// Copyright (c) 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/disk_cache/simple/simple_index.h" #include <algorithm> #include <limits> #include <string> #include <utility> #include "base/bind.h" #include "base/bind_helpers.h" #include "base/file_util.h" #include "base/files/file_enumerator.h" #include "base/logging.h" #include "base/message_loop/message_loop.h" #include "base/metrics/field_trial.h" #include "base/pickle.h" #include "base/strings/string_number_conversions.h" #include "base/strings/string_tokenizer.h" #include "base/task_runner.h" #include "base/threading/worker_pool.h" #include "base/time/time.h" #include "net/base/net_errors.h" #include "net/disk_cache/simple/simple_entry_format.h" #include "net/disk_cache/simple/simple_histogram_macros.h" #include "net/disk_cache/simple/simple_index_delegate.h" #include "net/disk_cache/simple/simple_index_file.h" #include "net/disk_cache/simple/simple_synchronous_entry.h" #include "net/disk_cache/simple/simple_util.h" #if defined(OS_POSIX) #include <sys/stat.h> #include <sys/time.h> #endif namespace { // How many milliseconds we delay writing the index to disk since the last cache // operation has happened. const int kDefaultWriteToDiskDelayMSecs = 20000; const int kDefaultWriteToDiskOnBackgroundDelayMSecs = 100; // Divides the cache space into this amount of parts to evict when only one part // is left. const uint32 kEvictionMarginDivisor = 20; const uint32 kBytesInKb = 1024; // Utility class used for timestamp comparisons in entry metadata while sorting. class CompareHashesForTimestamp { typedef disk_cache::SimpleIndex SimpleIndex; typedef disk_cache::SimpleIndex::EntrySet EntrySet; public: explicit CompareHashesForTimestamp(const EntrySet& set); bool operator()(uint64 hash1, uint64 hash2); private: const EntrySet& entry_set_; }; CompareHashesForTimestamp::CompareHashesForTimestamp(const EntrySet& set) : entry_set_(set) { } bool CompareHashesForTimestamp::operator()(uint64 hash1, uint64 hash2) { EntrySet::const_iterator it1 = entry_set_.find(hash1); DCHECK(it1 != entry_set_.end()); EntrySet::const_iterator it2 = entry_set_.find(hash2); DCHECK(it2 != entry_set_.end()); return it1->second.GetLastUsedTime() < it2->second.GetLastUsedTime(); } } // namespace namespace disk_cache { EntryMetadata::EntryMetadata() : last_used_time_seconds_since_epoch_(0), entry_size_(0) { } EntryMetadata::EntryMetadata(base::Time last_used_time, int entry_size) : last_used_time_seconds_since_epoch_(0), entry_size_(entry_size) { SetLastUsedTime(last_used_time); } base::Time EntryMetadata::GetLastUsedTime() const { // Preserve nullity. if (last_used_time_seconds_since_epoch_ == 0) return base::Time(); return base::Time::UnixEpoch() + base::TimeDelta::FromSeconds(last_used_time_seconds_since_epoch_); } void EntryMetadata::SetLastUsedTime(const base::Time& last_used_time) { // Preserve nullity. if (last_used_time.is_null()) { last_used_time_seconds_since_epoch_ = 0; return; } const base::TimeDelta since_unix_epoch = last_used_time - base::Time::UnixEpoch(); const int64 seconds_since_unix_epoch = since_unix_epoch.InSeconds(); DCHECK_LE(implicit_cast<int64>(std::numeric_limits<uint32>::min()), seconds_since_unix_epoch); DCHECK_GE(implicit_cast<int64>(std::numeric_limits<uint32>::max()), seconds_since_unix_epoch); last_used_time_seconds_since_epoch_ = seconds_since_unix_epoch; // Avoid accidental nullity. if (last_used_time_seconds_since_epoch_ == 0) last_used_time_seconds_since_epoch_ = 1; } void EntryMetadata::Serialize(Pickle* pickle) const { DCHECK(pickle); int64 internal_last_used_time = GetLastUsedTime().ToInternalValue(); pickle->WriteInt64(internal_last_used_time); pickle->WriteUInt64(entry_size_); } bool EntryMetadata::Deserialize(PickleIterator* it) { DCHECK(it); int64 tmp_last_used_time; uint64 tmp_entry_size; if (!it->ReadInt64(&tmp_last_used_time) || !it->ReadUInt64(&tmp_entry_size)) return false; SetLastUsedTime(base::Time::FromInternalValue(tmp_last_used_time)); entry_size_ = tmp_entry_size; return true; } SimpleIndex::SimpleIndex(base::SingleThreadTaskRunner* io_thread, SimpleIndexDelegate* delegate, net::CacheType cache_type, scoped_ptr<SimpleIndexFile> index_file) : delegate_(delegate), cache_type_(cache_type), cache_size_(0), max_size_(0), high_watermark_(0), low_watermark_(0), eviction_in_progress_(false), initialized_(false), index_file_(index_file.Pass()), io_thread_(io_thread), // Creating the callback once so it is reused every time // write_to_disk_timer_.Start() is called. write_to_disk_cb_(base::Bind(&SimpleIndex::WriteToDisk, AsWeakPtr())), app_on_background_(false) {} SimpleIndex::~SimpleIndex() { DCHECK(io_thread_checker_.CalledOnValidThread()); // Fail all callbacks waiting for the index to come up. for (CallbackList::iterator it = to_run_when_initialized_.begin(), end = to_run_when_initialized_.end(); it != end; ++it) { it->Run(net::ERR_ABORTED); } } void SimpleIndex::Initialize(base::Time cache_mtime) { DCHECK(io_thread_checker_.CalledOnValidThread()); // Take the foreground and background index flush delays from the experiment // settings only if both are valid. foreground_flush_delay_ = kDefaultWriteToDiskDelayMSecs; background_flush_delay_ = kDefaultWriteToDiskOnBackgroundDelayMSecs; const std::string index_flush_intervals = base::FieldTrialList::FindFullName( "SimpleCacheIndexFlushDelay_Foreground_Background"); if (!index_flush_intervals.empty()) { base::StringTokenizer tokens(index_flush_intervals, "_"); int foreground_delay, background_delay; if (tokens.GetNext() && base::StringToInt(tokens.token(), &foreground_delay) && tokens.GetNext() && base::StringToInt(tokens.token(), &background_delay)) { foreground_flush_delay_ = foreground_delay; background_flush_delay_ = background_delay; } } #if defined(OS_ANDROID) if (base::android::IsVMInitialized()) { activity_status_listener_.reset(new base::android::ActivityStatus::Listener( base::Bind(&SimpleIndex::OnActivityStateChange, AsWeakPtr()))); } #endif SimpleIndexLoadResult* load_result = new SimpleIndexLoadResult(); scoped_ptr<SimpleIndexLoadResult> load_result_scoped(load_result); base::Closure reply = base::Bind( &SimpleIndex::MergeInitializingSet, AsWeakPtr(), base::Passed(&load_result_scoped)); index_file_->LoadIndexEntries(cache_mtime, reply, load_result); } bool SimpleIndex::SetMaxSize(int max_bytes) { if (max_bytes < 0) return false; // Zero size means use the default. if (!max_bytes) return true; max_size_ = max_bytes; high_watermark_ = max_size_ - max_size_ / kEvictionMarginDivisor; low_watermark_ = max_size_ - 2 * (max_size_ / kEvictionMarginDivisor); return true; } int SimpleIndex::ExecuteWhenReady(const net::CompletionCallback& task) { DCHECK(io_thread_checker_.CalledOnValidThread()); if (initialized_) io_thread_->PostTask(FROM_HERE, base::Bind(task, net::OK)); else to_run_when_initialized_.push_back(task); return net::ERR_IO_PENDING; } scoped_ptr<SimpleIndex::HashList> SimpleIndex::GetEntriesBetween( base::Time initial_time, base::Time end_time) { DCHECK_EQ(true, initialized_); if (!initial_time.is_null()) initial_time -= EntryMetadata::GetLowerEpsilonForTimeComparisons(); if (end_time.is_null()) end_time = base::Time::Max(); else end_time += EntryMetadata::GetUpperEpsilonForTimeComparisons(); const base::Time extended_end_time = end_time.is_null() ? base::Time::Max() : end_time; DCHECK(extended_end_time >= initial_time); scoped_ptr<HashList> ret_hashes(new HashList()); for (EntrySet::iterator it = entries_set_.begin(), end = entries_set_.end(); it != end; ++it) { EntryMetadata& metadata = it->second; base::Time entry_time = metadata.GetLastUsedTime(); if (initial_time <= entry_time && entry_time < extended_end_time) ret_hashes->push_back(it->first); } return ret_hashes.Pass(); } scoped_ptr<SimpleIndex::HashList> SimpleIndex::GetAllHashes() { return GetEntriesBetween(base::Time(), base::Time()); } int32 SimpleIndex::GetEntryCount() const { // TODO(pasko): return a meaningful initial estimate before initialized. return entries_set_.size(); } void SimpleIndex::Insert(uint64 entry_hash) { DCHECK(io_thread_checker_.CalledOnValidThread()); // Upon insert we don't know yet the size of the entry. // It will be updated later when the SimpleEntryImpl finishes opening or // creating the new entry, and then UpdateEntrySize will be called. InsertInEntrySet( entry_hash, EntryMetadata(base::Time::Now(), 0), &entries_set_); if (!initialized_) removed_entries_.erase(entry_hash); PostponeWritingToDisk(); } void SimpleIndex::Remove(uint64 entry_hash) { DCHECK(io_thread_checker_.CalledOnValidThread()); EntrySet::iterator it = entries_set_.find(entry_hash); if (it != entries_set_.end()) { UpdateEntryIteratorSize(&it, 0); entries_set_.erase(it); } if (!initialized_) removed_entries_.insert(entry_hash); PostponeWritingToDisk(); } bool SimpleIndex::Has(uint64 hash) const { DCHECK(io_thread_checker_.CalledOnValidThread()); // If not initialized, always return true, forcing it to go to the disk. return !initialized_ || entries_set_.count(hash) > 0; } bool SimpleIndex::UseIfExists(uint64 entry_hash) { DCHECK(io_thread_checker_.CalledOnValidThread()); // Always update the last used time, even if it is during initialization. // It will be merged later. EntrySet::iterator it = entries_set_.find(entry_hash); if (it == entries_set_.end()) // If not initialized, always return true, forcing it to go to the disk. return !initialized_; it->second.SetLastUsedTime(base::Time::Now()); PostponeWritingToDisk(); return true; } void SimpleIndex::StartEvictionIfNeeded() { DCHECK(io_thread_checker_.CalledOnValidThread()); if (eviction_in_progress_ || cache_size_ <= high_watermark_) return; // Take all live key hashes from the index and sort them by time. eviction_in_progress_ = true; eviction_start_time_ = base::TimeTicks::Now(); SIMPLE_CACHE_UMA(MEMORY_KB, "Eviction.CacheSizeOnStart2", cache_type_, cache_size_ / kBytesInKb); SIMPLE_CACHE_UMA(MEMORY_KB, "Eviction.MaxCacheSizeOnStart2", cache_type_, max_size_ / kBytesInKb); std::vector<uint64> entry_hashes; entry_hashes.reserve(entries_set_.size()); for (EntrySet::const_iterator it = entries_set_.begin(), end = entries_set_.end(); it != end; ++it) { entry_hashes.push_back(it->first); } std::sort(entry_hashes.begin(), entry_hashes.end(), CompareHashesForTimestamp(entries_set_)); // Remove as many entries from the index to get below |low_watermark_|. std::vector<uint64>::iterator it = entry_hashes.begin(); uint64 evicted_so_far_size = 0; while (evicted_so_far_size < cache_size_ - low_watermark_) { DCHECK(it != entry_hashes.end()); EntrySet::iterator found_meta = entries_set_.find(*it); DCHECK(found_meta != entries_set_.end()); uint64 to_evict_size = found_meta->second.GetEntrySize(); evicted_so_far_size += to_evict_size; ++it; } // Take out the rest of hashes from the eviction list. entry_hashes.erase(it, entry_hashes.end()); SIMPLE_CACHE_UMA(COUNTS, "Eviction.EntryCount", cache_type_, entry_hashes.size()); SIMPLE_CACHE_UMA(TIMES, "Eviction.TimeToSelectEntries", cache_type_, base::TimeTicks::Now() - eviction_start_time_); SIMPLE_CACHE_UMA(MEMORY_KB, "Eviction.SizeOfEvicted2", cache_type_, evicted_so_far_size / kBytesInKb); delegate_->DoomEntries(&entry_hashes, base::Bind(&SimpleIndex::EvictionDone, AsWeakPtr())); } bool SimpleIndex::UpdateEntrySize(uint64 entry_hash, int entry_size) { DCHECK(io_thread_checker_.CalledOnValidThread()); EntrySet::iterator it = entries_set_.find(entry_hash); if (it == entries_set_.end()) return false; UpdateEntryIteratorSize(&it, entry_size); PostponeWritingToDisk(); StartEvictionIfNeeded(); return true; } void SimpleIndex::EvictionDone(int result) { DCHECK(io_thread_checker_.CalledOnValidThread()); // Ignore the result of eviction. We did our best. eviction_in_progress_ = false; SIMPLE_CACHE_UMA(BOOLEAN, "Eviction.Result", cache_type_, result == net::OK); SIMPLE_CACHE_UMA(TIMES, "Eviction.TimeToDone", cache_type_, base::TimeTicks::Now() - eviction_start_time_); SIMPLE_CACHE_UMA(MEMORY_KB, "Eviction.SizeWhenDone2", cache_type_, cache_size_ / kBytesInKb); } // static void SimpleIndex::InsertInEntrySet( uint64 entry_hash, const disk_cache::EntryMetadata& entry_metadata, EntrySet* entry_set) { DCHECK(entry_set); entry_set->insert(std::make_pair(entry_hash, entry_metadata)); } void SimpleIndex::PostponeWritingToDisk() { if (!initialized_) return; const int delay = app_on_background_ ? background_flush_delay_ : foreground_flush_delay_; // If the timer is already active, Start() will just Reset it, postponing it. write_to_disk_timer_.Start( FROM_HERE, base::TimeDelta::FromMilliseconds(delay), write_to_disk_cb_); } void SimpleIndex::UpdateEntryIteratorSize(EntrySet::iterator* it, int entry_size) { // Update the total cache size with the new entry size. DCHECK(io_thread_checker_.CalledOnValidThread()); DCHECK_GE(cache_size_, implicit_cast<uint64>((*it)->second.GetEntrySize())); cache_size_ -= (*it)->second.GetEntrySize(); cache_size_ += entry_size; (*it)->second.SetEntrySize(entry_size); } void SimpleIndex::MergeInitializingSet( scoped_ptr<SimpleIndexLoadResult> load_result) { DCHECK(io_thread_checker_.CalledOnValidThread()); DCHECK(load_result->did_load); EntrySet* index_file_entries = &load_result->entries; for (base::hash_set<uint64>::const_iterator it = removed_entries_.begin(); it != removed_entries_.end(); ++it) { index_file_entries->erase(*it); } removed_entries_.clear(); for (EntrySet::const_iterator it = entries_set_.begin(); it != entries_set_.end(); ++it) { const uint64 entry_hash = it->first; std::pair<EntrySet::iterator, bool> insert_result = index_file_entries->insert(EntrySet::value_type(entry_hash, EntryMetadata())); EntrySet::iterator& possibly_inserted_entry = insert_result.first; possibly_inserted_entry->second = it->second; } uint64 merged_cache_size = 0; for (EntrySet::iterator it = index_file_entries->begin(); it != index_file_entries->end(); ++it) { merged_cache_size += it->second.GetEntrySize(); } entries_set_.swap(*index_file_entries); cache_size_ = merged_cache_size; initialized_ = true; // The actual IO is asynchronous, so calling WriteToDisk() shouldn't slow the // merge down much. if (load_result->flush_required) WriteToDisk(); SIMPLE_CACHE_UMA(CUSTOM_COUNTS, "IndexInitializationWaiters", cache_type_, to_run_when_initialized_.size(), 0, 100, 20); // Run all callbacks waiting for the index to come up. for (CallbackList::iterator it = to_run_when_initialized_.begin(), end = to_run_when_initialized_.end(); it != end; ++it) { io_thread_->PostTask(FROM_HERE, base::Bind((*it), net::OK)); } to_run_when_initialized_.clear(); } #if defined(OS_ANDROID) void SimpleIndex::OnActivityStateChange( base::android::ActivityState state) { DCHECK(io_thread_checker_.CalledOnValidThread()); // For more info about android activities, see: // developer.android.com/training/basics/activity-lifecycle/pausing.html // These values are defined in the file ActivityStatus.java if (state == base::android::ACTIVITY_STATE_RESUMED) { app_on_background_ = false; } else if (state == base::android::ACTIVITY_STATE_STOPPED) { app_on_background_ = true; WriteToDisk(); } } #endif void SimpleIndex::WriteToDisk() { DCHECK(io_thread_checker_.CalledOnValidThread()); if (!initialized_) return; SIMPLE_CACHE_UMA(CUSTOM_COUNTS, "IndexNumEntriesOnWrite", cache_type_, entries_set_.size(), 0, 100000, 50); const base::TimeTicks start = base::TimeTicks::Now(); if (!last_write_to_disk_.is_null()) { if (app_on_background_) { SIMPLE_CACHE_UMA(MEDIUM_TIMES, "IndexWriteInterval.Background", cache_type_, start - last_write_to_disk_); } else { SIMPLE_CACHE_UMA(MEDIUM_TIMES, "IndexWriteInterval.Foreground", cache_type_, start - last_write_to_disk_); } } last_write_to_disk_ = start; index_file_->WriteToDisk(entries_set_, cache_size_, start, app_on_background_); } } // namespace disk_cache