// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "ipc/ipc_channel_posix.h" #include <errno.h> #include <fcntl.h> #include <stddef.h> #include <sys/socket.h> #include <sys/stat.h> #include <sys/types.h> #include <sys/un.h> #include <unistd.h> #if defined(OS_OPENBSD) #include <sys/uio.h> #endif #include <map> #include <string> #include "base/command_line.h" #include "base/file_util.h" #include "base/files/file_path.h" #include "base/location.h" #include "base/logging.h" #include "base/memory/scoped_ptr.h" #include "base/memory/singleton.h" #include "base/posix/eintr_wrapper.h" #include "base/posix/global_descriptors.h" #include "base/process/process_handle.h" #include "base/rand_util.h" #include "base/stl_util.h" #include "base/strings/string_util.h" #include "base/synchronization/lock.h" #include "ipc/file_descriptor_set_posix.h" #include "ipc/ipc_descriptors.h" #include "ipc/ipc_listener.h" #include "ipc/ipc_logging.h" #include "ipc/ipc_message_utils.h" #include "ipc/ipc_switches.h" #include "ipc/unix_domain_socket_util.h" namespace IPC { // IPC channels on Windows use named pipes (CreateNamedPipe()) with // channel ids as the pipe names. Channels on POSIX use sockets as // pipes These don't quite line up. // // When creating a child subprocess we use a socket pair and the parent side of // the fork arranges it such that the initial control channel ends up on the // magic file descriptor kPrimaryIPCChannel in the child. Future // connections (file descriptors) can then be passed via that // connection via sendmsg(). // // A POSIX IPC channel can also be set up as a server for a bound UNIX domain // socket, and will handle multiple connect and disconnect sequences. Currently // it is limited to one connection at a time. //------------------------------------------------------------------------------ namespace { // The PipeMap class works around this quirk related to unit tests: // // When running as a server, we install the client socket in a // specific file descriptor number (@kPrimaryIPCChannel). However, we // also have to support the case where we are running unittests in the // same process. (We do not support forking without execing.) // // Case 1: normal running // The IPC server object will install a mapping in PipeMap from the // name which it was given to the client pipe. When forking the client, the // GetClientFileDescriptorMapping will ensure that the socket is installed in // the magic slot (@kPrimaryIPCChannel). The client will search for the // mapping, but it won't find any since we are in a new process. Thus the // magic fd number is returned. Once the client connects, the server will // close its copy of the client socket and remove the mapping. // // Case 2: unittests - client and server in the same process // The IPC server will install a mapping as before. The client will search // for a mapping and find out. It duplicates the file descriptor and // connects. Once the client connects, the server will close the original // copy of the client socket and remove the mapping. Thus, when the client // object closes, it will close the only remaining copy of the client socket // in the fd table and the server will see EOF on its side. // // TODO(port): a client process cannot connect to multiple IPC channels with // this scheme. class PipeMap { public: static PipeMap* GetInstance() { return Singleton<PipeMap>::get(); } ~PipeMap() { // Shouldn't have left over pipes. DCHECK(map_.empty()); } // Lookup a given channel id. Return -1 if not found. int Lookup(const std::string& channel_id) { base::AutoLock locked(lock_); ChannelToFDMap::const_iterator i = map_.find(channel_id); if (i == map_.end()) return -1; return i->second; } // Remove the mapping for the given channel id. No error is signaled if the // channel_id doesn't exist void Remove(const std::string& channel_id) { base::AutoLock