// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/quic/quic_connection.h" #include "base/basictypes.h" #include "base/bind.h" #include "base/stl_util.h" #include "net/base/net_errors.h" #include "net/quic/congestion_control/receive_algorithm_interface.h" #include "net/quic/congestion_control/send_algorithm_interface.h" #include "net/quic/crypto/null_encrypter.h" #include "net/quic/crypto/quic_decrypter.h" #include "net/quic/crypto/quic_encrypter.h" #include "net/quic/quic_protocol.h" #include "net/quic/quic_sent_packet_manager.h" #include "net/quic/quic_utils.h" #include "net/quic/test_tools/mock_clock.h" #include "net/quic/test_tools/mock_random.h" #include "net/quic/test_tools/quic_connection_peer.h" #include "net/quic/test_tools/quic_framer_peer.h" #include "net/quic/test_tools/quic_packet_creator_peer.h" #include "net/quic/test_tools/quic_test_utils.h" #include "testing/gmock/include/gmock/gmock.h" #include "testing/gtest/include/gtest/gtest.h" using base::StringPiece; using std::map; using std::vector; using testing::_; using testing::AnyNumber; using testing::ContainerEq; using testing::DoAll; using testing::InSequence; using testing::InvokeWithoutArgs; using testing::Ref; using testing::Return; using testing::SaveArg; using testing::StrictMock; namespace net { namespace test { namespace { const char data1[] = "foo"; const char data2[] = "bar"; const bool kFin = true; const bool kEntropyFlag = true; const QuicPacketEntropyHash kTestEntropyHash = 76; const int kDefaultRetransmissionTimeMs = 500; const int kMinRetransmissionTimeMs = 200; // Used by TestConnection::SendStreamData3. const QuicStreamId kStreamId3 = 3; // Used by TestConnection::SendStreamData5. const QuicStreamId kStreamId5 = 5; class TestReceiveAlgorithm : public ReceiveAlgorithmInterface { public: explicit TestReceiveAlgorithm(QuicCongestionFeedbackFrame* feedback) : feedback_(feedback) { } bool GenerateCongestionFeedback( QuicCongestionFeedbackFrame* congestion_feedback) { if (feedback_ == NULL) { return false; } *congestion_feedback = *feedback_; return true; } MOCK_METHOD4(RecordIncomingPacket, void(QuicByteCount, QuicPacketSequenceNumber, QuicTime, bool)); private: QuicCongestionFeedbackFrame* feedback_; DISALLOW_COPY_AND_ASSIGN(TestReceiveAlgorithm); }; // TaggingEncrypter appends kTagSize bytes of |tag| to the end of each message. class TaggingEncrypter : public QuicEncrypter { public: explicit TaggingEncrypter(uint8 tag) : tag_(tag) { } virtual ~TaggingEncrypter() {} // QuicEncrypter interface. virtual bool SetKey(StringPiece key) OVERRIDE { return true; } virtual bool SetNoncePrefix(StringPiece nonce_prefix) OVERRIDE { return true; } virtual bool Encrypt(StringPiece nonce, StringPiece associated_data, StringPiece plaintext, unsigned char* output) OVERRIDE { memcpy(output, plaintext.data(), plaintext.size()); output += plaintext.size(); memset(output, tag_, kTagSize); return true; } virtual QuicData* EncryptPacket(QuicPacketSequenceNumber sequence_number, StringPiece associated_data, StringPiece plaintext) OVERRIDE { const size_t len = plaintext.size() + kTagSize; uint8* buffer = new uint8[len]; Encrypt(StringPiece(), associated_data, plaintext, buffer); return new QuicData(reinterpret_cast<char*>(buffer), len, true); } virtual size_t GetKeySize() const OVERRIDE { return 0; } virtual size_t GetNoncePrefixSize() const OVERRIDE { return 0; } virtual size_t GetMaxPlaintextSize(size_t ciphertext_size) const OVERRIDE { return ciphertext_size - kTagSize; } virtual size_t GetCiphertextSize(size_t plaintext_size) const OVERRIDE { return