// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/quic/iovector.h" #include <string.h> #include "base/logging.h" #include "testing/gtest/include/gtest/gtest.h" using std::string; namespace net { namespace test { namespace { const char* const test_data[] = { "test string 1, a medium size one.", "test string2", "test string 3, a looooooooooooong loooooooooooooooong string" }; TEST(IOVectorTest, CopyConstructor) { IOVector iov1; for (size_t i = 0; i < ARRAYSIZE_UNSAFE(test_data); ++i) { iov1.Append(const_cast<char*>(test_data[i]), strlen(test_data[i])); } IOVector iov2 = iov1; EXPECT_EQ(iov2.Size(), iov1.Size()); for (size_t i = 0; i < iov2.Size(); ++i) { EXPECT_TRUE(iov2.iovec()[i].iov_base == iov1.iovec()[i].iov_base); EXPECT_EQ(iov2.iovec()[i].iov_len, iov1.iovec()[i].iov_len); } EXPECT_EQ(iov2.TotalBufferSize(), iov1.TotalBufferSize()); } TEST(IOVectorTest, AssignmentOperator) { IOVector iov1; for (size_t i = 0; i < ARRAYSIZE_UNSAFE(test_data); ++i) { iov1.Append(const_cast<char*>(test_data[i]), strlen(test_data[i])); } IOVector iov2; iov2.Append(const_cast<char*>("ephemeral string"), 16); // The following assignment results in a shallow copy; // both IOVectors point to the same underlying data. iov2 = iov1; EXPECT_EQ(iov2.Size(), iov1.Size()); for (size_t i = 0; i < iov2.Size(); ++i) { EXPECT_TRUE(iov2.iovec()[i].iov_base == iov1.iovec()[i].iov_base); EXPECT_EQ(iov2.iovec()[i].iov_len, iov1.iovec()[i].iov_len); } EXPECT_EQ(iov2.TotalBufferSize(), iov1.TotalBufferSize()); } TEST(IOVectorTest, Append) { IOVector iov; int length = 0; const struct iovec* iov2 = iov.iovec(); ASSERT_EQ(0u, iov.Size()); ASSERT_TRUE(iov2 == NULL); for (size_t i = 0; i < ARRAYSIZE_UNSAFE(test_data); ++i) { const int str_len = strlen(test_data[i]); const int append_len = str_len / 2; // This should append a new block iov.Append(const_cast<char*>(test_data[i]), append_len); length += append_len; ASSERT_EQ(i + 1, static_cast<size_t>(iov.Size())); ASSERT_TRUE(iov.LastBlockEnd() == test_data[i] + append_len); // This should just lengthen the existing block. iov.Append(const_cast<char*>(test_data[i] + append_len), str_len - append_len); length += (str_len - append_len); ASSERT_EQ(i + 1, static_cast<size_t>(iov.Size())); ASSERT_TRUE(iov.LastBlockEnd() == test_data[i] + str_len); } iov2 = iov.iovec(); ASSERT_TRUE(iov2 != NULL); for (size_t i = 0; i < iov.Size(); ++i) { ASSERT_TRUE(test_data[i] == iov2[i].iov_base); ASSERT_EQ(strlen(test_data[i]), iov2[i].iov_len); } } TEST(IOVectorTest, AppendIovec) { IOVector iov; const struct iovec test_iov[] = { {const_cast<char*>("foo"), 3}, {const_cast<char*>("bar"), 3}, {const_cast<char*>("buzzzz"), 6} }; iov.AppendIovec(test_iov, ARRAYSIZE_UNSAFE(test_iov)); for (size_t i = 0; i < ARRAYSIZE_UNSAFE(test_iov); ++i) { EXPECT_EQ(test_iov[i].iov_base, iov.iovec()[i].iov_base); EXPECT_EQ(test_iov[i].iov_len, iov.iovec()[i].iov_len); } // Test AppendIovecAtMostBytes. iov.Clear(); // Stop in the middle of a block. EXPECT_EQ(5u, iov.AppendIovecAtMostBytes(test_iov, ARRAYSIZE_UNSAFE(test_iov), 5)); EXPECT_EQ(5u, iov.TotalBufferSize()); iov.Append(static_cast<char*>(test_iov[1].iov_base) + 2, 1); // Make sure the boundary case, where max_bytes == size of block also works. EXPECT_EQ(6u, iov.AppendIovecAtMostBytes(&test_iov[2], 1, 6)); ASSERT_LE(ARRAYSIZE_UNSAFE(test_iov), static_cast<size_t>(iov.Size())); for (size_t i = 0; i < ARRAYSIZE_UNSAFE(test_iov); ++i) { EXPECT_EQ(test_iov[i].iov_base, iov.iovec()[i].iov_base); EXPECT_EQ(test_iov[i].iov_len, iov.iovec()[i].iov_len); } } TEST(IOVectorTest, ConsumeHalfBlocks) { IOVector iov; int length = 0; for (size_t i = 0; i < ARRAYSIZE_UNSAFE(test_data); ++i) { const int str_len = strlen(test_data[i]); iov.Append(const_cast<char*>(test_data[i]), str_len); length += str_len; } const char* endp = iov.LastBlockEnd(); for (size_t i = 0; i < ARRAYSIZE_UNSAFE(test_data); ++i) { const struct iovec* iov2 = iov.iovec(); const size_t str_len = strlen(test_data[i]); size_t tmp = str_len / 2; ASSERT_TRUE(iov2 != NULL); ASSERT_TRUE(iov2[0].iov_base == test_data[i]); ASSERT_EQ(str_len, iov2[0].iov_len); // Consume half of the