// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/quic/quic_connection.h" #include <string.h> #include <sys/types.h> #include <algorithm> #include <iterator> #include <limits> #include <memory> #include <set> #include <utility> #include "base/logging.h" #include "base/stl_util.h" #include "net/base/net_errors.h" #include "net/quic/crypto/quic_decrypter.h" #include "net/quic/crypto/quic_encrypter.h" #include "net/quic/iovector.h" #include "net/quic/quic_bandwidth.h" #include "net/quic/quic_config.h" #include "net/quic/quic_utils.h" using base::hash_map; using base::hash_set; using base::StringPiece; using std::list; using std::make_pair; using std::min; using std::max; using std::numeric_limits; using std::vector; using std::set; using std::string; int FLAGS_fake_packet_loss_percentage = 0; // If true, then QUIC connections will bundle acks with any outgoing packet when // an ack is being delayed. This is an optimization to reduce ack latency and // packet count of pure ack packets. bool FLAGS_bundle_ack_with_outgoing_packet = false; namespace net { class QuicDecrypter; class QuicEncrypter; namespace { // The largest gap in packets we'll accept without closing the connection. // This will likely have to be tuned. const QuicPacketSequenceNumber kMaxPacketGap = 5000; // Limit the number of FEC groups to two. If we get enough out of order packets // that this becomes limiting, we can revisit. const size_t kMaxFecGroups = 2; // Limit the number of undecryptable packets we buffer in // expectation of the CHLO/SHLO arriving. const size_t kMaxUndecryptablePackets = 10; bool Near(QuicPacketSequenceNumber a, QuicPacketSequenceNumber b) { QuicPacketSequenceNumber delta = (a > b) ? a - b : b - a; return delta <= kMaxPacketGap; } // An alarm that is scheduled to send an ack if a timeout occurs. class AckAlarm : public QuicAlarm::Delegate { public: explicit AckAlarm(QuicConnection* connection) : connection_(connection) { } virtual QuicTime OnAlarm() OVERRIDE { connection_->SendAck(); return QuicTime::Zero(); } private: QuicConnection* connection_; }; // This alarm will be scheduled any time a data-bearing packet is sent out. // When the alarm goes off, the connection checks to see if the oldest packets // have been acked, and retransmit them if they have not. class RetransmissionAlarm : public QuicAlarm::Delegate { public: explicit RetransmissionAlarm(QuicConnection* connection) : connection_(connection) { } virtual QuicTime OnAlarm() OVERRIDE { connection_->OnRetransmissionTimeout(); return QuicTime::Zero(); } private: QuicConnection* connection_; }; // An alarm that is scheduled when the sent scheduler requires a // a delay before sending packets and fires when the packet may be sent. class SendAlarm : public QuicAlarm::Delegate { public: explicit SendAlarm(QuicConnection* connection) : connection_(connection) { } virtual QuicTime OnAlarm() OVERRIDE { connection_->WriteIfNotBlocked(); // Never reschedule the alarm, since OnCanWrite does that. return QuicTime::Zero(); } private: QuicConnection* connection_; }; class TimeoutAlarm : public QuicAlarm::Delegate { public: explicit TimeoutAlarm(QuicConnection* connection) : connection_(connection) { } virtual QuicTime OnAlarm() OVERRIDE { connection_->CheckForTimeout(); // Never reschedule the alarm, since CheckForTimeout does that. return QuicTime::Zero(); } private: QuicConnection* connection_; }; // Indicates if any of the frames are intended to be sent with FORCE. // Returns FORCE when one of the frames is a CONNECTION_CLOSE_FRAME. net::QuicConnection::Force HasForcedFrames( const RetransmittableFrames* retransmittable_frames) { if (!retransmittable_frames) { return net::QuicConnection::NO_FORCE; } for (size_t i = 0; i < retransmittable_frames->frames().size(); ++i) { if (retransmittable_frames->frames()[i].type == CONNECTION_CLOSE_FRAME) { return net::QuicConnection::FORCE; } } return net::QuicConnection::NO_FORCE; } net::IsHandshake HasCryptoHandshake( const RetransmittableFrames* retransmittable_frames) { if (!retransmittable_frames) { return net::NOT_HANDSHAKE; } for (size_t i = 0; i < retransmittable_frames->frames().size(); ++i) { if (retransmittable_frames->frames()[i].type == STREAM_FRAME && retransmittable_frames->frames()[i].stream_frame->stream_id == kCryptoStreamId) { return net::IS_HANDSHAKE; } } return net::NOT_HANDSHAKE; } } // namespace #define ENDPOINT (is_server_ ? "Server: " : " Client: ") QuicConnection::QuicConnection(QuicGuid guid, IPEndPoint address, QuicConnectionHelperInterface* helper, QuicPacketWriter* writer, bool is_server, const QuicVersionVector& supported_versions) : framer_(supported_versions, helper->GetClock()->ApproximateNow(), is_server), helper_(helper), writer_(writer), encryption_level_(ENCRYPTION_NONE), clock_(helper->GetClock()), random_generator_(helper->GetRandomGenerator()), guid_(guid), peer_address_(address), largest_seen_packet_with_ack_(0), pending_version_negotiation_packet_(false), write_blocked_(false), received_packet_manager_(kTCP), ack_alarm_(helper->CreateAlarm(new AckAlarm(this))), retransmission_alarm_(helper->CreateAlarm(new RetransmissionAlarm(this))), send_alarm_(helper->CreateAlarm(new SendAlarm(this))), resume_writes_alarm_(helper->CreateAlarm(new SendAlarm(this))), timeout_alarm_(helper->CreateAlarm(new TimeoutAlarm(this))), debug_visitor_(NULL), packet_creator_(guid_, &framer_, random_generator_, is_server), packet_generator_(this, NULL, &packet_creator_), idle_network_timeout_( QuicTime::Delta::FromSeconds(kDefaultInitialTimeoutSecs)), overall_connection_timeout_(QuicTime::Delta::Infinite()), creation_time_(clock_->ApproximateNow()), time_of_last_received_packet_(clock_->ApproximateNow()), time_of_last_sent_packet_(clock_->ApproximateNow()), sequence_number_of_last_inorder_packet_(0), sent_packet_manager_(is_server, this, clock_, kTCP), version_negotiation_state_(START_NEGOTIATION), is_server_(is_server), connected_(true), address_migrating_(false) { if (!is_server_) { // Pacing will be enabled if the client negotiates it. sent_packet_manager_.MaybeEnablePacing(); } DVLOG(1) << ENDPOINT << "Created connection with guid: " << guid; timeout_alarm_->Set(clock_->ApproximateNow().Add(idle_network_timeout_)); framer_.set_visitor(this); framer_.set_received_entropy_calculator(&received_packet_manager_); } QuicConnection::~QuicConnection() { STLDeleteElements(&undecryptable_packets_); STLDeleteValues(&group_map_); for (QueuedPacketList::iterator it = queued_packets_.begin(); it != queued_packets_.end(); ++it) { delete it->packet; } } void QuicConnection::SetFromConfig(const