// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/quic/congestion_control/cubic.h" #include <algorithm> #include "base/basictypes.h" #include "base/logging.h" #include "base/time/time.h" namespace net { // Constants based on TCP defaults. // The following constants are in 2^10 fractions of a second instead of ms to // allow a 10 shift right to divide. const int kCubeScale = 40; // 1024*1024^3 (first 1024 is from 0.100^3) // where 0.100 is 100 ms which is the scaling // round trip time. const int kCubeCongestionWindowScale = 410; const uint64 kCubeFactor = (GG_UINT64_C(1) << kCubeScale) / kCubeCongestionWindowScale; const uint32 kBetaSPDY = 939; // Back off factor after loss for SPDY, reduces // the CWND by 1/12th. const uint32 kBetaLastMax = 871; // Additional back off factor after loss for // the stored max value. namespace { // Find last bit in a 64-bit word. int FindMostSignificantBit(uint64 x) { if (!x) { return 0; } int r = 0; if (x & 0xffffffff00000000ull) { x >>= 32; r += 32; } if (x & 0xffff0000u) { x >>= 16; r += 16; } if (x & 0xff00u) { x >>= 8; r += 8; } if (x & 0xf0u) { x >>= 4; r += 4; } if (x & 0xcu) { x >>= 2; r += 2; } if (x & 0x02u) { x >>= 1; r++; } if (x & 0x01u) { r++; } return r; } // 6 bits table [0..63] const uint32 cube_root_table[] = { 0, 54, 54, 54, 118, 118, 118, 118, 123, 129, 134, 138, 143, 147, 151, 156, 157, 161, 164, 168, 170, 173, 176, 179, 181, 185, 187, 190, 192, 194, 197, 199, 200, 202, 204, 206, 209, 211, 213, 215, 217, 219, 221, 222, 224, 225, 227, 229, 231, 232, 234, 236, 237, 239, 240, 242, 244, 245, 246, 248, 250, 251, 252, 254 }; } // namespace Cubic::Cubic(const QuicClock* clock) : clock_(clock), epoch_(QuicTime::Zero()), last_update_time_(QuicTime::Zero()) { Reset(); } // Calculate the cube root using a table lookup followed by one Newton-Raphson // iteration. uint32 Cubic::CubeRoot(uint64 a) { uint32 msb = FindMostSignificantBit(a); DCHECK_LE(msb, 64u); if (msb < 7) { // MSB in our table. return ((cube_root_table[static_cast<uint32>(a)]) + 31) >> 6; } // MSB 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, ... // cubic_shift 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, ... uint32 cubic_shift = (msb - 4); cubic_shift = ((cubic_shift * 342) >> 10); // Div by 3, biased high. // 4 to 6 bits accuracy depending on MSB. uint32 down_shifted_to_6bit = (a >> (cubic_shift * 3)); uint64 root = ((cube_root_table[down_shifted_to_6bit] + 10) << cubic_shift) >> 6; // Make one Newton-Raphson iteration. // Since x has an error (inaccuracy due to the use of fix point) we get a // more accurate result by doing x * (x - 1) instead of x * x. root = 2 * root + (a / (root * (root - 1))); root = ((root * 341) >> 10); // Div by 3, biased low. return static_cast<uint32>(root); } void Cubic::Reset() { epoch_ = QuicTime::Zero(); // Reset time. last_update_time_ = QuicTime::Zero(); // Reset time. last_congestion_window_ = 0; last_max_congestion_window_ = 0; acked_packets_count_ = 0; estimated_tcp_congestion_window_ = 0; origin_point_congestion_window_ = 0; time_to_origin_point_ = 0; last_target_congestion_window_ = 0; } QuicTcpCongestionWindow Cubic::CongestionWindowAfterPacketLoss( QuicTcpCongestionWindow current_congestion_window) { if (current_congestion_window < last_max_congestion_window_) { // We never reached the old max, so assume we are competing with another // flow. Use our extra back off factor to allow the other flow to go up. last_max_congestion_window_ = (kBetaLastMax * current_congestion_window) >> 10; } else { last_max_congestion_window_ = current_congestion_window; } epoch_ = QuicTime::Zero(); // Reset time. return (current_congestion_window * kBetaSPDY) >> 10; } QuicTcpCongestionWindow Cubic::CongestionWindowAfterAck( QuicTcpCongestionWindow current_congestion_window, QuicTime::Delta delay_min) { acked_packets_count_ += 1; // Packets acked. QuicTime current_time = clock_->ApproximateNow(); // Cubic is "independent" of RTT, the update is limited by the time elapsed. if (last_congestion_window_ == current_congestion_window && (current_time.Subtract(last_update_time_) <= MaxCubicTimeInterval())) { return std::max(last_target_congestion_window_, estimated_tcp_congestion_window_); } last_congestion_window_ = current_congestion_window; last_update_time_ = current_time; if (!epoch_.IsInitialized()) { // First ACK after a loss event. DVLOG(1) << "Start of epoch"; epoch_ = current_time; // Start of epoch. acked_packets_count_ = 1; // Reset count. // Reset estimated_tcp_congestion_window_ to be in sync with cubic. estimated_tcp_congestion_window_ = current_congestion_window; if (last_max_congestion_window_ <= current_congestion_window) { time_to_origin_point_ = 0; origin_point_congestion_window_ = current_congestion_window; } else { time_to_origin_point_ = CubeRoot(kCubeFactor * (last_max_congestion_window_ - current_congestion_window)); origin_point_congestion_window_ = last_max_congestion_window_; } } // Change the time unit from microseconds to 2^10 fractions per second. Take // the round trip time in account. This is done to allow us to use shift as a // divide operator. int64 elapsed_time = (current_time.Add(delay_min).Subtract(epoch_).ToMicroseconds() << 10) / base::Time::kMicrosecondsPerSecond; int64 offset = time_to_origin_point_ - elapsed_time; QuicTcpCongestionWindow delta_congestion_window = (kCubeCongestionWindowScale * offset * offset * offset) >> kCubeScale; QuicTcpCongestionWindow target_congestion_window = origin_point_congestion_window_ - delta_congestion_window; // We have a new cubic congestion window. last_target_congestion_window_ = target_congestion_window; // Update estimated TCP congestion_window. // Note: we do a normal Reno congestion avoidance calculation not the // calculation described in section 3.3 TCP-friendly region of the document. while (acked_packets_count_ >= estimated_tcp_congestion_window_) { acked_packets_count_ -= estimated_tcp_congestion_window_; estimated_tcp_congestion_window_++; } // Compute target congestion_window based on cubic target and estimated TCP // congestion_window, use highest (fastest). if (target_congestion_window < estimated_tcp_congestion_window_) { target_congestion_window = estimated_tcp_congestion_window_; } DVLOG(1) << "Target congestion_window:" << target_congestion_window; return target_congestion_window; } } // namespace net