// Copyright (c) 2010 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/http/http_auth_handler_ntlm.h" #include <stdlib.h> // For gethostname #if defined(OS_POSIX) #include <unistd.h> #elif defined(OS_WIN) #include <winsock2.h> #endif #include "base/md5.h" #include "base/rand_util.h" #include "base/string_util.h" #include "base/sys_string_conversions.h" #include "base/utf_string_conversions.h" #include "net/base/net_errors.h" #include "net/base/net_util.h" #include "net/http/des.h" #include "net/http/md4.h" namespace net { // Based on mozilla/security/manager/ssl/src/nsNTLMAuthModule.cpp, // CVS rev. 1.14. // // TODO(wtc): // - The IS_BIG_ENDIAN code is not tested. // - Enable the logging code or just delete it. // - Delete or comment out the LM code, which hasn't been tested and isn't // being used. /* ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is Mozilla. * * The Initial Developer of the Original Code is IBM Corporation. * Portions created by IBM Corporation are Copyright (C) 2003 * IBM Corporation. All Rights Reserved. * * Contributor(s): * Darin Fisher <darin@meer.net> * * Alternatively, the contents of this file may be used under the terms of * either the GNU General Public License Version 2 or later (the "GPL"), or * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ // Discover the endianness by testing processor architecture. #if defined(ARCH_CPU_X86) || defined(ARCH_CPU_X86_64)\ || defined(ARCH_CPU_ARMEL) || defined(ARCH_CPU_MIPSEL) #define IS_LITTLE_ENDIAN 1 #undef IS_BIG_ENDIAN #elif defined(ARCH_CPU_MIPSEB) #undef IS_LITTLE_ENDIAN #define IS_BIG_ENDIAN 1 #else #error "Unknown endianness" #endif #define NTLM_LOG(x) ((void) 0) //----------------------------------------------------------------------------- // This file contains a cross-platform NTLM authentication implementation. It // is based on documentation from: http://davenport.sourceforge.net/ntlm.html //----------------------------------------------------------------------------- enum { NTLM_NegotiateUnicode = 0x00000001, NTLM_NegotiateOEM = 0x00000002, NTLM_RequestTarget = 0x00000004, NTLM_Unknown1 = 0x00000008, NTLM_NegotiateSign = 0x00000010, NTLM_NegotiateSeal = 0x00000020, NTLM_NegotiateDatagramStyle = 0x00000040, NTLM_NegotiateLanManagerKey = 0x00000080, NTLM_NegotiateNetware = 0x00000100, NTLM_NegotiateNTLMKey = 0x00000200, NTLM_Unknown2 = 0x00000400, NTLM_Unknown3 = 0x00000800, NTLM_NegotiateDomainSupplied = 0x00001000, NTLM_NegotiateWorkstationSupplied = 0x00002000, NTLM_NegotiateLocalCall = 0x00004000, NTLM_NegotiateAlwaysSign = 0x00008000, NTLM_TargetTypeDomain = 0x00010000, NTLM_TargetTypeServer = 0x00020000, NTLM_TargetTypeShare = 0x00040000, NTLM_NegotiateNTLM2Key = 0x00080000, NTLM_RequestInitResponse = 0x00100000, NTLM_RequestAcceptResponse = 0x00200000, NTLM_RequestNonNTSessionKey = 0x00400000, NTLM_NegotiateTargetInfo = 0x00800000, NTLM_Unknown4 = 0x01000000, NTLM_Unknown5 = 0x02000000, NTLM_Unknown6 = 0x04000000, NTLM_Unknown7 = 0x08000000, NTLM_Unknown8 = 0x10000000, NTLM_Negotiate128 = 0x20000000, NTLM_NegotiateKeyExchange = 0x40000000, NTLM_Negotiate56 = 0x80000000 }; // We send these flags with our type 1 message. enum { NTLM_TYPE1_FLAGS = (NTLM_NegotiateUnicode | NTLM_NegotiateOEM | NTLM_RequestTarget | NTLM_NegotiateNTLMKey | NTLM_NegotiateAlwaysSign | NTLM_NegotiateNTLM2Key) }; static const char NTLM_SIGNATURE[] = "NTLMSSP"; static const char