QuicConfig& config) { DCHECK_LT(0u, config.server_initial_congestion_window()); SetIdleNetworkTimeout(config.idle_connection_state_lifetime()); sent_packet_manager_.SetFromConfig(config); // TODO(satyamshekhar): Set congestion control and ICSL also. } bool QuicConnection::SelectMutualVersion( const QuicVersionVector& available_versions) { // Try to find the highest mutual version by iterating over supported // versions, starting with the highest, and breaking out of the loop once we // find a matching version in the provided available_versions vector. const QuicVersionVector& supported_versions = framer_.supported_versions(); for (size_t i = 0; i < supported_versions.size(); ++i) { const QuicVersion& version = supported_versions[i]; if (std::find(available_versions.begin(), available_versions.end(), version) != available_versions.end()) { framer_.set_version(version); return true; } } return false; } void QuicConnection::OnError(QuicFramer* framer) { // Packets that we cannot decrypt are dropped. // TODO(rch): add stats to measure this. if (!connected_ || framer->error() == QUIC_DECRYPTION_FAILURE) { return; } SendConnectionCloseWithDetails(framer->error(), framer->detailed_error()); } void QuicConnection::OnPacket() { DCHECK(last_stream_frames_.empty() && last_goaway_frames_.empty() && last_rst_frames_.empty() && last_ack_frames_.empty() && last_congestion_frames_.empty()); } void QuicConnection::OnPublicResetPacket( const QuicPublicResetPacket& packet) { if (debug_visitor_) { debug_visitor_->OnPublicResetPacket(packet); } CloseConnection(QUIC_PUBLIC_RESET, true); } bool QuicConnection::OnProtocolVersionMismatch(QuicVersion received_version) { DVLOG(1) << ENDPOINT << "Received packet with mismatched version " << received_version; // TODO(satyamshekhar): Implement no server state in this mode. if (!is_server_) { LOG(DFATAL) << ENDPOINT << "Framer called OnProtocolVersionMismatch. " << "Closing connection."; CloseConnection(QUIC_INTERNAL_ERROR, false); return false; } DCHECK_NE(version(), received_version); if (debug_visitor_) { debug_visitor_->OnProtocolVersionMismatch(received_version); } switch (version_negotiation_state_) { case START_NEGOTIATION: if (!framer_.IsSupportedVersion(received_version)) { SendVersionNegotiationPacket(); version_negotiation_state_ = NEGOTIATION_IN_PROGRESS; return false; } break; case NEGOTIATION_IN_PROGRESS: if (!framer_.IsSupportedVersion(received_version)) { SendVersionNegotiationPacket(); return false; } break; case NEGOTIATED_VERSION: // Might be old packets that were sent by the client before the version // was negotiated. Drop these. return false; default: DCHECK(false); } version_negotiation_state_ = NEGOTIATED_VERSION; visitor_->OnSuccessfulVersionNegotiation(received_version); DVLOG(1) << ENDPOINT << "version negotiated " << received_version; // Store the new version. framer_.set_version(received_version); // TODO(satyamshekhar): Store the sequence number of this packet and close the // connection if we ever received a packet with incorrect version and whose // sequence number is greater. return true; } // Handles version negotiation for client connection. void QuicConnection::OnVersionNegotiationPacket( const QuicVersionNegotiationPacket& packet) { if (is_server_) { LOG(DFATAL) << ENDPOINT << "Framer parsed VersionNegotiationPacket." << " Closing connection."; CloseConnection(QUIC_INTERNAL_ERROR, false); return; } if (debug_visitor_) { debug_visitor_->OnVersionNegotiationPacket(packet); } if (version_negotiation_state_ != START_NEGOTIATION) { // Possibly a duplicate version negotiation packet. return; } if (std::find(packet.versions.begin(), packet.versions.end(), version()) != packet.versions.end()) { DLOG(WARNING) << ENDPOINT << "The server already supports our version. " << "It should have accepted our connection."; // Just drop the connection. CloseConnection(QUIC_INVALID_VERSION_NEGOTIATION_PACKET, false); return; } if (!SelectMutualVersion(packet.versions)) { SendConnectionCloseWithDetails(QUIC_INVALID_VERSION, "no common version found"); return; } DVLOG(1) << ENDPOINT << "negotiating version " << version(); server_supported_versions_ = packet.versions; version_negotiation_state_ = NEGOTIATION_IN_PROGRESS; RetransmitUnackedPackets(ALL_PACKETS); } void QuicConnection::OnRevivedPacket() { } bool QuicConnection::OnUnauthenticatedHeader(const QuicPacketHeader& header) { return true; } bool QuicConnection::OnPacketHeader(const QuicPacketHeader& header) { if (debug_visitor_) { debug_visitor_->OnPacketHeader(header); } if (!ProcessValidatedPacket()) { return false; } // Will be decrement below if we fall through to return true; ++stats_.packets_dropped; if (header.public_header.guid != guid_) { DVLOG(1) << ENDPOINT << "Ignoring packet from unexpected GUID: " << header.public_header.guid << " instead of " << guid_; return false; } if (!Near(header.packet_sequence_number, last_header_.packet_sequence_number)) { DVLOG(1) << ENDPOINT << "Packet " << header.packet_sequence_number << " out of bounds. Discarding"; SendConnectionCloseWithDetails(QUIC_INVALID_PACKET_HEADER, "Packet sequence number out of bounds"); return false; } // If this packet has already been seen, or that the sender // has told us will not be retransmitted, then stop processing the packet. if (!received_packet_manager_.IsAwaitingPacket( header.packet_sequence_number)) { return false; } if (version_negotiation_state_ != NEGOTIATED_VERSION) { if (is_server_) { if (!header.public_header.version_flag) { DLOG(WARNING) << ENDPOINT << "Got packet without version flag before " << "version negotiated."; // Packets should have the version flag till version negotiation is // done. CloseConnection(QUIC_INVALID_VERSION, false); return false; } else { DCHECK_EQ(1u, header.public_header.versions.size()); DCHECK_EQ(header.public_header.versions[0], version()); version_negotiation_state_ = NEGOTIATED_VERSION; visitor_->OnSuccessfulVersionNegotiation(version()); } } else { DCHECK(!header.public_header.version_flag); // If the client gets a packet without the version flag from the server // it should stop sending version since the version negotiation is done. packet_creator_.StopSendingVersion(); version_negotiation_state_ = NEGOTIATED_VERSION; visitor_->OnSuccessfulVersionNegotiation(version()); } } DCHECK_EQ(NEGOTIATED_VERSION, version_negotiation_state_); --stats_.packets_dropped; DVLOG(1) << ENDPOINT << "Received packet header: " << header; last_header_ = header; DCHECK(connected_); return true; } void QuicConnection::OnFecProtectedPayload(StringPiece payload) { DCHECK_EQ(IN_FEC_GROUP, last_header_.is_in_fec_group); DCHECK_NE(0u, last_header_.fec_group); QuicFecGroup* group = GetFecGroup(); if (group != NULL) { group->Update(last_header_, payload); } } bool QuicConnection::OnStreamFrame(const QuicStreamFrame& frame) { DCHECK(connected_); if (debug_visitor_) { debug_visitor_->OnStreamFrame(frame); } last_stream_frames_.push_back(frame); return true; } bool QuicConnection::OnAckFrame(const QuicAckFrame& incoming_ack) { DCHECK(connected_); if (debug_visitor_) { debug_visitor_->OnAckFrame(incoming_ack); } DVLOG(1) << ENDPOINT << "OnAckFrame: " << incoming_ack; if (last_header_.packet_sequence_number <= largest_seen_packet_with_ack_) { DVLOG(1) << ENDPOINT << "Received an old ack frame: ignoring"; return true; } if (!ValidateAckFrame(incoming_ack)) { SendConnectionClose(QUIC_INVALID_ACK_DATA); return false; } last_ack_frames_.push_back(incoming_ack); return connected_; } void QuicConnection::ProcessAckFrame(const QuicAckFrame& incoming_ack) { largest_seen_packet_with_ack_ = last_header_.packet_sequence_number; received_packet_manager_.UpdatePacketInformationReceivedByPeer(incoming_ack); received_packet_manager_.UpdatePacketInformationSentByPeer(incoming_ack); // Possibly close any FecGroups which are now irrelevant. CloseFecGroupsBefore(incoming_ack.sent_info.least_unacked + 1); sent_entropy_manager_.ClearEntropyBefore( received_packet_manager_.least_packet_awaited_by_peer() - 1); bool reset_retransmission_alarm = sent_packet_manager_.OnIncomingAck(incoming_ack.received_info, time_of_last_received_packet_); if (sent_packet_manager_.HasPendingRetransmissions()) { WriteIfNotBlocked(); } if (reset_retransmission_alarm) { retransmission_alarm_->Cancel(); // Reset the RTO and FEC alarms if the are unacked packets. if (sent_packet_manager_.HasUnackedPackets()) { QuicTime::Delta retransmission_delay = sent_packet_manager_.GetRetransmissionDelay(); retransmission_alarm_->Set( clock_->ApproximateNow().Add(retransmission_delay)); } } } bool QuicConnection::OnCongestionFeedbackFrame( const QuicCongestionFeedbackFrame& feedback) { DCHECK(connected_); if (debug_visitor_) { debug_visitor_->OnCongestionFeedbackFrame(feedback); } last_congestion_frames_.push_back(feedback); return connected_; } bool QuicConnection::ValidateAckFrame(const QuicAckFrame& incoming_ack) { if (incoming_ack.received_info.largest_observed > packet_creator_.sequence_number()) { DLOG(ERROR) << ENDPOINT << "Peer's observed unsent packet:" << incoming_ack.received_info.largest_observed << " vs " << packet_creator_.sequence_number(); // We got an error for data we have not sent. Error out. return false; } if (incoming_ack.received_info.largest_observed < received_packet_manager_.peer_largest_observed_packet()) { DLOG(ERROR) << ENDPOINT << "Peer's largest_observed packet decreased:" << incoming_ack.received_info.largest_observed << " vs " << received_packet_manager_.peer_largest_observed_packet(); // A new ack has a diminished largest_observed value. Error out. // If this was an old packet, we wouldn't even have checked. return false; } if (incoming_ack.sent_info.least_unacked < received_packet_manager_.peer_least_packet_awaiting_ack()) { DLOG(ERROR) << ENDPOINT << "Peer's sent low least_unacked: " << incoming_ack.sent_info.least_unacked << " vs " << received_packet_manager_.peer_least_packet_awaiting_ack(); // We never process old ack frames, so this number should only increase. return false; } if (incoming_ack.sent_info.least_unacked > last_header_.packet_sequence_number) { DLOG(ERROR) << ENDPOINT << "Peer sent least_unacked:" << incoming_ack.sent_info.least_unacked << " greater than the enclosing packet sequence number:" << last_header_.packet_sequence_number; return false; } if (!incoming_ack.received_info.missing_packets.empty() && *incoming_ack.received_info.missing_packets.rbegin() > incoming_ack.received_info.largest_observed) { DLOG(ERROR) << ENDPOINT << "Peer sent missing packet: " << *incoming_ack.received_info.missing_packets.rbegin() << " which is greater than largest observed: " << incoming_ack.received_info.largest_observed; return false; } if (!incoming_ack.received_info.missing_packets.empty() && *incoming_ack.received_info.missing_packets.begin() < received_packet_manager_.least_packet_awaited_by_peer()) { DLOG(ERROR) << ENDPOINT << "Peer sent missing packet: " << *incoming_ack.received_info.missing_packets.begin() << " which is smaller than least_packet_awaited_by_peer_: " << received_packet_manager_.least_packet_awaited_by_peer(); return false; } if (!sent_entropy_manager_.IsValidEntropy( incoming_ack.received_info.largest_observed, incoming_ack.received_info.missing_packets, incoming_ack.received_info.entropy_hash)) { DLOG(ERROR) << ENDPOINT << "Peer sent invalid entropy."; return false; } return true; } void QuicConnection::OnFecData(const QuicFecData& fec) { DCHECK_EQ(IN_FEC_GROUP, last_header_.is_in_fec_group); DCHECK_NE(0u, last_header_.fec_group); QuicFecGroup* group = GetFecGroup(); if (group != NULL) { group->UpdateFec(last_header_.packet_sequence_number, last_header_.entropy_flag, fec); } } bool QuicConnection::OnRstStreamFrame(const QuicRstStreamFrame& frame) { DCHECK(connected_); if (debug_visitor_) { debug_visitor_->OnRstStreamFrame(frame); } DVLOG(1) << ENDPOINT << "Stream reset with error " << QuicUtils::StreamErrorToString(frame.error_code); last_rst_frames_.push_back(frame); return connected_; } bool QuicConnection::OnConnectionCloseFrame( const QuicConnectionCloseFrame& frame) { DCHECK(connected_); if (debug_visitor_) { debug_visitor_->OnConnectionCloseFrame(frame); } DVLOG(1) << ENDPOINT << "Connection " << guid() << " closed with error " << QuicUtils::ErrorToString(frame.error_code) << " " << frame.error_details; last_close_frames_.push_back(frame); return connected_; } bool QuicConnection::OnGoAwayFrame(const QuicGoAwayFrame& frame) { DCHECK(connected_); DVLOG(1) << ENDPOINT << "Go away received with error " << QuicUtils::ErrorToString(frame.error_code) << " and reason:" << frame.reason_phrase; last_goaway_frames_.push_back(frame); return connected_; } void QuicConnection::OnPacketComplete() { // Don't do anything if this packet closed the connection. if (!connected_) { ClearLastFrames(); return; } DVLOG(1) << ENDPOINT << (last_packet_revived_ ? "Revived" : "Got") << " packet " << last_header_.packet_sequence_number << " with " << last_ack_frames_.size() << " acks, " << last_congestion_frames_.size() << " congestions, " << last_goaway_frames_.size() << " goaways, " << last_rst_frames_.size() << " rsts, " << last_close_frames_.size() << " closes, " << last_stream_frames_.size() << " stream frames for " << last_header_.public_header.guid; // Must called before ack processing, because processing acks removes entries // from unacket_packets_, increasing the least_unacked. const