// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/cert/x509_util_openssl.h" #include <algorithm> #include <openssl/asn1.h> #include "base/lazy_instance.h" #include "base/logging.h" #include "base/strings/string_piece.h" #include "crypto/ec_private_key.h" #include "crypto/openssl_util.h" #include "crypto/rsa_private_key.h" #include "net/cert/x509_cert_types.h" #include "net/cert/x509_util.h" namespace net { namespace { const EVP_MD* ToEVP(x509_util::DigestAlgorithm alg) { switch (alg) { case x509_util::DIGEST_SHA1: return EVP_sha1(); case x509_util::DIGEST_SHA256: return EVP_sha256(); } return NULL; } } // namespace namespace x509_util { namespace { X509* CreateCertificate(EVP_PKEY* key, DigestAlgorithm alg, const std::string& common_name, uint32_t serial_number, base::Time not_valid_before, base::Time not_valid_after) { // Put the serial number into an OpenSSL-friendly object. crypto::ScopedOpenSSL<ASN1_INTEGER, ASN1_INTEGER_free> asn1_serial( ASN1_INTEGER_new()); if (!asn1_serial.get() || !ASN1_INTEGER_set(asn1_serial.get(), static_cast<long>(serial_number))) { LOG(ERROR) << "Invalid serial number " << serial_number; return NULL; } // Do the same for the time stamps. crypto::ScopedOpenSSL<ASN1_TIME, ASN1_TIME_free> asn1_not_before_time( ASN1_TIME_set(NULL, not_valid_before.ToTimeT())); if (!asn1_not_before_time.get()) { LOG(ERROR) << "Invalid not_valid_before time: " << not_valid_before.ToTimeT(); return NULL; } crypto::ScopedOpenSSL<ASN1_TIME, ASN1_TIME_free> asn1_not_after_time( ASN1_TIME_set(NULL, not_valid_after.ToTimeT())); if (!asn1_not_after_time.get()) { LOG(ERROR) << "Invalid not_valid_after time: " << not_valid_after.ToTimeT(); return NULL; } // Because |common_name| only contains a common name and starts with 'CN=', // there is no need for a full RFC 2253 parser here. Do some sanity checks // though. static const char kCommonNamePrefix[] = "CN="; const size_t kCommonNamePrefixLen = sizeof(kCommonNamePrefix) - 1; if (common_name.size() < kCommonNamePrefixLen || strncmp(common_name.c_str(), kCommonNamePrefix, kCommonNamePrefixLen)) { LOG(ERROR) << "Common name must begin with " << kCommonNamePrefix; return NULL; } if (common_name.size() > INT_MAX) { LOG(ERROR) << "Common name too long"; return NULL; } unsigned char* common_name_str = reinterpret_cast<unsigned char*>(const_cast<char*>(common_name.data())) + kCommonNamePrefixLen; int common_name_len = static_cast<int>(common_name.size() - kCommonNamePrefixLen); crypto::ScopedOpenSSL<X509_NAME, X509_NAME_free> name(X509_NAME_new()); if (!name.get() || !X509_NAME_add_entry_by_NID(name.get(), NID_commonName, MBSTRING_ASC, common_name_str, common_name_len, -1, 0)) { LOG(ERROR) << "Can't parse common name: " << common_name.c_str(); return NULL; } // Now create certificate and populate it. crypto::ScopedOpenSSL<X509, X509_free> cert(X509_new()); if (!cert.get() || !X509_set_version(cert.get(), 2L) /* i.e. version 3 */ || !X509_set_pubkey(cert.get(), key) || !X509_set_serialNumber(cert.get(), asn1_serial.get()) || !X509_set_notBefore(cert.get(), asn1_not_before_time.get()) || !X509_set_notAfter(cert.get(), asn1_not_after_time.get()) || !X509_set_subject_name(cert.get(), name.get()) || !X509_set_issuer_name(cert.get(), name.get())) { LOG(ERROR) << "Could not create certificate"; return NULL; } return cert.release(); } bool SignAndDerEncodeCert(X509* cert, EVP_PKEY* key, DigestAlgorithm alg, std::string* der_encoded) { // Get the message digest algorithm const EVP_MD* md = ToEVP(alg); if (!md) { LOG(ERROR) << "Unrecognized hash algorithm."; return false; } // Sign it with the private key. if (!X509_sign(cert, key, md)) { LOG(ERROR) << "Could not sign certificate with key."; return false; } // Convert it into a DER-encoded string copied to |der_encoded|. int der_data_length = i2d_X509(cert, NULL); if (der_data_length < 0) return false; der_encoded->resize(der_data_length); unsigned char* der_data = reinterpret_cast<unsigned char*>(&(*der_encoded)[0]); if (i2d_X509(cert, &der_data) < 0) return false; return true; } // There is no OpenSSL NID for the 'originBoundCertificate' extension OID yet, // so create a global ASN1_OBJECT lazily with the right parameters. class DomainBoundOid { public: DomainBoundOid() : obj_(OBJ_txt2obj(kDomainBoundOidText, 1)) { CHECK(obj_); } ~DomainBoundOid() { if (obj_) ASN1_OBJECT_free(obj_); } ASN1_OBJECT* obj() const { return obj_; } private: static const char kDomainBoundOidText[]; ASN1_OBJECT* obj_; }; // 1.3.6.1.4.1.11129.2.1.6 // (iso.org.dod.internet.private.enterprises.google.googleSecurity. // certificateExtensions.originBoundCertificate) const char DomainBoundOid::kDomainBoundOidText[] = "1.3.6.1.4.1.11129.2.1.6"; ASN1_OBJECT* GetDomainBoundOid() { static base::LazyInstance<DomainBoundOid>::Leaky s_lazy = LAZY_INSTANCE_INITIALIZER; return