// Copyright 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <algorithm> #include <cmath> #include "base/logging.h" #include "cc/animation/timing_function.h" namespace cc { namespace { static const double kBezierEpsilon = 1e-7; static const int MAX_STEPS = 30; static double eval_bezier(double x1, double x2, double t) { const double x1_times_3 = 3.0 * x1; const double x2_times_3 = 3.0 * x2; const double h3 = x1_times_3; const double h1 = x1_times_3 - x2_times_3 + 1.0; const double h2 = x2_times_3 - 6.0 * x1; return t * (t * (t * h1 + h2) + h3); } static double bezier_interp(double x1, double y1, double x2, double y2, double x) { DCHECK_GE(1.0, x1); DCHECK_LE(0.0, x1); DCHECK_GE(1.0, x2); DCHECK_LE(0.0, x2); x1 = std::min(std::max(x1, 0.0), 1.0); x2 = std::min(std::max(x2, 0.0), 1.0); x = std::min(std::max(x, 0.0), 1.0); // Step 1. Find the t corresponding to the given x. I.e., we want t such that // eval_bezier(x1, x2, t) = x. There is a unique solution if x1 and x2 lie // within (0, 1). // // We're just going to do bisection for now (for simplicity), but we could // easily do some newton steps if this turns out to be a bottleneck. double t = 0.0; double step = 1.0; for (int i = 0; i < MAX_STEPS; ++i, step *= 0.5) { const double error = eval_bezier(x1, x2, t) - x; if (std::abs(error) < kBezierEpsilon) break; t += error > 0.0 ? -step : step; } // We should have terminated the above loop because we got close to x, not // because we exceeded MAX_STEPS. Do a DCHECK here to confirm. DCHECK_GT(kBezierEpsilon, std::abs(eval_bezier(x1, x2, t) - x)); // Step 2. Return the interpolated y values at the t we computed above. return eval_bezier(y1, y2, t); } } // namespace TimingFunction::TimingFunction() {} TimingFunction::~TimingFunction() {} double TimingFunction::Duration() const { return 1.0; } scoped_ptr<CubicBezierTimingFunction> CubicBezierTimingFunction::Create( double x1, double y1, double x2, double y2) { return make_scoped_ptr(new CubicBezierTimingFunction(x1, y1, x2, y2)); } CubicBezierTimingFunction::CubicBezierTimingFunction(double x1, double y1, double x2, double y2) : x1_(x1), y1_(y1), x2_(x2), y2_(y2) {} CubicBezierTimingFunction::~CubicBezierTimingFunction() {} float CubicBezierTimingFunction::GetValue(double x) const { return static_cast<float>(bezier_interp(x1_, y1_, x2_, y2_, x)); } scoped_ptr<AnimationCurve> CubicBezierTimingFunction::Clone() const { return make_scoped_ptr( new CubicBezierTimingFunction(*this)).PassAs<AnimationCurve>(); } void CubicBezierTimingFunction::Range(float* min, float* max) const { *min = 0.f; *max = 1.f; if (0.f <= y1_ && y1_ < 1.f && 0.f <= y2_ && y2_ <= 1.f) return; // Represent the function's derivative in the form at^2 + bt + c. float a = 3.f * (y1_ - y2_) + 1.f; float b = 2.f * (y2_ - 2.f * y1_); float c = y1_; // Check if the derivative is constant. if (std::abs(a) < kBezierEpsilon && std::abs(b) < kBezierEpsilon) return; // Zeros of the function's derivative. float t_1 = 0.f; float t_2 = 0.f; if (std::abs(a) < kBezierEpsilon) { // The function's derivative is linear. t_1 = -c / b; } else { // The function's derivative is a quadratic. We find the zeros of this // quadratic using the quadratic formula. float discriminant = b * b - 4 * a * c; if (discriminant < 0.f) return; float discriminant_sqrt = sqrt(discriminant); t_1 = (-b + discriminant_sqrt) / (2.f * a); t_2 = (-b - discriminant_sqrt) / (2.f * a); } float sol_1 = 0.f; float sol_2 = 0.f; if (0.f < t_1 && t_1 < 1.f) sol_1 = eval_bezier(y1_, y2_, t_1); if (0.f < t_2 && t_2 < 1.f) sol_2 = eval_bezier(y1_, y2_, t_2); *min = std::min(std::min(*min, sol_1), sol_2); *max = std::max(std::max(*max, sol_1), sol_2); } // These numbers come from // http://www.w3.org/TR/css3-transitions/#transition-timing-function_tag. scoped_ptr<TimingFunction> EaseTimingFunction::Create() { return CubicBezierTimingFunction::Create( 0.25, 0.1, 0.25, 1.0).PassAs<TimingFunction>(); } scoped_ptr<TimingFunction> EaseInTimingFunction::Create() { return CubicBezierTimingFunction::Create( 0.42, 0.0, 1.0, 1.0).PassAs<TimingFunction>(); } scoped_ptr<TimingFunction> EaseOutTimingFunction::Create() { return CubicBezierTimingFunction::Create( 0.0, 0.0, 0.58, 1.0).PassAs<TimingFunction>(); } scoped_ptr<TimingFunction> EaseInOutTimingFunction::Create() { return CubicBezierTimingFunction::Create( 0.42, 0.0, 0.58, 1).PassAs<TimingFunction>(); } } // namespace cc