bool last_packet_should_instigate_ack = ShouldLastPacketInstigateAck(); // If the incoming packet was missing, send an ack immediately. bool send_ack_immediately = received_packet_manager_.IsMissing( last_header_.packet_sequence_number); // Ensure the visitor can process the stream frames before recording and // processing the rest of the packet. if (last_stream_frames_.empty() || visitor_->OnStreamFrames(last_stream_frames_)) { received_packet_manager_.RecordPacketReceived(last_size_, last_header_, time_of_last_received_packet_, last_packet_revived_); for (size_t i = 0; i < last_stream_frames_.size(); ++i) { stats_.stream_bytes_received += last_stream_frames_[i].data.TotalBufferSize(); } } // Process stream resets, then acks, then congestion feedback. for (size_t i = 0; i < last_goaway_frames_.size(); ++i) { visitor_->OnGoAway(last_goaway_frames_[i]); } for (size_t i = 0; i < last_rst_frames_.size(); ++i) { visitor_->OnRstStream(last_rst_frames_[i]); } for (size_t i = 0; i < last_ack_frames_.size(); ++i) { ProcessAckFrame(last_ack_frames_[i]); } for (size_t i = 0; i < last_congestion_frames_.size(); ++i) { sent_packet_manager_.OnIncomingQuicCongestionFeedbackFrame( last_congestion_frames_[i], time_of_last_received_packet_); } if (!last_close_frames_.empty()) { CloseConnection(last_close_frames_[0].error_code, true); DCHECK(!connected_); } // If there are new missing packets to report, send an ack immediately. if (received_packet_manager_.HasNewMissingPackets()) { send_ack_immediately = true; } MaybeSendInResponseToPacket(send_ack_immediately, last_packet_should_instigate_ack); ClearLastFrames(); } void QuicConnection::ClearLastFrames() { last_stream_frames_.clear(); last_goaway_frames_.clear(); last_rst_frames_.clear(); last_ack_frames_.clear(); last_congestion_frames_.clear(); } QuicAckFrame* QuicConnection::CreateAckFrame() { QuicAckFrame* outgoing_ack = new QuicAckFrame(); received_packet_manager_.UpdateReceivedPacketInfo( &(outgoing_ack->received_info), clock_->ApproximateNow()); UpdateSentPacketInfo(&(outgoing_ack->sent_info)); DVLOG(1) << ENDPOINT << "Creating ack frame: " << *outgoing_ack; return outgoing_ack; } QuicCongestionFeedbackFrame* QuicConnection::CreateFeedbackFrame() { return new QuicCongestionFeedbackFrame(outgoing_congestion_feedback_); } bool QuicConnection::ShouldLastPacketInstigateAck() { if (!last_stream_frames_.empty() || !last_goaway_frames_.empty() || !last_rst_frames_.empty()) { return true; } // If the peer is still waiting for a packet that we are no // longer planning to send, we should send an ack to raise // the high water mark. if (!last_ack_frames_.empty() && !last_ack_frames_.back().received_info.missing_packets.empty()) { return sent_packet_manager_.GetLeastUnackedSentPacket() > *last_ack_frames_.back().received_info.missing_packets.begin(); } return false; } void QuicConnection::MaybeSendInResponseToPacket( bool send_ack_immediately, bool last_packet_should_instigate_ack) { // |include_ack| is false since we decide about ack bundling below. ScopedPacketBundler bundler(this, false); if (last_packet_should_instigate_ack) { // In general, we ack every second packet. When we don't ack the first // packet, we set the delayed ack alarm. Thus, if the ack alarm is set // then we know this is the second packet, and we should send an ack. if (send_ack_immediately || ack_alarm_->IsSet()) { SendAck(); DCHECK(!ack_alarm_->IsSet()); } else { ack_alarm_->Set(clock_->ApproximateNow().Add( sent_packet_manager_.DelayedAckTime())); DVLOG(1) << "Ack timer set; next packet or timer will trigger ACK."; } } if (!last_ack_frames_.empty()) { // Now the we have received an ack, we might be able to send packets which // are queued locally, or drain streams which are blocked. QuicTime::Delta delay = sent_packet_manager_.TimeUntilSend( time_of_last_received_packet_, NOT_RETRANSMISSION, HAS_RETRANSMITTABLE_DATA, NOT_HANDSHAKE); if (delay.IsZero()) { send_alarm_->Cancel(); WriteIfNotBlocked(); } else if (!delay.IsInfinite()) { send_alarm_->Cancel(); send_alarm_->Set(time_of_last_received_packet_.Add(delay)); } } } void QuicConnection::SendVersionNegotiationPacket() { scoped_ptr<QuicEncryptedPacket> version_packet( packet_creator_.SerializeVersionNegotiationPacket( framer_.supported_versions())); // TODO(satyamshekhar): implement zero server state negotiation. WriteResult result = writer_->WritePacket(version_packet->data(), version_packet->length(), self_address().address(), peer_address(), this); if (result.status == WRITE_STATUS_BLOCKED) { write_blocked_ = true; } if (result.status == WRITE_STATUS_OK || (result.status == WRITE_STATUS_BLOCKED && writer_->IsWriteBlockedDataBuffered())) { pending_version_negotiation_packet_ = false; return; } if (result.status == WRITE_STATUS_ERROR) { // We can't send an error as the socket is presumably borked. CloseConnection(QUIC_PACKET_WRITE_ERROR, false); } pending_version_negotiation_packet_ = true; } QuicConsumedData QuicConnection::SendStreamData( QuicStreamId id, const IOVector& data, QuicStreamOffset offset, bool fin, QuicAckNotifier::DelegateInterface* delegate) { if (!fin && data.Empty()) { LOG(DFATAL) << "Attempt to send empty stream frame"; } // This notifier will be owned by the AckNotifierManager (or deleted below if // no data or FIN was consumed). QuicAckNotifier* notifier = NULL; if (delegate) { notifier = new QuicAckNotifier(delegate); } // Opportunistically bundle an ack with this outgoing packet, unless it's the // crypto stream. ScopedPacketBundler ack_bundler(this, id != kCryptoStreamId); QuicConsumedData consumed_data = packet_generator_.ConsumeData(id, data, offset, fin, notifier); if (notifier && (consumed_data.bytes_consumed == 0 && !consumed_data.fin_consumed)) { // No data was consumed, nor was a fin consumed, so delete the notifier. delete notifier; } return consumed_data; } void QuicConnection::SendRstStream(QuicStreamId id, QuicRstStreamErrorCode error) { DVLOG(1) << "Sending RST_STREAM: " << id << " code: " << error; // Opportunistically bundle an ack with this outgoing packet. ScopedPacketBundler ack_bundler(this, true); packet_generator_.AddControlFrame( QuicFrame(new QuicRstStreamFrame(id, error))); } const QuicConnectionStats& QuicConnection::GetStats() { // Update rtt and estimated bandwidth. stats_.rtt = sent_packet_manager_.SmoothedRtt().ToMicroseconds(); stats_.estimated_bandwidth = sent_packet_manager_.BandwidthEstimate().ToBytesPerSecond(); return stats_; } void QuicConnection::ProcessUdpPacket(const IPEndPoint& self_address, const IPEndPoint& peer_address, const QuicEncryptedPacket& packet) { if (!connected_) { return; } if (debug_visitor_) { debug_visitor_->OnPacketReceived(self_address, peer_address, packet); } last_packet_revived_ = false; last_size_ = packet.length(); address_migrating_ = false; if (peer_address_.address().empty()) { peer_address_ = peer_address; } if (self_address_.address().empty()) { self_address_ = self_address; } if (!