locked(lock_); map_.erase(channel_id); } // Insert a mapping from @channel_id to @fd. It's a fatal error to insert a // mapping if one already exists for the given channel_id void Insert(const std::string& channel_id, int fd) { base::AutoLock locked(lock_); DCHECK_NE(-1, fd); ChannelToFDMap::const_iterator i = map_.find(channel_id); CHECK(i == map_.end()) << "Creating second IPC server (fd " << fd << ") " << "for '" << channel_id << "' while first " << "(fd " << i->second << ") still exists"; map_[channel_id] = fd; } private: base::Lock lock_; typedef std::map<std::string, int> ChannelToFDMap; ChannelToFDMap map_; friend struct DefaultSingletonTraits<PipeMap>; }; //------------------------------------------------------------------------------ bool SocketWriteErrorIsRecoverable() { #if defined(OS_MACOSX) // On OS X if sendmsg() is trying to send fds between processes and there // isn't enough room in the output buffer to send the fd structure over // atomically then EMSGSIZE is returned. // // EMSGSIZE presents a problem since the system APIs can only call us when // there's room in the socket buffer and not when there is "enough" room. // // The current behavior is to return to the event loop when EMSGSIZE is // received and hopefull service another FD. This is however still // technically a busy wait since the event loop will call us right back until // the receiver has read enough data to allow passing the FD over atomically. return errno == EAGAIN || errno == EMSGSIZE; #else return errno == EAGAIN; #endif // OS_MACOSX } } // namespace //------------------------------------------------------------------------------ #if defined(OS_LINUX) int Channel::ChannelImpl::global_pid_ = 0; #endif // OS_LINUX Channel::ChannelImpl::ChannelImpl(const IPC::ChannelHandle& channel_handle, Mode mode, Listener* listener) : ChannelReader(listener), mode_(mode), peer_pid_(base::kNullProcessId), is_blocked_on_write_(false), waiting_connect_(true), message_send_bytes_written_(0), server_listen_pipe_(-1), pipe_(-1), client_pipe_(-1), #if defined(IPC_USES_READWRITE) fd_pipe_(-1), remote_fd_pipe_(-1), #endif // IPC_USES_READWRITE pipe_name_(channel_handle.name), must_unlink_(false) { memset(input_cmsg_buf_, 0, sizeof(input_cmsg_buf_)); if (!CreatePipe(channel_handle)) { // The pipe may have been closed already. const char *modestr = (mode_ & MODE_SERVER_FLAG) ? "server" : "client"; LOG(WARNING) << "Unable to create pipe named \"" << channel_handle.name << "\" in " << modestr << " mode"; } } Channel::ChannelImpl::~ChannelImpl() { Close(); } bool SocketPair(int* fd1, int* fd2) { int pipe_fds[2]; if (socketpair(AF_UNIX, SOCK_STREAM, 0, pipe_fds) != 0) { PLOG(ERROR) << "socketpair()"; return false; } // Set both ends to be non-blocking. if (fcntl(pipe_fds[0], F_SETFL, O_NONBLOCK) == -1 || fcntl(pipe_fds[1], F_SETFL, O_NONBLOCK) == -1) { PLOG(ERROR) << "fcntl(O_NONBLOCK)"; if (IGNORE_EINTR(close(pipe_fds[0])) < 0) PLOG(ERROR) << "close"; if (IGNORE_EINTR(close(pipe_fds[1])) < 0) PLOG(ERROR) << "close"; return false; } *fd1 = pipe_fds[0]; *fd2 = pipe_fds[1]; return true; } bool Channel::ChannelImpl::CreatePipe( const IPC::ChannelHandle& channel_handle) { DCHECK(server_listen_pipe_ == -1 && pipe_ == -1); // Four possible cases: // 1) It's a channel wrapping a pipe that is given to us. // 2) It's for a named channel, so we create it. // 3) It's for a client that we implement ourself. This is used // in unittesting. // 4) It's the initial IPC channel: // 4a) Client side: Pull the pipe out of the GlobalDescriptors set. // 4b) Server side: create the pipe. int local_pipe = -1; if (channel_handle.socket.fd != -1) { // Case 1 from comment above. local_pipe = channel_handle.socket.fd; #if defined(IPC_USES_READWRITE) // Test the socket passed into us to make sure it is nonblocking. // We don't want to call read/write on a blocking socket. int value = fcntl(local_pipe, F_GETFL); if (value == -1) { PLOG(ERROR) << "fcntl(F_GETFL) " << pipe_name_; return false; } if (!