NTLM_TYPE1_MARKER[] = { 0x01, 0x00, 0x00, 0x00 }; static const char NTLM_TYPE2_MARKER[] = { 0x02, 0x00, 0x00, 0x00 }; static const char NTLM_TYPE3_MARKER[] = { 0x03, 0x00, 0x00, 0x00 }; enum { NTLM_TYPE1_HEADER_LEN = 32, NTLM_TYPE2_HEADER_LEN = 32, NTLM_TYPE3_HEADER_LEN = 64, LM_HASH_LEN = 16, LM_RESP_LEN = 24, NTLM_HASH_LEN = 16, NTLM_RESP_LEN = 24 }; //----------------------------------------------------------------------------- // The return value of this function controls whether or not the LM hash will // be included in response to a NTLM challenge. // // In Mozilla, this function returns the value of the boolean preference // "network.ntlm.send-lm-response". By default, the preference is disabled // since servers should almost never need the LM hash, and the LM hash is what // makes NTLM authentication less secure. See // https://bugzilla.mozilla.org/show_bug.cgi?id=250691 for further details. // // We just return a hardcoded false. static bool SendLM() { return false; } //----------------------------------------------------------------------------- #define LogFlags(x) ((void) 0) #define LogBuf(a, b, c) ((void) 0) #define LogToken(a, b, c) ((void) 0) //----------------------------------------------------------------------------- // Byte order swapping. #define SWAP16(x) ((((x) & 0xff) << 8) | (((x) >> 8) & 0xff)) #define SWAP32(x) ((SWAP16((x) & 0xffff) << 16) | (SWAP16((x) >> 16))) static void* WriteBytes(void* buf, const void* data, uint32 data_len) { memcpy(buf, data, data_len); return static_cast<char*>(buf) + data_len; } static void* WriteDWORD(void* buf, uint32 dword) { #ifdef IS_BIG_ENDIAN // NTLM uses little endian on the wire. dword = SWAP32(dword); #endif return WriteBytes(buf, &dword, sizeof(dword)); } static void* WriteSecBuf(void* buf, uint16 length, uint32 offset) { #ifdef IS_BIG_ENDIAN length = SWAP16(length); offset = SWAP32(offset); #endif buf = WriteBytes(buf, &length, sizeof(length)); buf = WriteBytes(buf, &length, sizeof(length)); buf = WriteBytes(buf, &offset, sizeof(offset)); return buf; } #ifdef IS_BIG_ENDIAN /** * WriteUnicodeLE copies a unicode string from one buffer to another. The * resulting unicode string is in little-endian format. The input string is * assumed to be in the native endianness of the local machine. It is safe * to pass the same buffer as both input and output, which is a handy way to * convert the unicode buffer to little-endian on big-endian platforms. */ static void* WriteUnicodeLE(void* buf, const char16* str, uint32 str_len) { // Convert input string from BE to LE. uint8* cursor = static_cast<uint8*>(buf); const uint8* input = reinterpret_cast<const uint8*>(str); for (uint32 i = 0; i < str_len; ++i, input += 2, cursor += 2) { // Allow for the case where |buf == str|. uint8 temp = input[0]; cursor[0] = input[1]; cursor[1] = temp; } return buf; } #endif static uint16 ReadUint16(const uint8*& buf) { uint16 x = (static_cast<uint16>(buf[0])) | (static_cast<uint16>(buf[1]) << 8); buf += sizeof(x); return x; } static uint32 ReadUint32(const uint8*& buf) { uint32 x = (static_cast<uint32>(buf[0])) | (static_cast<uint32>(buf[1]) << 8) | (static_cast<uint32>(buf[2]) << 16) | (static_cast<uint32>(buf[3]) << 24); buf += sizeof(x); return x; } //----------------------------------------------------------------------------- static void ZapBuf(void* buf, size_t buf_len) { memset(buf, 0, buf_len); } // TODO(wtc): Can we implement ZapString