(peer_address == peer_address_ && self_address == self_address_)) { address_migrating_ = true; } stats_.bytes_received += packet.length(); ++stats_.packets_received; if (!framer_.ProcessPacket(packet)) { // If we are unable to decrypt this packet, it might be // because the CHLO or SHLO packet was lost. if (encryption_level_ != ENCRYPTION_FORWARD_SECURE && framer_.error() == QUIC_DECRYPTION_FAILURE && undecryptable_packets_.size() < kMaxUndecryptablePackets) { QueueUndecryptablePacket(packet); } DVLOG(1) << ENDPOINT << "Unable to process packet. Last packet processed: " << last_header_.packet_sequence_number; return; } MaybeProcessUndecryptablePackets(); MaybeProcessRevivedPacket(); } bool QuicConnection::OnCanWrite() { write_blocked_ = false; return DoWrite(); } bool QuicConnection::WriteIfNotBlocked() { if (write_blocked_) { return false; } return DoWrite(); } bool QuicConnection::DoWrite() { DCHECK(!write_blocked_); WriteQueuedPackets(); WritePendingRetransmissions(); IsHandshake pending_handshake = visitor_->HasPendingHandshake() ? IS_HANDSHAKE : NOT_HANDSHAKE; // Sending queued packets may have caused the socket to become write blocked, // or the congestion manager to prohibit sending. If we've sent everything // we had queued and we're still not blocked, let the visitor know it can // write more. if (CanWrite(NOT_RETRANSMISSION, HAS_RETRANSMITTABLE_DATA, pending_handshake)) { // Set |include_ack| to false in bundler; ack inclusion happens elsewhere. scoped_ptr<ScopedPacketBundler> bundler( new ScopedPacketBundler(this, false)); bool all_bytes_written = visitor_->OnCanWrite(); bundler.reset(); // After the visitor writes, it may have caused the socket to become write // blocked or the congestion manager to prohibit sending, so check again. pending_handshake = visitor_->HasPendingHandshake() ? IS_HANDSHAKE : NOT_HANDSHAKE; if (!all_bytes_written && !resume_writes_alarm_->IsSet() && CanWrite(NOT_RETRANSMISSION, HAS_RETRANSMITTABLE_DATA, pending_handshake)) { // We're not write blocked, but some stream didn't write out all of its // bytes. Register for 'immediate' resumption so we'll keep writing after // other quic connections have had a chance to use the socket. resume_writes_alarm_->Set(clock_->ApproximateNow()); } } return !write_blocked_; } bool QuicConnection::ProcessValidatedPacket() { if (address_migrating_) { SendConnectionCloseWithDetails( QUIC_ERROR_MIGRATING_ADDRESS, "Address migration is not yet a supported feature"); return false; } time_of_last_received_packet_ = clock_->Now(); DVLOG(1) << ENDPOINT << "time of last received packet: " << time_of_last_received_packet_.ToDebuggingValue(); if (is_server_ && encryption_level_ == ENCRYPTION_NONE && last_size_ > options()->max_packet_length) { options()->max_packet_length = last_size_; } return true; } bool QuicConnection::WriteQueuedPackets() { DCHECK(!write_blocked_); if (pending_version_negotiation_packet_) { SendVersionNegotiationPacket(); } QueuedPacketList::iterator packet_iterator = queued_packets_.begin(); while (!write_blocked_ && packet_iterator != queued_packets_.end()) { if (WritePacket(packet_iterator->encryption_level, packet_iterator->sequence_number, packet_iterator->packet, packet_iterator->transmission_type, packet_iterator->retransmittable, packet_iterator->handshake, packet_iterator->forced)) { packet_iterator = queued_packets_.erase(packet_iterator); } else { // Continue, because some queued packets may still be writable. // This can happen if a retransmit send fail. ++packet_iterator; } } return !write_blocked_; } void QuicConnection::WritePendingRetransmissions() { // Keep writing as long as there's a pending retransmission which can be // written. while (sent_packet_manager_.HasPendingRetransmissions()) { const QuicSentPacketManager::PendingRetransmission pending = sent_packet_manager_.NextPendingRetransmission(); if (HasForcedFrames(&pending.retransmittable_frames) == NO_FORCE && !CanWrite(pending.transmission_type, HAS_RETRANSMITTABLE_DATA, HasCryptoHandshake(&pending.retransmittable_frames))) { break; } // Re-packetize the frames with a new sequence number for retransmission. // Retransmitted data packets do not use FEC, even when it's enabled. // Retransmitted packets use the same sequence number length as the // original. // Flush the packet creator before making a new packet. // TODO(ianswett): Implement ReserializeAllFrames as a separate path that // does not require the creator to be flushed. Flush(); SerializedPacket serialized_packet = packet_creator_.ReserializeAllFrames( pending.retransmittable_frames.frames(), pending.sequence_number_length); DVLOG(1) << ENDPOINT << "Retransmitting " << pending.sequence_number << " as " << serialized_packet.sequence_number; if (debug_visitor_) { debug_visitor_->OnPacketRetransmitted( pending.sequence_number, serialized_packet.sequence_number); } sent_packet_manager_.OnRetransmittedPacket( pending.sequence_number, serialized_packet.sequence_number); SendOrQueuePacket(pending.retransmittable_frames.encryption_level(), serialized_packet, pending.transmission_type); } } void QuicConnection::RetransmitUnackedPackets( RetransmissionType retransmission_type) { sent_packet_manager_.RetransmitUnackedPackets(retransmission_type); WriteIfNotBlocked(); } bool QuicConnection::ShouldGeneratePacket( TransmissionType transmission_type, HasRetransmittableData retransmittable, IsHandshake handshake) { // We should serialize handshake packets immediately to ensure that they // end up sent at the right encryption level. if (handshake == IS_HANDSHAKE) { return true; } return CanWrite(transmission_type, retransmittable, handshake); } bool QuicConnection::CanWrite(TransmissionType transmission_type, HasRetransmittableData retransmittable, IsHandshake handshake) { if (write_blocked_) { return false; } // TODO(rch): consider removing this check so that if an ACK comes in // before the alarm goes it, we might be able send out a packet. // This check assumes that if the send alarm is set, it applies equally to all // types of transmissions. if (send_alarm_->IsSet()) { DVLOG(1) << "Send alarm set. Not sending."; return false; } QuicTime now = clock_->Now(); QuicTime::Delta delay = sent_packet_manager_.TimeUntilSend( now, transmission_type, retransmittable, handshake); if (delay.IsInfinite()) { return false; } // If the scheduler requires a