first block. size_t consumed = iov.Consume(tmp); ASSERT_EQ(tmp, consumed); ASSERT_EQ(ARRAYSIZE_UNSAFE(test_data) - i, static_cast<size_t>(iov.Size())); iov2 = iov.iovec(); ASSERT_TRUE(iov2 != NULL); ASSERT_TRUE(iov2[0].iov_base == test_data[i] + tmp); ASSERT_EQ(iov2[0].iov_len, str_len - tmp); // Consume the rest of the first block consumed = iov.Consume(str_len - tmp); ASSERT_EQ(str_len - tmp, consumed); ASSERT_EQ(ARRAYSIZE_UNSAFE(test_data) - i - 1, static_cast<size_t>(iov.Size())); iov2 = iov.iovec(); if (iov.Size() > 0) { ASSERT_TRUE(iov2 != NULL); ASSERT_TRUE(iov.LastBlockEnd() == endp); } else { ASSERT_TRUE(iov2 == NULL); ASSERT_TRUE(iov.LastBlockEnd() == NULL); } } } TEST(IOVectorTest, ConsumeTwoAndHalfBlocks) { IOVector iov; int length = 0; for (size_t i = 0; i < ARRAYSIZE_UNSAFE(test_data); ++i) { const int str_len = strlen(test_data[i]); iov.Append(const_cast<char*>(test_data[i]), str_len); length += str_len; } const size_t last_len = strlen(test_data[ARRAYSIZE_UNSAFE(test_data) - 1]); const size_t half_len = last_len / 2; const char* endp = iov.LastBlockEnd(); size_t consumed = iov.Consume(length - half_len); ASSERT_EQ(length - half_len, consumed); const struct iovec* iov2 = iov.iovec(); ASSERT_TRUE(iov2 != NULL); ASSERT_EQ(1u, iov.Size()); ASSERT_TRUE(iov2[0].iov_base == test_data[ARRAYSIZE_UNSAFE(test_data) - 1] + last_len - half_len); ASSERT_EQ(half_len, iov2[0].iov_len); ASSERT_TRUE(iov.LastBlockEnd() == endp); consumed = iov.Consume(half_len); ASSERT_EQ(half_len, consumed); iov2 = iov.iovec(); ASSERT_EQ(0u, iov.Size()); ASSERT_TRUE(iov2 == NULL); ASSERT_TRUE(iov.LastBlockEnd() == NULL); } TEST(IOVectorTest, ConsumeTooMuch) { IOVector iov; int length = 0; for (size_t i = 0; i < ARRAYSIZE_UNSAFE(test_data); ++i) { const int str_len = strlen(test_data[i]); iov.Append(const_cast<char*>(test_data[i]), str_len); length += str_len; } int consumed = 0; consumed = iov.Consume(length); // TODO(rtenneti): enable when chromium supports EXPECT_DFATAL. /* EXPECT_DFATAL( {consumed = iov.Consume(length + 1);}, "Attempting to consume 1 non-existent bytes."); */ ASSERT_EQ(length, consumed); const struct iovec* iov2 = iov.iovec(); ASSERT_EQ(0u, iov.Size()); ASSERT_TRUE(iov2 == NULL); ASSERT_TRUE(iov.LastBlockEnd() == NULL); } TEST(IOVectorTest, Clear) { IOVector iov; int length = 0; for (size_t i = 0; i < ARRAYSIZE_UNSAFE(test_data); ++i) { const int str_len = strlen(test_data[i]); iov.Append(const_cast<char*>(test_data[i]), str_len); length += str_len; } const struct iovec* iov2 = iov.iovec(); ASSERT_TRUE(iov2 != NULL); ASSERT_EQ(ARRAYSIZE_UNSAFE(test_data), static_cast<size_t>(iov.Size())); iov.Clear(); iov2 = iov.iovec(); ASSERT_EQ(0u, iov.Size()); ASSERT_TRUE(iov2 == NULL); } TEST(IOVectorTest, Capacity) { IOVector iov; // Note: IOVector merges adjacent Appends() into a single iov. // Therefore, if we expect final size of iov to be 3, we must insure // that the items we are appending are not adjacent. To achieve that // we use use an array (a[1] provides a buffer between a[0] and b[0], // and makes them non-adjacent). char a[2], b[2], c[2]; iov.Append(&a[0], 1); iov.Append(&b[0], 1); iov.Append(&c[0], 1); ASSERT_EQ(3u, iov.Size()); size_t capacity = iov.Capacity(); EXPECT_LE(iov.Size(), capacity); iov.Consume(2); // The capacity should not have changed. EXPECT_EQ(capacity, iov.Capacity()); } TEST(IOVectorTest, Swap) { IOVector iov1, iov2; // See IOVector merge comment above. char a[2], b[2], c[2], d[2], e[2]; iov1.Append(&a[0], 1); iov1.Append(&b[0], 1); iov2.Append(&c[0], 1); iov2.Append(&d[0], 1); iov2.Append(&e[0], 1); iov1.Swap(&iov2); ASSERT_EQ(3u, iov1.Size()); EXPECT_EQ(&c[0], iov1.iovec()[0].iov_base); EXPECT_EQ(1u, iov1.iovec()[0].iov_len); EXPECT_EQ(&d[0], iov1.iovec()[1].iov_base); EXPECT_EQ(1u, iov1.iovec()[1].iov_len); EXPECT_EQ(&e[0], iov1.iovec()[2].iov_base); EXPECT_EQ(1u, iov1.iovec()[2].iov_len); ASSERT_EQ(2u, iov2.Size()); EXPECT_EQ(&a[0], iov2.iovec()[0].iov_base); EXPECT_EQ(1u, iov2.iovec()[0].iov_len); EXPECT_EQ(&b[0], iov2.iovec()[1].iov_base); EXPECT_EQ(1u, iov2.iovec()[1].iov_len); } } // namespace } // namespace test } // namespace net