as // s.replace(0, s.size(), s.size(), '\0)? static void ZapString(std::string* s) { ZapBuf(&(*s)[0], s->length()); } static void ZapString(string16* s) { ZapBuf(&(*s)[0], s->length() * 2); } // LM_Hash computes the LM hash of the given password. // // param password // unicode password. // param hash // 16-byte result buffer // // Note: This function is not being used because our SendLM() function always // returns false. static void LM_Hash(const string16& password, uint8* hash) { static const uint8 LM_MAGIC[] = "KGS!@#$%"; // Convert password to OEM character set. We'll just use the native // filesystem charset. std::string passbuf = base::SysWideToNativeMB(UTF16ToWide(password)); StringToUpperASCII(&passbuf); passbuf.resize(14, '\0'); uint8 k1[8], k2[8]; DESMakeKey(reinterpret_cast<const uint8*>(passbuf.data()) , k1); DESMakeKey(reinterpret_cast<const uint8*>(passbuf.data()) + 7, k2); ZapString(&passbuf); // Use password keys to hash LM magic string twice. DESEncrypt(k1, LM_MAGIC, hash); DESEncrypt(k2, LM_MAGIC, hash + 8); } // NTLM_Hash computes the NTLM hash of the given password. // // param password // null-terminated unicode password. // param hash // 16-byte result buffer static void NTLM_Hash(const string16& password, uint8* hash) { #ifdef IS_BIG_ENDIAN uint32 len = password.length(); uint8* passbuf; passbuf = static_cast<uint8*>(malloc(len * 2)); WriteUnicodeLE(passbuf, password.data(), len); weak_crypto::MD4Sum(passbuf, len * 2, hash); ZapBuf(passbuf, len * 2); free(passbuf); #else weak_crypto::MD4Sum(reinterpret_cast<const uint8*>(password.data()), password.length() * 2, hash); #endif } //----------------------------------------------------------------------------- // LM_Response generates the LM response given a 16-byte password hash and the // challenge from the Type-2 message. // // param hash // 16-byte password hash // param challenge // 8-byte challenge from Type-2 message // param response // 24-byte buffer to contain the LM response upon return static void LM_Response(const uint8* hash, const uint8* challenge, uint8* response) { uint8 keybytes[21], k1[8], k2[8], k3[8]; memcpy(keybytes, hash, 16); ZapBuf(keybytes + 16, 5); DESMakeKey(keybytes , k1); DESMakeKey(keybytes + 7, k2); DESMakeKey(keybytes + 14, k3); DESEncrypt(k1, challenge, response); DESEncrypt(k2, challenge, response + 8); DESEncrypt(k3, challenge, response + 16); } //----------------------------------------------------------------------------- // Returns OK or a network error code. static int GenerateType1Msg(void** out_buf, uint32* out_len) { // // Verify that buf_len is sufficient. // *out_len = NTLM_TYPE1_HEADER_LEN; *out_buf = malloc(*out_len); if (!*out_buf) return ERR_OUT_OF_MEMORY; // // Write out type 1 message. // void* cursor = *out_buf; // 0 : signature cursor = WriteBytes(cursor, NTLM_SIGNATURE, sizeof(NTLM_SIGNATURE)); // 8 : marker cursor = WriteBytes(cursor, NTLM_TYPE1_MARKER, sizeof(NTLM_TYPE1_MARKER)); // 12 : flags cursor = WriteDWORD(cursor, NTLM_TYPE1_FLAGS); // // NOTE: It is common for the domain and workstation fields to be empty. // This is true of Win2k clients, and my guess is that there is // little utility to sending these strings before the charset has // been negotiated. We follow suite -- anyways, it doesn't hurt // to save some bytes on the wire ;-) // // 16 : supplied domain security buffer (empty) cursor = WriteSecBuf(cursor, 0, 0); // 24 : supplied workstation security buffer (empty) cursor = WriteSecBuf(cursor, 0, 0); return OK; } struct Type2Msg { uint32 flags; // NTLM_Xxx bitwise combination uint8 challenge[8]; // 8 byte challenge const void* target; // target string (type depends on flags) uint32 target_len; // target length in bytes }; // Returns OK or a network error code. // TODO(wtc): This function returns ERR_UNEXPECTED when the input message is // invalid. We should return a better error code. static int ParseType2Msg(const void* in_buf, uint32 in_len, Type2Msg* msg) { // Make sure in_buf is long enough to contain a meaningful type2 msg. // // 0 NTLMSSP Signature // 8 NTLM Message Type // 12 Target Name // 20 Flags // 24 Challenge // 32 end of header, start of optional data blocks // if (in_len < NTLM_TYPE2_HEADER_LEN) return ERR_UNEXPECTED; const uint8* cursor = (const uint8*) in_buf; // verify NTLMSSP signature if (memcmp(cursor, NTLM_SIGNATURE, sizeof(NTLM_SIGNATURE)) != 0) return ERR_UNEXPECTED; cursor += sizeof(NTLM_SIGNATURE); // verify Type-2 marker if (memcmp(cursor, NTLM_TYPE2_MARKER, sizeof(NTLM_TYPE2_MARKER)) != 0) return ERR_UNEXPECTED; cursor += sizeof(NTLM_TYPE2_MARKER); // read target name security buffer uint32 target_len = ReadUint16(cursor); ReadUint16(cursor); // discard next 16-bit value uint32 offset = ReadUint32(cursor); // get offset from in_buf msg->target_len = 0; msg->target = NULL; // Check the offset / length combo is in range of the input buffer, including // integer overflow checking. if (offset + target_len > offset && offset + target_len <= in_len) { msg->target_len = target_len; msg->target = ((const uint8*) in_buf) + offset; } // read flags msg->flags = ReadUint32(cursor); // read challenge memcpy(msg->challenge, cursor, sizeof(msg->challenge)); cursor += sizeof(msg->challenge); NTLM_LOG(("NTLM type 2 message:\n")); LogBuf("target", (const uint8*) msg->target, msg->target_len); LogBuf("flags", (const uint8*) &msg->flags, 4); LogFlags(msg->flags); LogBuf("challenge", msg->challenge, sizeof(msg->challenge)); // We currently do not implement LMv2/NTLMv2 or NTLM2 responses, // so we can ignore target information. We may want to enable // support for these alternate mechanisms in the future. return OK; } static void GenerateRandom(uint8* output, size_t n) { for (size_t i = 0; i < n; ++i) output[i] = base::RandInt(0, 255); } // Returns OK or a network error code. static int GenerateType3Msg(const string16& domain, const string16& username, const string16& password, const std::string& hostname, const void* rand_8_bytes, const void* in_buf, uint32 in_len, void** out_buf, uint32* out_len) { // in_buf contains Type-2 msg (the challenge) from server. int rv; Type2Msg msg; rv = ParseType2Msg(in_buf, in_len, &msg); if (rv != OK) return rv; bool unicode = (msg.flags & NTLM_NegotiateUnicode) != 0; // Temporary buffers for unicode strings #ifdef IS_BIG_ENDIAN string16 ucs_domain_buf, ucs_user_buf; #endif string16 ucs_host_buf; // Temporary buffers for oem strings std::string oem_domain_buf, oem_user_buf; // Pointers and lengths for the string buffers; encoding is unicode if // the "negotiate unicode" flag was set in the Type-2 message. const void* domain_ptr; const void* user_ptr; const void* host_ptr; uint32 domain_len, user_len, host_len; // // Get domain name. // if (unicode) { #ifdef IS_BIG_ENDIAN ucs_domain_buf = domain; domain_ptr = ucs_domain_buf.data(); domain_len = ucs_domain_buf.length() * 2; WriteUnicodeLE(const_cast<void*>(domain_ptr), (const char16*) domain_ptr, ucs_domain_buf.length()); #else domain_ptr = domain.data(); domain_len = domain.length() * 2; #endif } else { oem_domain_buf = base::SysWideToNativeMB(UTF16ToWide(domain)); domain_ptr = oem_domain_buf.data(); domain_len = oem_domain_buf.length(); } // // Get user name. // if (unicode) { #ifdef IS_BIG_ENDIAN ucs_user_buf = username; user_ptr = ucs_user_buf.data(); user_len = ucs_user_buf.length() * 2; WriteUnicodeLE(const_cast<void*>(user_ptr), (const char16*) user_ptr, ucs_user_buf.length()); #else user_ptr = username.data(); user_len = username.length() * 2; #endif } else { oem_user_buf = base::SysWideToNativeMB(UTF16ToWide(username)); user_ptr = oem_user_buf.data(); user_len = oem_user_buf.length(); } // // Get workstation name (use local machine's hostname). // if (unicode) { // hostname is ASCII, so we can do a simple zero-pad expansion: ucs_host_buf.assign(hostname.begin(), hostname.end()); host_ptr = ucs_host_buf.data(); host_len = ucs_host_buf.length() * 2; #ifdef IS_BIG_ENDIAN WriteUnicodeLE(const_cast<void*>(host_ptr), (const char16*) host_ptr, ucs_host_buf.length()); #endif } else { host_ptr = hostname.data(); host_len = hostname.length(); } // // Now that we have generated all of the strings, we can allocate out_buf. // *out_len = NTLM_TYPE3_HEADER_LEN + host_len + domain_len + user_len + LM_RESP_LEN + NTLM_RESP_LEN; *out_buf = malloc(*out_len); if (!*out_buf) return ERR_OUT_OF_MEMORY; // // Next, we compute the LM and NTLM responses. // uint8 lm_resp[LM_RESP_LEN]; uint8 ntlm_resp[NTLM_RESP_LEN]; uint8 ntlm_hash[NTLM_HASH_LEN]; if (msg.flags & NTLM_NegotiateNTLM2Key) { // compute NTLM2 session response MD5Digest session_hash; uint8 temp[16]; memcpy(lm_resp, rand_8_bytes, 8); memset(lm_resp + 8, 0, LM_RESP_LEN - 8); memcpy(temp, msg.challenge, 8); memcpy(temp + 8, lm_resp, 8); MD5Sum(temp, 16, &session_hash); NTLM_Hash(password, ntlm_hash); LM_Response(ntlm_hash, session_hash.a, ntlm_resp); } else { NTLM_Hash(password, ntlm_hash); LM_Response(ntlm_hash, msg.challenge, ntlm_resp); if (SendLM()) { uint8 lm_hash[LM_HASH_LEN]; LM_Hash(password, lm_hash); LM_Response(lm_hash, msg.challenge, lm_resp); } else { // According to http://davenport.sourceforge.net/ntlm.html#ntlmVersion2, // the correct way to not send the LM hash is to send the NTLM hash twice // in both the LM and NTLM response fields. LM_Response(ntlm_hash, msg.challenge, lm_resp); } } // // Finally, we assemble the Type-3 msg :-) // void* cursor = *out_buf; uint32 offset; // 0 : signature cursor = WriteBytes(cursor, NTLM_SIGNATURE, sizeof(NTLM_SIGNATURE)); // 8 : marker cursor = WriteBytes(cursor, NTLM_TYPE3_MARKER, sizeof(NTLM_TYPE3_MARKER)); // 12 : LM response sec buf offset = NTLM_TYPE3_HEADER_LEN + domain_len + user_len + host_len; cursor = WriteSecBuf(cursor, LM_RESP_LEN, offset); memcpy(static_cast<uint8*>(*out_buf) + offset, lm_resp, LM_RESP_LEN); // 20 : NTLM response sec buf offset += LM_RESP_LEN; cursor = WriteSecBuf(cursor, NTLM_RESP_LEN, offset); memcpy(static_cast<uint8*>(*out_buf) + offset, ntlm_resp, NTLM_RESP_LEN); // 28 : domain name sec buf offset = NTLM_TYPE3_HEADER_LEN; cursor = WriteSecBuf(cursor, domain_len, offset); memcpy(static_cast<uint8*>(*out_buf) + offset, domain_ptr, domain_len); // 36 : user name sec buf offset += domain_len; cursor = WriteSecBuf(cursor, user_len, offset); memcpy(static_cast<uint8*>(*out_buf) + offset, user_ptr, user_len); // 44 : workstation (host) name sec buf offset += user_len; cursor = WriteSecBuf(cursor, host_len, offset); memcpy(static_cast<uint8*>(*out_buf) + offset, host_ptr, host_len); // 52 : session key sec buf (not used) cursor = WriteSecBuf(cursor, 0, 0); // 60 : negotiated flags cursor = WriteDWORD(cursor, msg.flags & NTLM_TYPE1_FLAGS); return OK; } // NTLM authentication is specified in "NTLM Over HTTP Protocol Specification" // [MS-NTHT]. // static HttpAuthHandlerNTLM::GenerateRandomProc HttpAuthHandlerNTLM::generate_random_proc_ = GenerateRandom; // static HttpAuthHandlerNTLM::HostNameProc HttpAuthHandlerNTLM::get_host_name_proc_ = GetHostName; HttpAuthHandlerNTLM::HttpAuthHandlerNTLM() { } bool HttpAuthHandlerNTLM::NeedsIdentity() { // This gets called for each round-trip. Only require identity on // the first call (when auth_data_ is empty). On subsequent calls, // we use the initially established identity. return auth_data_.empty(); } bool HttpAuthHandlerNTLM::AllowsDefaultCredentials() { // Default credentials are not supported in the portable implementation of // NTLM, but are supported in the SSPI implementation. return false; } int HttpAuthHandlerNTLM::InitializeBeforeFirstChallenge() { return OK; } HttpAuthHandlerNTLM::~HttpAuthHandlerNTLM() { // Wipe our copy of the password from memory, to reduce the chance of being // written to the paging file on disk. ZapString(&password_); } // static HttpAuthHandlerNTLM::GenerateRandomProc HttpAuthHandlerNTLM::SetGenerateRandomProc( GenerateRandomProc proc) { GenerateRandomProc old_proc = generate_random_proc_; generate_random_proc_ = proc; return old_proc; } // static HttpAuthHandlerNTLM::HostNameProc HttpAuthHandlerNTLM::SetHostNameProc( HostNameProc proc) { HostNameProc old_proc = get_host_name_proc_; get_host_name_proc_ = proc; return old_proc; } HttpAuthHandlerNTLM::Factory::Factory() { } HttpAuthHandlerNTLM::Factory::~Factory() { } int HttpAuthHandlerNTLM::GetNextToken(const void* in_token, uint32 in_token_len, void** out_token, uint32* out_token_len) { int rv = 0; // If in_token is non-null, then assume it contains a type 2 message... if (in_token) { LogToken("in-token", in_token, in_token_len); std::string hostname = get_host_name_proc_(); if (hostname.empty()) return ERR_UNEXPECTED; uint8 rand_buf[8]; generate_random_proc_(rand_buf, 8); rv = GenerateType3Msg(domain_, username_, password_, hostname, rand_buf, in_token, in_token_len, out_token, out_token_len); } else { rv = GenerateType1Msg(out_token, out_token_len); } if (rv == OK) LogToken("out-token", *out_token, *out_token_len); return rv; } int HttpAuthHandlerNTLM::Factory::CreateAuthHandler( HttpAuth::ChallengeTokenizer* challenge, HttpAuth::Target target, const GURL& origin, CreateReason reason, int digest_nonce_count, const BoundNetLog& net_log, scoped_ptr<HttpAuthHandler>* handler) { if (reason == CREATE_PREEMPTIVE) return ERR_UNSUPPORTED_AUTH_SCHEME; // TODO(cbentzel): Move towards model of parsing in the factory // method and only constructing when valid. // NOTE: Default credentials are not supported for the portable implementation // of NTLM. scoped_ptr<HttpAuthHandler> tmp_handler(new HttpAuthHandlerNTLM); if (!tmp_handler->InitFromChallenge(challenge, target, origin, net_log)) return ERR_INVALID_RESPONSE; handler->swap(tmp_handler); return OK; } } // namespace net