delay, then we can not send this packet now. if (!delay.IsZero()) { send_alarm_->Cancel(); send_alarm_->Set(now.Add(delay)); DVLOG(1) << "Delaying sending."; return false; } return true; } void QuicConnection::SetupRetransmissionAlarm( QuicPacketSequenceNumber sequence_number) { if (!sent_packet_manager_.HasRetransmittableFrames(sequence_number)) { DVLOG(1) << ENDPOINT << "Will not retransmit packet " << sequence_number; return; } // Do not set the retransmission alarm if we're already handling one, since // it will be reset when OnRetransmissionTimeout completes. if (retransmission_alarm_->IsSet()) { return; } QuicTime::Delta retransmission_delay = sent_packet_manager_.GetRetransmissionDelay(); retransmission_alarm_->Set( clock_->ApproximateNow().Add(retransmission_delay)); } bool QuicConnection::WritePacket(EncryptionLevel level, QuicPacketSequenceNumber sequence_number, QuicPacket* packet, TransmissionType transmission_type, HasRetransmittableData retransmittable, IsHandshake handshake, Force forced) { if (ShouldDiscardPacket(level, sequence_number, retransmittable)) { delete packet; return true; } // If we're write blocked, we know we can't write. if (write_blocked_) { return false; } // If we are not forced and we can't write, then simply return false; if (forced == NO_FORCE && !CanWrite(transmission_type, retransmittable, handshake)) { return false; } // Some encryption algorithms require the packet sequence numbers not be // repeated. DCHECK_LE(sequence_number_of_last_inorder_packet_, sequence_number); // Only increase this when packets have not been queued. Once they're queued // due to a write block, there is the chance of sending forced and other // higher priority packets out of order. if (queued_packets_.empty()) { sequence_number_of_last_inorder_packet_ = sequence_number; } scoped_ptr<QuicEncryptedPacket> encrypted( framer_.EncryptPacket(level, sequence_number, *packet)); if (encrypted.get() == NULL) { LOG(DFATAL) << ENDPOINT << "Failed to encrypt packet number " << sequence_number; CloseConnection(QUIC_ENCRYPTION_FAILURE, false); return false; } // If it's the ConnectionClose packet, the only FORCED frame type, // clone a copy for resending later by the TimeWaitListManager. if (forced == FORCE) { DCHECK(connection_close_packet_.get() == NULL); connection_close_packet_.reset(encrypted->Clone()); } if (encrypted->length() > options()->max_packet_length) { LOG(DFATAL) << "Writing an encrypted packet larger than max_packet_length:" << options()->max_packet_length << " encrypted length: " << encrypted->length(); } DVLOG(1) << ENDPOINT << "Sending packet number " << sequence_number << " : " << (packet->is_fec_packet() ? "FEC " : (retransmittable == HAS_RETRANSMITTABLE_DATA ? "data bearing " : " ack only ")) << ", encryption level: " << QuicUtils::EncryptionLevelToString(level) << ", length:" << packet->length() << ", encrypted length:" << encrypted->length(); DVLOG(2) << ENDPOINT << "packet(" << sequence_number << "): " << std::endl << QuicUtils::StringToHexASCIIDump(packet->AsStringPiece()); DCHECK(encrypted->length() <= kMaxPacketSize) << "Packet " << sequence_number << " will not be read; too large: " << packet->length() << " " << encrypted->length() << " " << " forced: " << (forced == FORCE ? "yes" : "no"); DCHECK(pending_write_.get() == NULL); pending_write_.reset(new PendingWrite(sequence_number, transmission_type, retransmittable, level, packet->is_fec_packet(), packet->length())); WriteResult result = writer_->WritePacket(encrypted->data(), encrypted->length(), self_address().address(), peer_address(), this); if (result.error_code == ERR_IO_PENDING) { DCHECK_EQ(WRITE_STATUS_BLOCKED, result.status); } if (debug_visitor_) { // Pass the write result to the visitor. debug_visitor_->OnPacketSent(sequence_number, level, *encrypted, result); } if (result.status == WRITE_STATUS_BLOCKED) { // TODO(satyashekhar): It might be more efficient (fewer system calls), if // all connections share this variable i.e this becomes a part of // PacketWriterInterface. write_blocked_ = true; // If the socket buffers the the data, then the packet should not // be queued and sent again, which would result in an unnecessary // duplicate packet being sent. The helper must call OnPacketSent // when the packet is actually sent. if (writer_->IsWriteBlockedDataBuffered()) { delete packet; return true; } pending_write_.reset(); return false; } if (OnPacketSent(result)) { delete packet; return true; } return false; } bool QuicConnection::ShouldDiscardPacket( EncryptionLevel level, QuicPacketSequenceNumber sequence_number, HasRetransmittableData retransmittable) { if (!connected_) { DVLOG(1) << ENDPOINT << "Not sending packet as connection is disconnected."; return true; } if (encryption_level_ == ENCRYPTION_FORWARD_SECURE && level == ENCRYPTION_NONE) { // Drop packets that are NULL encrypted since the peer won't accept them // anymore. DVLOG(1) << ENDPOINT << "Dropping packet: " << sequence_number << " since the packet is NULL encrypted."; sent_packet_manager_.DiscardUnackedPacket(sequence_number); return true; } if (retransmittable == HAS_RETRANSMITTABLE_DATA) { if (!sent_packet_manager_.IsUnacked(sequence_number)) { // This is a crazy edge case, but if we retransmit a packet, // (but have to queue it for some reason) then receive an ack // for the previous transmission (but not the retransmission) // then receive a truncated ACK which causes us to raise the // high water mark, all before we're able to send the packet // then we can simply drop it. DVLOG(1) << ENDPOINT << "Dropping packet: " << sequence_number << " since it has already been acked."; return true; } if (sent_packet_manager_.IsPreviousTransmission(sequence_number)) { // If somehow we have already retransmitted this packet *before* // we actually send it for the first time (I think this is probably // impossible in the real world), then don't bother sending it. // We don't want to call DiscardUnackedPacket because in this case // the peer has not yet ACK'd the data. We need the subsequent // retransmission to be sent. DVLOG(1) << ENDPOINT << "Dropping packet: " << sequence_number << " since it has already been retransmitted."; return true; } if (!sent_packet_manager_.HasRetransmittableFrames(sequence_number)) { DVLOG(1) << ENDPOINT << "Dropping packet: " << sequence_number << " since a previous transmission has been acked."; sent_packet_manager_.DiscardUnackedPacket(sequence_number); return true; } } return false; } bool QuicConnection::OnPacketSent(WriteResult result) { DCHECK_NE(WRITE_STATUS_BLOCKED, result.status); if (pending_write_.get() == NULL) { LOG(DFATAL) << "OnPacketSent called without a