_thread("CacheThread"); if (!cache_thread.StartWithOptions( base::Thread::Options(MessageLoop::TYPE_IO, 0))) return; TestCompletionCallback cb; disk_cache::Backend* cache; int rv = disk_cache::BackendImpl::CreateBackend( path, false, cache_size, net::DISK_CACHE, disk_cache::kNoLoadProtection | disk_cache::kNoRandom, cache_thread.message_loop_proxy(), NULL, &cache, &cb); if (cb.GetResult(rv) != net::OK) { printf("Unable to initialize cache.\n"); return; } printf("Iteration %d, initial entries: %d\n", iteration, cache->GetEntryCount()); int seed = static_cast<int>(Time::Now().ToInternalValue()); srand(seed); #ifdef NDEBUG const int kNumKeys = 5000; #else const int kNumKeys = 1700; #endif const int kNumEntries = 30; std::string keys[kNumKeys]; disk_cache::Entry* entries[kNumEntries] = {0}; for (int i = 0; i < kNumKeys; i++) { keys[i] = GenerateKey(true); } const int kSize = 4000; scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize)); memset(buffer->data(), 'k', kSize); for (int i = 0;; i++) { int slot = rand() % kNumEntries; int key = rand() % kNumKeys; bool truncate = rand() % 2 ? false : true; int size = kSize - (rand() % 4) * kSize / 4; if (entries[slot]) entries[slot]->Close(); rv = cache->OpenEntry(keys[key], &entries[slot], &cb); if (cb.GetResult(rv) != net::OK) { rv = cache->CreateEntry(keys[key], &entries[slot], &cb); CHECK_EQ(net::OK, cb.GetResult(rv)); } base::snprintf(buffer->data(), kSize, "i: %d iter: %d, size: %d, truncate: %d", i, iteration, size, truncate ? 1 : 0); rv = entries[slot]->WriteData(0, 0, buffer, size, &cb, truncate); CHECK_EQ(size, cb.GetResult(rv)); if (rand() % 100 > 80) { key = rand() % kNumKeys; rv = cache->DoomEntry(keys[key], &cb); cb.GetResult(rv); } if (!(i % 100)) printf("Entries: %d \r", i); } } // We want to prevent the timer thread from killing the process while we are // waiting for the debugger to attach. bool g_crashing = false; class CrashTask : public Task { public: CrashTask() {} ~CrashTask() {} virtual void Run() { // Keep trying to run. RunSoon(MessageLoop::current()); if (g_crashing) return; if (rand() % 100 > 1) { printf("sweet death...\n"); #if defined(OS_WIN) // Windows does more work on _exit() that we would like, so we use Kill. base::KillProcessById(base::GetCurrentProcId(), kExpectedCrash, false); #elif defined(OS_POSIX) // On POSIX, _exit() will terminate the process with minimal cleanup, // and it is cleaner than killing. _exit(kExpectedCrash); #endif } } static void RunSoon(MessageLoop* target_loop) { int task_delay = 10000; // 10 seconds CrashTask* task = new CrashTask(); target_loop->PostDelayedTask(FROM_HERE, task, task_delay); } }; // We leak everything here :) bool StartCrashThread() { base::Thread* thread = new base::Thread("party_crasher"); if (!thread->Start()) return false; CrashTask::RunSoon(thread->message_loop()); return true; } void CrashHandler(const std::string& str) { g_crashing = true; base::debug::BreakDebugger(); } // ----------------------------------------------------------------------- int main(int argc, const char* argv[]) { // Setup an AtExitManager so Singleton objects will be destructed. base::AtExitManager at_exit_manager; if (argc < 2) return MasterCode(); logging::SetLogAssertHandler(CrashHandler); // Some time for the memory manager to flush stuff. base::PlatformThread::Sleep(3000); MessageLoop message_loop(MessageLoop::TYPE_IO); char* end; long int iteration = strtol(argv[1], &end, 0); if (!StartCrashThread()) { printf("failed to start thread\n"); return kError; } StressTheCache(iteration); return 0; }