(value & O_NONBLOCK)) { LOG(ERROR) << "Socket " << pipe_name_ << " must be O_NONBLOCK"; return false; } #endif // IPC_USES_READWRITE } else if (mode_ & MODE_NAMED_FLAG) { // Case 2 from comment above. if (mode_ & MODE_SERVER_FLAG) { if (!CreateServerUnixDomainSocket(base::FilePath(pipe_name_), &local_pipe)) { return false; } must_unlink_ = true; } else if (mode_ & MODE_CLIENT_FLAG) { if (!CreateClientUnixDomainSocket(base::FilePath(pipe_name_), &local_pipe)) { return false; } } else { LOG(ERROR) << "Bad mode: " << mode_; return false; } } else { local_pipe = PipeMap::GetInstance()->Lookup(pipe_name_); if (mode_ & MODE_CLIENT_FLAG) { if (local_pipe != -1) { // Case 3 from comment above. // We only allow one connection. local_pipe = HANDLE_EINTR(dup(local_pipe)); PipeMap::GetInstance()->Remove(pipe_name_); } else { // Case 4a from comment above. // Guard against inappropriate reuse of the initial IPC channel. If // an IPC channel closes and someone attempts to reuse it by name, the // initial channel must not be recycled here. http://crbug.com/26754. static bool used_initial_channel = false; if (used_initial_channel) { LOG(FATAL) << "Denying attempt to reuse initial IPC channel for " << pipe_name_; return false; } used_initial_channel = true; local_pipe = base::GlobalDescriptors::GetInstance()->Get(kPrimaryIPCChannel); } } else if (mode_ & MODE_SERVER_FLAG) { // Case 4b from comment above. if (local_pipe != -1) { LOG(ERROR) << "Server already exists for " << pipe_name_; return false; } base::AutoLock lock(client_pipe_lock_); if (!SocketPair(&local_pipe, &client_pipe_)) return false; PipeMap::GetInstance()->Insert(pipe_name_, client_pipe_); } else { LOG(ERROR) << "Bad mode: " << mode_; return false; } } #if defined(IPC_USES_READWRITE) // Create a dedicated socketpair() for exchanging file descriptors. // See comments for IPC_USES_READWRITE for details. if (mode_ & MODE_CLIENT_FLAG) { if (!SocketPair(&fd_pipe_, &remote_fd_pipe_)) { return false; } } #endif // IPC_USES_READWRITE if ((mode_ & MODE_SERVER_FLAG) && (mode_ & MODE_NAMED_FLAG)) { server_listen_pipe_ = local_pipe; local_pipe = -1; } pipe_ = local_pipe; return true; } bool Channel::ChannelImpl::Connect() { if (server_listen_pipe_ == -1 && pipe_ == -1) { DLOG(INFO) << "Channel creation failed: " << pipe_name_; return false; } bool did_connect = true; if (server_listen_pipe_ != -1) { // Watch the pipe for connections, and turn any connections into // active sockets. base::MessageLoopForIO::current()->WatchFileDescriptor( server_listen_pipe_, true, base::MessageLoopForIO::WATCH_READ, &server_listen_connection_watcher_, this); } else { did_connect = AcceptConnection(); } return did_connect; } void Channel::ChannelImpl::CloseFileDescriptors(Message* msg) { #if defined(OS_MACOSX) // There is a bug on OSX which makes it dangerous to close // a file descriptor while it is in transit. So instead we // store the file descriptor in a set and send a message to // the recipient, which is queued AFTER the message that // sent the FD. The recipient will reply to the message, // letting us know that it is now safe to close the file // descriptor. For more information, see: // http://crbug.com/298276 std::vector<int> to_close; msg->file_descriptor_set()->ReleaseFDsToClose(&to_close); for (size_t i = 0; i < to_close.size(); i++) { fds_to_close_.insert(to_close[i]); QueueCloseFDMessage(to_close[i], 2); } #else msg->file_descriptor_set()->CommitAll(); #endif } bool Channel::ChannelImpl::ProcessOutgoingMessages() { DCHECK(!waiting_connect_); // Why are we trying to send messages if there's // no connection? if (output_queue_.empty()) return true; if (pipe_ == -1) return false; // Write out all the