pending write."; return false; } QuicPacketSequenceNumber sequence_number = pending_write_->sequence_number; TransmissionType transmission_type = pending_write_->transmission_type; HasRetransmittableData retransmittable = pending_write_->retransmittable; bool is_fec_packet = pending_write_->is_fec_packet; size_t length = pending_write_->length; pending_write_.reset(); if (result.status == WRITE_STATUS_ERROR) { DVLOG(1) << "Write failed with error code: " << result.error_code; // We can't send an error as the socket is presumably borked. CloseConnection(QUIC_PACKET_WRITE_ERROR, false); return false; } QuicTime now = clock_->Now(); if (transmission_type == NOT_RETRANSMISSION) { time_of_last_sent_packet_ = now; } DVLOG(1) << ENDPOINT << "time of last sent packet: " << now.ToDebuggingValue(); // Set the retransmit alarm only when we have sent the packet to the client // and not when it goes to the pending queue, otherwise we will end up adding // an entry to retransmission_timeout_ every time we attempt a write. if (retransmittable == HAS_RETRANSMITTABLE_DATA || is_fec_packet) { SetupRetransmissionAlarm(sequence_number); } // TODO(ianswett): Change the sequence number length and other packet creator // options by a more explicit API than setting a struct value directly. packet_creator_.UpdateSequenceNumberLength( received_packet_manager_.least_packet_awaited_by_peer(), sent_packet_manager_.BandwidthEstimate().ToBytesPerPeriod( sent_packet_manager_.SmoothedRtt())); sent_packet_manager_.OnPacketSent(sequence_number, now, length, transmission_type, retransmittable); stats_.bytes_sent += result.bytes_written; ++stats_.packets_sent; if (transmission_type == NACK_RETRANSMISSION || transmission_type == RTO_RETRANSMISSION) { stats_.bytes_retransmitted += result.bytes_written; ++stats_.packets_retransmitted; } return true; } bool QuicConnection::OnSerializedPacket( const SerializedPacket& serialized_packet) { if (serialized_packet.retransmittable_frames) { serialized_packet.retransmittable_frames-> set_encryption_level(encryption_level_); } sent_packet_manager_.OnSerializedPacket(serialized_packet); // The TransmissionType is NOT_RETRANSMISSION because all retransmissions // serialize packets and invoke SendOrQueuePacket directly. return SendOrQueuePacket(encryption_level_, serialized_packet, NOT_RETRANSMISSION); } QuicPacketSequenceNumber QuicConnection::GetNextPacketSequenceNumber() { return packet_creator_.sequence_number() + 1; } bool QuicConnection::SendOrQueuePacket(EncryptionLevel level, const SerializedPacket& packet, TransmissionType transmission_type) { IsHandshake handshake = HasCryptoHandshake(packet.retransmittable_frames); Force forced = HasForcedFrames(packet.retransmittable_frames); HasRetransmittableData retransmittable = (transmission_type != NOT_RETRANSMISSION || packet.retransmittable_frames != NULL) ? HAS_RETRANSMITTABLE_DATA : NO_RETRANSMITTABLE_DATA; sent_entropy_manager_.RecordPacketEntropyHash(packet.sequence_number, packet.entropy_hash); if (WritePacket(level, packet.sequence_number, packet.packet, transmission_type, retransmittable, handshake, forced)) { return true; } queued_packets_.push_back(QueuedPacket(packet.sequence_number, packet.packet, level, transmission_type, retransmittable, handshake, forced)); return false; } void QuicConnection::UpdateSentPacketInfo(SentPacketInfo* sent_info) { sent_info->least_unacked = sent_packet_manager_.GetLeastUnackedSentPacket(); sent_info->entropy_hash = sent_entropy_manager_.EntropyHash( sent_info->least_unacked - 1); } void QuicConnection::SendAck() { ack_alarm_->Cancel(); // TODO(rch): delay this until the CreateFeedbackFrame // method is invoked. This requires changes SetShouldSendAck // to be a no-arg method, and re-jiggering its implementation. bool send_feedback = false; if (received_packet_manager_.GenerateCongestionFeedback( &outgoing_congestion_feedback_)) { DVLOG(1) << ENDPOINT << "Sending feedback: " << outgoing_congestion_feedback_; send_feedback = true; } packet_generator_.SetShouldSendAck(send_feedback); } void QuicConnection::OnRetransmissionTimeout() { if (!sent_packet_manager_.HasUnackedPackets()) { return; } ++stats_.rto_count; sent_packet_manager_.OnRetransmissionTimeout(); WriteIfNotBlocked(); // Ensure the retransmission alarm is always set if there are unacked packets. if (sent_packet_manager_.HasUnackedPackets() && !HasQueuedData() && !retransmission_alarm_->IsSet()) { QuicTime rto_timeout = clock_->ApproximateNow().Add( sent_packet_manager_.GetRetransmissionDelay()); retransmission_alarm_->Set(rto_timeout); } } void QuicConnection::SetEncrypter(EncryptionLevel level, QuicEncrypter* encrypter) { framer_.SetEncrypter(level, encrypter); } const QuicEncrypter* QuicConnection::encrypter(EncryptionLevel level) const { return framer_.encrypter(level); } void QuicConnection::SetDefaultEncryptionLevel( EncryptionLevel level) { encryption_level_ = level; } void QuicConnection::SetDecrypter(QuicDecrypter* decrypter) { framer_.SetDecrypter(decrypter); } void QuicConnection::SetAlternativeDecrypter(QuicDecrypter* decrypter, bool latch_once_used) { framer_.SetAlternativeDecrypter(decrypter, latch_once_used); } const QuicDecrypter* QuicConnection::decrypter() const { return framer_.decrypter(); } const QuicDecrypter* QuicConnection::alternative_decrypter() const { return framer_.alternative_decrypter(); } void QuicConnection::QueueUndecryptablePacket( const QuicEncryptedPacket& packet) { DVLOG(1) << ENDPOINT << "Queueing undecryptable packet."; undecryptable_packets_.push_back(packet.Clone()); } void QuicConnection::MaybeProcessUndecryptablePackets() { if (undecryptable_packets_.empty() || encryption_level_ == ENCRYPTION_NONE) { return; } while (connected_ && !undecryptable_packets_.empty()) { DVLOG(1) << ENDPOINT << "Attempting to process undecryptable packet"; QuicEncryptedPacket* packet = undecryptable_packets_.front(); if (!framer_.ProcessPacket(*packet) && framer_.error() == QUIC_DECRYPTION_FAILURE) { DVLOG(1) << ENDPOINT << "Unable to process undecryptable packet..."; break; } DVLOG(1) << ENDPOINT << "Processed undecryptable packet!"; delete packet; undecryptable_packets_.pop_front(); } // Once forward secure encryption is in use, there will be no // new keys installed and hence any undecryptable packets will // never be able to be decrypted. if (encryption_level_ == ENCRYPTION_FORWARD_SECURE) { STLDeleteElements(&undecryptable_packets_); } } void QuicConnection::MaybeProcessRevivedPacket() { QuicFecGroup* group = GetFecGroup(); if (!connected_ || group == NULL || !group->CanRevive()) { return; } QuicPacketHeader revived_header; char revived_payload[kMaxPacketSize]; size_t