s_lazy.Get().obj(); } } // namespace bool IsSupportedValidityRange(base::Time not_valid_before, base::Time not_valid_after) { if (not_valid_before > not_valid_after) return false; // The validity field of a certificate can only encode years 1-9999. // Compute the base::Time values corresponding to Jan 1st,0001 and // Jan 1st, 10000 respectively. Done by using the pre-computed numbers // of days between these dates and the Unix epoch, i.e. Jan 1st, 1970, // using the following Python script: // // from datetime import date as D // print (D(1970,1,1)-D(1,1,1)) # -> 719162 days // print (D(9999,12,31)-D(1970,1,1)) # -> 2932896 days // // Note: This ignores leap seconds, but should be enough in practice. // const int64 kDaysFromYear0001ToUnixEpoch = 719162; const int64 kDaysFromUnixEpochToYear10000 = 2932896 + 1; const base::Time kEpoch = base::Time::UnixEpoch(); const base::Time kYear0001 = kEpoch - base::TimeDelta::FromDays(kDaysFromYear0001ToUnixEpoch); const base::Time kYear10000 = kEpoch + base::TimeDelta::FromDays(kDaysFromUnixEpochToYear10000); if (not_valid_before < kYear0001 || not_valid_before >= kYear10000 || not_valid_after < kYear0001 || not_valid_after >= kYear10000) return false; return true; } bool CreateDomainBoundCertEC( crypto::ECPrivateKey* key, DigestAlgorithm alg, const std::string& domain, uint32 serial_number, base::Time not_valid_before, base::Time not_valid_after, std::string* der_cert) { crypto::OpenSSLErrStackTracer err_tracer(FROM_HERE); // Create certificate. crypto::ScopedOpenSSL<X509, X509_free> cert( CreateCertificate(key->key(), alg, "CN=anonymous.invalid", serial_number, not_valid_before, not_valid_after)); if (!cert.get()) return false; // Add TLS-Channel-ID extension to the certificate before signing it. // The value must be stored DER-encoded, as a ASN.1 IA5String. crypto::ScopedOpenSSL<ASN1_STRING, ASN1_STRING_free> domain_ia5( ASN1_IA5STRING_new()); if (!domain_ia5.get() || !ASN1_STRING_set(domain_ia5.get(), domain.data(), domain.size())) return false; std::string domain_der; int domain_der_len = i2d_ASN1_IA5STRING(domain_ia5.get(), NULL); if (domain_der_len < 0) return false; domain_der.resize(domain_der_len); unsigned char* domain_der_data = reinterpret_cast<unsigned char*>(&domain_der[0]); if (i2d_ASN1_IA5STRING(domain_ia5.get(), &domain_der_data) < 0) return false; crypto::ScopedOpenSSL<ASN1_OCTET_STRING, ASN1_OCTET_STRING_free> domain_str( ASN1_OCTET_STRING_new()); if (!domain_str.get() || !ASN1_STRING_set(domain_str.get(), domain_der.data(), domain_der.size())) return false; crypto::ScopedOpenSSL<X509_EXTENSION, X509_EXTENSION_free> ext( X509_EXTENSION_create_by_OBJ( NULL, GetDomainBoundOid(), 1 /* critical */, domain_str.get())); if (!ext.get() || !X509_add_ext(cert.get(), ext.get(), -1)) { return false; } // Sign and encode it. return SignAndDerEncodeCert(cert.get(), key->key(), alg, der_cert); } bool CreateSelfSignedCert(crypto::RSAPrivateKey* key, DigestAlgorithm alg, const std::string& common_name, uint32 serial_number, base::Time not_valid_before, base::Time not_valid_after, std::string* der_encoded) { crypto::OpenSSLErrStackTracer err_tracer(FROM_HERE); crypto::ScopedOpenSSL<X509, X509_free> cert( CreateCertificate(key->key(), alg, common_name, serial_number, not_valid_before, not_valid_after)); if (!cert.get()) return false; return SignAndDerEncodeCert(cert.get(), key->key(), alg, der_encoded); } bool ParsePrincipalKeyAndValueByIndex(X509_NAME* name, int index, std::string* key, std::string* value) { X509_NAME_ENTRY* entry = X509_NAME_get_entry(name, index); if (!entry) return false; if (key) { ASN1_OBJECT* object = X509_NAME_ENTRY_get_object(entry); key->assign(OBJ_nid2sn(OBJ_obj2nid(object))); } ASN1_STRING* data = X509_NAME_ENTRY_get_data(entry); if (!data) return false; unsigned char* buf = NULL; int len = ASN1_STRING_to_UTF8(&buf, data); if (len <= 0) return false; value->assign(reinterpret_cast<const char*>(buf), len); OPENSSL_free(buf); return true; } bool ParsePrincipalValueByIndex(X509_NAME* name, int index, std::string* value) { return ParsePrincipalKeyAndValueByIndex(name, index, NULL, value); } bool ParsePrincipalValueByNID(X509_NAME* name, int nid, std::string* value) { int index = X509_NAME_get_index_by_NID(name, nid, -1); if (index < 0) return false; return ParsePrincipalValueByIndex(name, index, value); } bool ParseDate(ASN1_TIME* x509_time, base::Time* time) { if (!x509_time || (x509_time->type != V_ASN1_UTCTIME && x509_time->type != V_ASN1_GENERALIZEDTIME)) return false; base::StringPiece str_date(reinterpret_cast<const char*>(x509_time->data), x509_time->length); CertDateFormat format = x509_time->type == V_ASN1_UTCTIME ? CERT_DATE_FORMAT_UTC_TIME : CERT_DATE_FORMAT_GENERALIZED_TIME; return ParseCertificateDate(str_date, format, time); } } // namespace x509_util } // namespace net