messages we can till the write blocks or there are no // more outgoing messages. while (!output_queue_.empty()) { Message* msg = output_queue_.front(); size_t amt_to_write = msg->size() - message_send_bytes_written_; DCHECK_NE(0U, amt_to_write); const char* out_bytes = reinterpret_cast<const char*>(msg->data()) + message_send_bytes_written_; struct msghdr msgh = {0}; struct iovec iov = {const_cast<char*>(out_bytes), amt_to_write}; msgh.msg_iov = &iov; msgh.msg_iovlen = 1; char buf[CMSG_SPACE( sizeof(int) * FileDescriptorSet::kMaxDescriptorsPerMessage)]; ssize_t bytes_written = 1; int fd_written = -1; if (message_send_bytes_written_ == 0 && !msg->file_descriptor_set()->empty()) { // This is the first chunk of a message which has descriptors to send struct cmsghdr *cmsg; const unsigned num_fds = msg->file_descriptor_set()->size(); DCHECK(num_fds <= FileDescriptorSet::kMaxDescriptorsPerMessage); if (msg->file_descriptor_set()->ContainsDirectoryDescriptor()) { LOG(FATAL) << "Panic: attempting to transport directory descriptor over" " IPC. Aborting to maintain sandbox isolation."; // If you have hit this then something tried to send a file descriptor // to a directory over an IPC channel. Since IPC channels span // sandboxes this is very bad: the receiving process can use openat // with ".." elements in the path in order to reach the real // filesystem. } msgh.msg_control = buf; msgh.msg_controllen = CMSG_SPACE(sizeof(int) * num_fds); cmsg = CMSG_FIRSTHDR(&msgh); cmsg->cmsg_level = SOL_SOCKET; cmsg->cmsg_type = SCM_RIGHTS; cmsg->cmsg_len = CMSG_LEN(sizeof(int) * num_fds); msg->file_descriptor_set()->GetDescriptors( reinterpret_cast<int*>(CMSG_DATA(cmsg))); msgh.msg_controllen = cmsg->cmsg_len; // DCHECK_LE above already checks that // num_fds < kMaxDescriptorsPerMessage so no danger of overflow. msg->header()->num_fds = static_cast<uint16>(num_fds); #if defined(IPC_USES_READWRITE) if (!IsHelloMessage(*msg)) { // Only the Hello message sends the file descriptor with the message. // Subsequently, we can send file descriptors on the dedicated // fd_pipe_ which makes Seccomp sandbox operation more efficient. struct iovec fd_pipe_iov = { const_cast<char *>(""), 1 }; msgh.msg_iov = &fd_pipe_iov; fd_written = fd_pipe_; bytes_written = HANDLE_EINTR(sendmsg(fd_pipe_, &msgh, MSG_DONTWAIT)); msgh.msg_iov = &iov; msgh.msg_controllen = 0; if (bytes_written > 0) { CloseFileDescriptors(msg); } } #endif // IPC_USES_READWRITE } if (bytes_written == 1) { fd_written = pipe_; #if defined(IPC_USES_READWRITE) if ((mode_ & MODE_CLIENT_FLAG) && IsHelloMessage(*msg)) { DCHECK_EQ(msg->file_descriptor_set()->size(), 1U); } if (!msgh.msg_controllen) { bytes_written = HANDLE_EINTR(write(pipe_, out_bytes, amt_to_write)); } else #endif // IPC_USES_READWRITE { bytes_written = HANDLE_EINTR(sendmsg(pipe_, &msgh, MSG_DONTWAIT)); } } if (bytes_written > 0) CloseFileDescriptors(msg); if (bytes_written < 0 && !SocketWriteErrorIsRecoverable()) { #if defined(OS_MACOSX) // On OSX writing to a pipe with no listener returns EPERM. if (errno == EPERM) { Close(); return false; } #endif // OS_MACOSX if (errno == EPIPE) { Close(); return false; } PLOG(ERROR) << "pipe error on " << fd_written << " Currently writing message of size: " << msg->size(); return false; } if (static_cast<size_t>(bytes_written) != amt_to_write) { if (bytes_written > 0) { // If write() fails with EAGAIN then bytes_written will be -1. message_send_bytes_written_ += bytes_written; } // Tell libevent to call us back once things are unblocked. is_blocked_on_write_ = true; base::MessageLoopForIO::current()->WatchFileDescriptor( pipe_, false, // One shot base::MessageLoopForIO::WATCH_WRITE, &write_watcher_, this); return true; } else { message_send_bytes_written_ = 0; // Message sent OK! DVLOG(2) << "sent message @" << msg << " on channel @" << this << " with type " << msg->type() << " on fd " << pipe_; delete output_queue_.front(); output_queue_.pop(); } } return true; } bool Channel::ChannelImpl::Send(Message* message) { DVLOG(2) << "sending message @" << message << " on channel @" << this << " with type " << message->type() << " (" << output_queue_.size() << " in queue)"; #ifdef IPC_MESSAGE_LOG_ENABLED Logging::GetInstance()->OnSendMessage(message, ""); #endif // IPC_MESSAGE_LOG_ENABLED message->TraceMessageBegin(); output_queue_.push(message); if (!is_blocked_on_write_ && !waiting_connect_) { return ProcessOutgoingMessages(); } return true; } int Channel::ChannelImpl::GetClientFileDescriptor() { base::AutoLock lock(client_pipe_lock_); return client_pipe_; } int Channel::ChannelImpl::TakeClientFileDescriptor() { base::AutoLock lock(client_pipe_lock_); int fd = client_pipe_; if (client_pipe_ != -1) { PipeMap::GetInstance()->Remove(pipe_name_); client_pipe_ = -1; } return fd; } void Channel::ChannelImpl::CloseClientFileDescriptor() { base::AutoLock lock(client_pipe_lock_); if (client_pipe_ != -1) { PipeMap::GetInstance()->Remove(pipe_name_); if (IGNORE_EINTR(close(client_pipe_)) < 0) PLOG(ERROR) << "close " << pipe_name_; client_pipe_ = -1; } } bool Channel::ChannelImpl::AcceptsConnections() const { return server_listen_pipe_ != -1; } bool Channel::ChannelImpl::HasAcceptedConnection() const { return AcceptsConnections() && pipe_ != -1; } bool Channel::ChannelImpl::GetPeerEuid(uid_t* peer_euid) const { DCHECK(!(mode_ & MODE_SERVER) || HasAcceptedConnection()); return IPC::GetPeerEuid(pipe_, peer_euid); } void Channel::ChannelImpl::ResetToAcceptingConnectionState() { // Unregister libevent for the unix domain socket and close it. read_watcher_.StopWatchingFileDescriptor(); write_watcher_.StopWatchingFileDescriptor(); if (pipe_ != -1) { if (IGNORE_EINTR(close(pipe_)) < 0) PLOG(ERROR) << "close pipe_ " << pipe_name_; pipe_ = -1; } #if defined(IPC_USES_READWRITE) if (fd_pipe_ != -1) { if (IGNORE_EINTR(close(fd_pipe_)) < 0) PLOG(ERROR) << "close fd_pipe_ " << pipe_name_; fd_pipe_ = -1; } if (remote_fd_pipe_ != -1) { if (IGNORE_EINTR(close(remote_fd_pipe_)) < 0) PLOG(ERROR) << "close remote_fd_pipe_ " << pipe_name_; remote_fd_pipe_ = -1; } #endif // IPC_USES_READWRITE while (!output_queue_.empty()) { Message* m = output_queue_.front(); output_queue_.pop(); delete m; } // Close any outstanding, received file descriptors. ClearInputFDs(); #if defined(OS_MACOSX) // Clear any outstanding, sent file descriptors. for (std::set<int>::iterator i = fds_to_close_.begin(); i != fds_to_close_.end(); ++i) { if (IGNORE_EINTR(close(*i)) < 0) PLOG(ERROR) << "close"; } fds_to_close_.clear(); #endif } // static bool Channel::ChannelImpl::IsNamedServerInitialized( const std::string& channel_id) { return base::PathExists(base::FilePath(channel_id)); } #if defined(OS_LINUX) // static void Channel::ChannelImpl::SetGlobalPid(int pid) { global_pid_ = pid; } #endif // OS_LINUX // Called by libevent when we can read from the pipe without blocking. void Channel::ChannelImpl::OnFileCanReadWithoutBlocking(int fd) { if (fd == server_listen_pipe_) { int new_pipe = 0; if (!ServerAcceptConnection(server_listen_pipe_, &new_pipe) || new_pipe < 0) { Close(); listener()->OnChannelListenError(); } if (pipe_ != -1) { // We already have a connection. We only handle one at a time. // close our new descriptor. if (HANDLE_EINTR(shutdown(new_pipe, SHUT_RDWR)) < 0) DPLOG(ERROR) << "shutdown " << pipe_name_; if (IGNORE_EINTR(close(new_pipe)) < 0) DPLOG(ERROR) << "close " << pipe_name_; listener()->OnChannelDenied(); return; } pipe_ = new_pipe; if ((mode_ & MODE_OPEN_ACCESS_FLAG) == 0) { // Verify that the IPC channel peer is running as the same user. uid_t client_euid; if (!GetPeerEuid(&client_euid)) { DLOG(ERROR) << "Unable to query client euid"; ResetToAcceptingConnectionState(); return; } if (client_euid != geteuid()) { DLOG(WARNING) << "Client euid is not authorised"; ResetToAcceptingConnectionState(); return; } } if (!AcceptConnection()) { NOTREACHED() << "AcceptConnection should not fail on server"; } waiting_connect_ = false; } else if (fd == pipe_) { if (waiting_connect_ && (mode_ & MODE_SERVER_FLAG)) { waiting_connect_ = false; } if (!ProcessIncomingMessages()) { // ClosePipeOnError may delete this object, so we mustn't call // ProcessOutgoingMessages. ClosePipeOnError(); return; } } else { NOTREACHED() << "Unknown pipe " << fd; } // If we're a server and handshaking, then we want to make sure that we // only send our handshake message after we've processed the client's. // This gives us a chance to kill the client if the incoming handshake // is invalid. This also flushes any closefd messagse. if (!is_blocked_on_write_) { if (!ProcessOutgoingMessages()) { ClosePipeOnError(); } } } // Called by libevent when we can write to the pipe without blocking. void Channel::ChannelImpl::OnFileCanWriteWithoutBlocking(int fd) { DCHECK_EQ(pipe_, fd); is_blocked_on_write_ = false; if (!ProcessOutgoingMessages()) { ClosePipeOnError(); } } bool Channel::ChannelImpl::AcceptConnection() { base::MessageLoopForIO::current()->WatchFileDescriptor( pipe_, true, base::MessageLoopForIO::WATCH_READ, &read_watcher_, this); QueueHelloMessage(); if (mode_ & MODE_CLIENT_FLAG) { // If we are a client we want to send a hello message out immediately. // In server mode we will send a hello message when we receive one from a // client. waiting_connect_ = false; return ProcessOutgoingMessages(); } else if (mode_ & MODE_SERVER_FLAG) { waiting_connect_ = true; return true; } else { NOTREACHED(); return false; } } void Channel::ChannelImpl::ClosePipeOnError() { if (HasAcceptedConnection()) { ResetToAcceptingConnectionState(); listener()->OnChannelError(); } else { Close(); if (AcceptsConnections()) { listener()->OnChannelListenError(); } else { listener()->OnChannelError(); } } } int Channel::ChannelImpl::GetHelloMessageProcId() { int pid = base::GetCurrentProcId(); #if defined(OS_LINUX) // Our process may be in a sandbox with a separate PID namespace. if (global_pid_) { pid = global_pid_; } #endif return pid; } void Channel::ChannelImpl::QueueHelloMessage() { // Create the Hello message scoped_ptr<Message> msg(new Message(MSG_ROUTING_NONE, HELLO_MESSAGE_TYPE, IPC::Message::PRIORITY_NORMAL)); if (!msg->WriteInt(GetHelloMessageProcId())) { NOTREACHED() << "Unable to pickle hello message proc id"; } #if defined(IPC_USES_READWRITE) scoped_ptr<Message> hello; if (remote_fd_pipe_ != -1) { if (!msg->WriteFileDescriptor(base::FileDescriptor(remote_fd_pipe_, false))) { NOTREACHED() << "Unable to pickle hello message file descriptors"; } DCHECK_EQ(msg->file_descriptor_set()->size(), 1U); } #endif // IPC_USES_READWRITE output_queue_.push(msg.release()); } Channel::ChannelImpl::ReadState Channel::ChannelImpl::ReadData( char* buffer, int buffer_len, int* bytes_read) { if (pipe_ == -1) return READ_FAILED; struct msghdr msg = {0}; struct iovec iov = {buffer, static_cast<size_t>(buffer_len)}; msg.msg_iov = &iov; msg.msg_iovlen = 1; msg.msg_control = input_cmsg_buf_; // recvmsg() returns 0 if the connection has closed or EAGAIN if no data // is waiting on the pipe. #if defined(IPC_USES_READWRITE) if (fd_pipe_ >= 0) { *bytes_read = HANDLE_EINTR(read(pipe_, buffer, buffer_len)); msg.msg_controllen = 0; } else #endif // IPC_USES_READWRITE { msg.msg_controllen = sizeof(input_cmsg_buf_); *bytes_read = HANDLE_EINTR(recvmsg(pipe_, &msg, MSG_DONTWAIT)); } if (*bytes_read < 0) { if (errno == EAGAIN) { return READ_PENDING; #if defined(OS_MACOSX) } else if (errno == EPERM) { // On OSX, reading from a pipe with no listener returns EPERM // treat this as a special case to prevent spurious error messages // to the console. return READ_FAILED; #endif // OS_MACOSX } else if (errno == ECONNRESET || errno == EPIPE) { return READ_FAILED; } else { PLOG(ERROR) << "pipe error (" << pipe_ << ")"; return READ_FAILED; } } else if (*bytes_read == 0) { // The pipe has closed... return READ_FAILED; } DCHECK(*bytes_read); CloseClientFileDescriptor(); // Read any file descriptors from the message. if (!ExtractFileDescriptorsFromMsghdr(&msg)) return READ_FAILED; return READ_SUCCEEDED; } #if defined(IPC_USES_READWRITE) bool Channel::ChannelImpl::ReadFileDescriptorsFromFDPipe() { char dummy; struct iovec fd_pipe_iov = { &dummy, 1 }; struct msghdr msg = { 0 }; msg.msg_iov = &fd_pipe_iov; msg.msg_iovlen = 1; msg.msg_control = input_cmsg_buf_; msg.msg_controllen = sizeof(input_cmsg_buf_); ssize_t bytes_received = HANDLE_EINTR(recvmsg(fd_pipe_, &msg, MSG_DONTWAIT)); if (bytes_received != 1) return true; // No message waiting. if (!ExtractFileDescriptorsFromMsghdr(&msg)) return false; return true; } #endif // On Posix, we need to fix up the file descriptors before the input message // is dispatched. // // This will read from the input_fds_ (READWRITE mode only) and read more // handles from the FD pipe if necessary. bool Channel::ChannelImpl::WillDispatchInputMessage(Message* msg) { uint16 header_fds = msg->header()->num_fds; if (!header_fds) return true; // Nothing to do. // The message has file descriptors. const char* error = NULL; if (header_fds > input_fds_.size()) { // The message has been completely received, but we didn't get // enough file descriptors. #if defined(IPC_USES_READWRITE) if (!ReadFileDescriptorsFromFDPipe()) return false; if (header_fds > input_fds_.size()) #endif // IPC_USES_READWRITE error = "Message needs unreceived descriptors"; } if (header_fds > FileDescriptorSet::kMaxDescriptorsPerMessage) error = "Message requires an excessive number of descriptors"; if (error) { LOG(WARNING) << error << " channel:" << this << " message-type:" << msg->type() << " header()->num_fds:" << header_fds; // Abort the connection. ClearInputFDs(); return false; } // The shenaniganery below with &foo.front() requires input_fds_ to have // contiguous underlying storage (such as a simple array or a std::vector). // This is why the header warns not to make input_fds_ a deque<>. msg->file_descriptor_set()->SetDescriptors(&input_fds_.front(), header_fds); input_fds_.erase(input_fds_.begin(), input_fds_.begin() + header_fds); return true; } bool Channel::ChannelImpl::DidEmptyInputBuffers() { // When the input data buffer is empty, the fds should be too. If this is // not the case, we probably have a rogue renderer which is trying to fill // our descriptor table. return input_fds_.empty(); } bool Channel::ChannelImpl::ExtractFileDescriptorsFromMsghdr(msghdr* msg) { // Check that there are any control messages. On OSX, CMSG_FIRSTHDR will // return an invalid non-NULL pointer in the case that controllen == 0. if (msg->msg_controllen == 0) return true; for (cmsghdr* cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) { if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) { unsigned payload_len = cmsg->cmsg_len - CMSG_LEN(0); DCHECK_EQ(0U, payload_len % sizeof(int)); const int* file_descriptors = reinterpret_cast<int*>(CMSG_DATA(cmsg)); unsigned num_file_descriptors = payload_len / 4; input_fds_.insert(input_fds_.end(), file_descriptors, file_descriptors + num_file_descriptors); // Check this after adding the FDs so we don't leak them. if (msg->msg_flags & MSG_CTRUNC) { ClearInputFDs(); return false; } return true; } } // No file descriptors found, but that's OK. return true; } void Channel::ChannelImpl::ClearInputFDs() { for (size_t i = 0; i < input_fds_.size(); ++i) { if (IGNORE_EINTR(close(input_fds_[i])) < 0) PLOG(ERROR) << "close "; } input_fds_.clear(); } void Channel::ChannelImpl::QueueCloseFDMessage(int fd, int hops) { switch (hops) { case 1: case 2: { // Create the message scoped_ptr<Message> msg(new Message(MSG_ROUTING_NONE, CLOSE_FD_MESSAGE_TYPE, IPC::Message::PRIORITY_NORMAL)); if (!msg->WriteInt(hops - 1) || !msg->WriteInt(fd)) { NOTREACHED() << "Unable to pickle close fd."; } // Send(msg.release()); output_queue_.push(msg.release()); break; } default: NOTREACHED(); break; } } void Channel::ChannelImpl::HandleInternalMessage(const Message& msg) { // The Hello message contains only the process id. PickleIterator iter(msg); switch (msg.type()) { default: NOTREACHED(); break; case Channel::HELLO_MESSAGE_TYPE: int pid; if (!msg.ReadInt(&iter, &pid)) NOTREACHED(); #if defined(IPC_USES_READWRITE) if (mode_ & MODE_SERVER_FLAG) { // With IPC_USES_READWRITE, the Hello message from the client to the // server also contains the fd_pipe_, which will be used for all // subsequent file descriptor passing. DCHECK_EQ(msg.file_descriptor_set()->size(), 1U); base::FileDescriptor descriptor; if (!msg.ReadFileDescriptor(&iter, &descriptor)) { NOTREACHED(); } fd_pipe_ = descriptor.fd; CHECK(descriptor.auto_close); } #endif // IPC_USES_READWRITE peer_pid_ = pid; listener()->OnChannelConnected(pid); break; #if defined(OS_MACOSX) case Channel::CLOSE_FD_MESSAGE_TYPE: int fd, hops; if (!msg.ReadInt(&iter, &hops)) NOTREACHED(); if (!msg.ReadInt(&iter, &fd)) NOTREACHED(); if (hops == 0) { if (fds_to_close_.erase(fd) > 0) { if (IGNORE_EINTR(close(fd)) < 0) PLOG(ERROR) << "close"; } else { NOTREACHED(); } } else { QueueCloseFDMessage(fd, hops); } break; #endif } } void Channel::ChannelImpl::Close() { // Close can be called multiple time, so we need to make sure we're // idempotent. ResetToAcceptingConnectionState(); if (must_unlink_) { unlink(pipe_name_.c_str()); must_unlink_ = false; } if (server_listen_pipe_ != -1) { if (IGNORE_EINTR(close(server_listen_pipe_)) < 0) DPLOG(ERROR) << "close " << server_listen_pipe_; server_listen_pipe_ = -1; // Unregister libevent for the listening socket and close it. server_listen_connection_watcher_.StopWatchingFileDescriptor(); } CloseClientFileDescriptor(); } //------------------------------------------------------------------------------ // Channel's methods simply call through to ChannelImpl. Channel::Channel(const IPC::ChannelHandle& channel_handle, Mode mode, Listener* listener) : channel_impl_(new ChannelImpl(channel_handle, mode, listener)) { } Channel::~Channel() { delete channel_impl_; } bool Channel::Connect() { return channel_impl_->Connect(); } void Channel::Close() { if (channel_impl_) channel_impl_->Close(); } base::ProcessId Channel::peer_pid() const { return channel_impl_->peer_pid(); } bool Channel::Send(Message* message) { return channel_impl_->Send(message); } int Channel::GetClientFileDescriptor() const { return channel_impl_->GetClientFileDescriptor(); } int Channel::TakeClientFileDescriptor() { return channel_impl_->TakeClientFileDescriptor(); } bool Channel::AcceptsConnections() const { return channel_impl_->AcceptsConnections(); } bool Channel::HasAcceptedConnection() const { return channel_impl_->HasAcceptedConnection(); } bool Channel::GetPeerEuid(uid_t* peer_euid) const { return channel_impl_->GetPeerEuid(peer_euid); } void Channel::ResetToAcceptingConnectionState() { channel_impl_->ResetToAcceptingConnectionState(); } // static bool Channel::IsNamedServerInitialized(const std::string& channel_id) { return ChannelImpl::IsNamedServerInitialized(channel_id); } // static std::string Channel::GenerateVerifiedChannelID(const std::string& prefix) { // A random name is sufficient validation on posix systems, so we don't need // an additional shared secret. std::string id = prefix; if (!id.empty()) id.append("."); return id.append(GenerateUniqueRandomChannelID()); } #if defined(OS_LINUX) // static void Channel::SetGlobalPid(int pid) { ChannelImpl::SetGlobalPid(pid); } #endif // OS_LINUX } // namespace IPC