plaintext_size + kTagSize; } virtual StringPiece GetKey() const OVERRIDE { return StringPiece(); } virtual StringPiece GetNoncePrefix() const OVERRIDE { return StringPiece(); } private: enum { kTagSize = 12, }; const uint8 tag_; }; // TaggingDecrypter ensures that the final kTagSize bytes of the message all // have the same value and then removes them. class TaggingDecrypter : public QuicDecrypter { public: virtual ~TaggingDecrypter() {} // QuicDecrypter interface virtual bool SetKey(StringPiece key) OVERRIDE { return true; } virtual bool SetNoncePrefix(StringPiece nonce_prefix) OVERRIDE { return true; } virtual bool Decrypt(StringPiece nonce, StringPiece associated_data, StringPiece ciphertext, unsigned char* output, size_t* output_length) OVERRIDE { if (ciphertext.size() < kTagSize) { return false; } if (!CheckTag(ciphertext, GetTag(ciphertext))) { return false; } *output_length = ciphertext.size() - kTagSize; memcpy(output, ciphertext.data(), *output_length); return true; } virtual QuicData* DecryptPacket(QuicPacketSequenceNumber sequence_number, StringPiece associated_data, StringPiece ciphertext) OVERRIDE { if (ciphertext.size() < kTagSize) { return NULL; } if (!CheckTag(ciphertext, GetTag(ciphertext))) { return NULL; } const size_t len = ciphertext.size() - kTagSize; uint8* buf = new uint8[len]; memcpy(buf, ciphertext.data(), len); return new QuicData(reinterpret_cast<char*>(buf), len, true /* owns buffer */); } virtual StringPiece GetKey() const OVERRIDE { return StringPiece(); } virtual StringPiece GetNoncePrefix() const OVERRIDE { return StringPiece(); } protected: virtual uint8 GetTag(StringPiece ciphertext) { return ciphertext.data()[ciphertext.size()-1]; } private: enum { kTagSize = 12, }; bool CheckTag(StringPiece ciphertext, uint8 tag) { for (size_t i = ciphertext.size() - kTagSize; i < ciphertext.size(); i++) { if (ciphertext.data()[i] != tag) { return false; } } return true; } }; // StringTaggingDecrypter ensures that the final kTagSize bytes of the message // match the expected value. class StrictTaggingDecrypter : public TaggingDecrypter { public: explicit StrictTaggingDecrypter(uint8 tag) : tag_(tag) {} virtual ~StrictTaggingDecrypter() {} // TaggingQuicDecrypter virtual uint8 GetTag(StringPiece ciphertext) OVERRIDE { return tag_; } private: const uint8 tag_; }; class TestConnectionHelper : public QuicConnectionHelperInterface { public: class TestAlarm : public QuicAlarm { public: explicit TestAlarm(QuicAlarm::Delegate* delegate) : QuicAlarm(delegate) { } virtual void SetImpl() OVERRIDE {} virtual void CancelImpl() OVERRIDE {} using QuicAlarm::Fire; }; TestConnectionHelper(MockClock* clock, MockRandom* random_generator) : clock_(clock), random_generator_(random_generator) { clock_->AdvanceTime(QuicTime::Delta::FromSeconds(1)); } // QuicConnectionHelperInterface virtual const QuicClock* GetClock() const OVERRIDE { return clock_; } virtual QuicRandom* GetRandomGenerator() OVERRIDE { return random_generator_; } virtual QuicAlarm* CreateAlarm(QuicAlarm::Delegate* delegate) OVERRIDE { return new TestAlarm(delegate); } private: MockClock* clock_; MockRandom* random_generator_; DISALLOW_COPY_AND_ASSIGN(TestConnectionHelper); }; class TestPacketWriter : public QuicPacketWriter { public: TestPacketWriter() : last_packet_size_(0), blocked_(false), is_write_blocked_data_buffered_(false), is_server_(true), final_bytes_of_last_packet_(0), final_bytes_of_previous_packet_(0), use_tagging_decrypter_(false), packets_write_attempts_(0) { } // QuicPacketWriter virtual WriteResult WritePacket( const