len = group->Revive(&revived_header, revived_payload, kMaxPacketSize); revived_header.public_header.guid = guid_; revived_header.public_header.version_flag = false; revived_header.public_header.reset_flag = false; revived_header.fec_flag = false; revived_header.is_in_fec_group = NOT_IN_FEC_GROUP; revived_header.fec_group = 0; group_map_.erase(last_header_.fec_group); delete group; last_packet_revived_ = true; if (debug_visitor_) { debug_visitor_->OnRevivedPacket(revived_header, StringPiece(revived_payload, len)); } ++stats_.packets_revived; framer_.ProcessRevivedPacket(&revived_header, StringPiece(revived_payload, len)); } QuicFecGroup* QuicConnection::GetFecGroup() { QuicFecGroupNumber fec_group_num = last_header_.fec_group; if (fec_group_num == 0) { return NULL; } if (group_map_.count(fec_group_num) == 0) { if (group_map_.size() >= kMaxFecGroups) { // Too many groups if (fec_group_num < group_map_.begin()->first) { // The group being requested is a group we've seen before and deleted. // Don't recreate it. return NULL; } // Clear the lowest group number. delete group_map_.begin()->second; group_map_.erase(group_map_.begin()); } group_map_[fec_group_num] = new QuicFecGroup(); } return group_map_[fec_group_num]; } void QuicConnection::SendConnectionClose(QuicErrorCode error) { SendConnectionCloseWithDetails(error, string()); } void QuicConnection::SendConnectionCloseWithDetails(QuicErrorCode error, const string& details) { if (!write_blocked_) { SendConnectionClosePacket(error, details); } CloseConnection(error, false); } void QuicConnection::SendConnectionClosePacket(QuicErrorCode error, const string& details) { DVLOG(1) << ENDPOINT << "Force closing " << guid() << " with error " << QuicUtils::ErrorToString(error) << " (" << error << ") " << details; ScopedPacketBundler ack_bundler(this, true); QuicConnectionCloseFrame* frame = new QuicConnectionCloseFrame(); frame->error_code = error; frame->error_details = details; packet_generator_.AddControlFrame(QuicFrame(frame)); Flush(); } void QuicConnection::CloseConnection(QuicErrorCode error, bool from_peer) { DCHECK(connected_); connected_ = false; visitor_->OnConnectionClosed(error, from_peer); // Cancel the alarms so they don't trigger any action now that the // connection is closed. ack_alarm_->Cancel(); resume_writes_alarm_->Cancel(); retransmission_alarm_->Cancel(); send_alarm_->Cancel(); timeout_alarm_->Cancel(); } void QuicConnection::SendGoAway(QuicErrorCode error, QuicStreamId last_good_stream_id, const string& reason) { DVLOG(1) << ENDPOINT << "Going away with error " << QuicUtils::ErrorToString(error) << " (" << error << ")"; // Opportunistically bundle an ack with this outgoing packet. ScopedPacketBundler ack_bundler(this, true); packet_generator_.AddControlFrame( QuicFrame(new QuicGoAwayFrame(error, last_good_stream_id, reason))); } void QuicConnection::CloseFecGroupsBefore( QuicPacketSequenceNumber sequence_number) { FecGroupMap::iterator it = group_map_.begin(); while (it != group_map_.end()) { // If this is the current group or the group doesn't protect this packet // we can ignore it. if (last_header_.fec_group == it->first || !it->second->ProtectsPacketsBefore(sequence_number)) { ++it; continue; } QuicFecGroup* fec_group = it->second; DCHECK(!fec_group->CanRevive()); FecGroupMap::iterator next = it; ++next; group_map_.erase(it); delete fec_group; it = next; } } void QuicConnection::Flush() { packet_generator_.FlushAllQueuedFrames(); } bool QuicConnection::HasQueuedData() const { return pending_version_negotiation_packet_ || !queued_packets_.empty() || packet_generator_.HasQueuedFrames(); } void QuicConnection::SetIdleNetworkTimeout(QuicTime::Delta timeout) { if (timeout < idle_network_timeout_) { idle_network_timeout_ = timeout; CheckForTimeout(); } else { idle_network_timeout_ = timeout; } } void QuicConnection::SetOverallConnectionTimeout(QuicTime::Delta timeout) { if (timeout < overall_connection_timeout_) { overall_connection_timeout_ = timeout; CheckForTimeout(); } else { overall_connection_timeout_ = timeout; } } bool QuicConnection::CheckForTimeout() { QuicTime now = clock_->ApproximateNow(); QuicTime time_of_last_packet = std::max(time_of_last_received_packet_, time_of_last_sent_packet_); // |delta| can be < 0 as |now| is approximate time but |time_of_last_packet| // is accurate time. However, this should not change the behavior of // timeout handling. QuicTime::Delta delta = now.Subtract(time_of_last_packet); DVLOG(1) << ENDPOINT << "last packet " << time_of_last_packet.ToDebuggingValue() << " now:" << now.ToDebuggingValue() << " delta:" << delta.ToMicroseconds() << " network_timeout: " << idle_network_timeout_.ToMicroseconds(); if (delta >= idle_network_timeout_) { DVLOG(1) << ENDPOINT << "Connection timedout due to no network activity."; SendConnectionClose(QUIC_CONNECTION_TIMED_OUT); return true; } // Next timeout delta. QuicTime::Delta timeout = idle_network_timeout_.Subtract(delta); if (!overall_connection_timeout_.IsInfinite()) { QuicTime::Delta connected_time = now.Subtract(creation_time_); DVLOG(1) << ENDPOINT << "connection time: " << connected_time.ToMilliseconds() << " overall timeout: " << overall_connection_timeout_.ToMilliseconds(); if (connected_time >= overall_connection_timeout_) { DVLOG(1) << ENDPOINT << "Connection timedout due to overall connection timeout."; SendConnectionClose(QUIC_CONNECTION_TIMED_OUT); return true; } // Take the min timeout. QuicTime::Delta connection_timeout = overall_connection_timeout_.Subtract(connected_time); if (connection_timeout < timeout) { timeout = connection_timeout; } } timeout_alarm_->Cancel(); timeout_alarm_->Set(clock_->ApproximateNow().Add(timeout)); return false; } QuicConnection::ScopedPacketBundler::ScopedPacketBundler( QuicConnection* connection, bool include_ack) : connection_(connection), already_in_batch_mode_(connection->packet_generator_.InBatchMode()) { // Move generator into batch mode. If caller wants us to include an ack, // check the delayed-ack timer to see if there's ack info to be sent. if (!already_in_batch_mode_) { DVLOG(1) << "Entering Batch Mode."; connection_->packet_generator_.StartBatchOperations(); } if (include_ack && connection_->ack_alarm_->IsSet()) { DVLOG(1) << "Bundling ack with outgoing packet."; connection_->SendAck(); } } QuicConnection::ScopedPacketBundler::~ScopedPacketBundler() { // If we changed the generator's batch state, restore original batch state. if (!already_in_batch_mode_) { DVLOG(1) << "Leaving Batch Mode."; connection_->packet_generator_.FinishBatchOperations(); } DCHECK_EQ(already_in_batch_mode_, connection_->packet_generator_.InBatchMode()); } } // namespace net