char* buffer, size_t buf_len, const IPAddressNumber& self_address, const IPEndPoint& peer_address, QuicBlockedWriterInterface* blocked_writer) OVERRIDE { QuicEncryptedPacket packet(buffer, buf_len); ++packets_write_attempts_; if (packet.length() >= sizeof(final_bytes_of_last_packet_)) { final_bytes_of_previous_packet_ = final_bytes_of_last_packet_; memcpy(&final_bytes_of_last_packet_, packet.data() + packet.length() - 4, sizeof(final_bytes_of_last_packet_)); } QuicFramer framer(QuicSupportedVersions(), QuicTime::Zero(), !is_server_); if (use_tagging_decrypter_) { framer.SetDecrypter(new TaggingDecrypter); } visitor_.Reset(); framer.set_visitor(&visitor_); EXPECT_TRUE(framer.ProcessPacket(packet)); if (blocked_) { return WriteResult(WRITE_STATUS_BLOCKED, -1); } last_packet_size_ = packet.length(); return WriteResult(WRITE_STATUS_OK, last_packet_size_); } virtual bool IsWriteBlockedDataBuffered() const OVERRIDE { return is_write_blocked_data_buffered_; } // Resets the visitor's state by clearing out the headers and frames. void Reset() { visitor_.Reset(); } QuicPacketHeader* header() { return visitor_.header(); } size_t frame_count() const { return visitor_.frame_count(); } QuicAckFrame* ack() { return visitor_.ack(); } QuicCongestionFeedbackFrame* feedback() { return visitor_.feedback(); } QuicConnectionCloseFrame* close() { return visitor_.close(); } const vector<QuicStreamFrame>* stream_frames() const { return visitor_.stream_frames(); } size_t last_packet_size() { return last_packet_size_; } QuicVersionNegotiationPacket* version_negotiation_packet() { return visitor_.version_negotiation_packet(); } void set_blocked(bool blocked) { blocked_ = blocked; } void set_is_write_blocked_data_buffered(bool buffered) { is_write_blocked_data_buffered_ = buffered; } void set_is_server(bool is_server) { is_server_ = is_server; } // final_bytes_of_last_packet_ returns the last four bytes of the previous // packet as a little-endian, uint32. This is intended to be used with a // TaggingEncrypter so that tests can determine which encrypter was used for // a given packet. uint32 final_bytes_of_last_packet() { return final_bytes_of_last_packet_; } // Returns the final bytes of the second to last packet. uint32 final_bytes_of_previous_packet() { return final_bytes_of_previous_packet_; } void use_tagging_decrypter() { use_tagging_decrypter_ = true; } uint32 packets_write_attempts() { return packets_write_attempts_; } private: FramerVisitorCapturingFrames visitor_; size_t last_packet_size_; bool blocked_; bool is_write_blocked_data_buffered_; bool is_server_; uint32 final_bytes_of_last_packet_; uint32 final_bytes_of_previous_packet_; bool use_tagging_decrypter_; uint32 packets_write_attempts_; DISALLOW_COPY_AND_ASSIGN(TestPacketWriter); }; class TestConnection : public QuicConnection { public: TestConnection(QuicGuid guid, IPEndPoint address, TestConnectionHelper* helper, TestPacketWriter* writer, bool is_server) : QuicConnection(guid, address, helper, writer, is_server, QuicSupportedVersions()), helper_(helper), writer_(writer) { writer_->set_is_server(is_server); } void SendAck() { QuicConnectionPeer::SendAck(this); } void SetReceiveAlgorithm(TestReceiveAlgorithm* receive_algorithm) { QuicConnectionPeer::SetReceiveAlgorithm(this, receive_algorithm); } void SetSendAlgorithm(SendAlgorithmInterface* send_algorithm) { QuicConnectionPeer::SetSendAlgorithm(this, send_algorithm); } void SendPacket(EncryptionLevel level, QuicPacketSequenceNumber sequence_number, QuicPacket* packet, QuicPacketEntropyHash entropy_hash, HasRetransmittableData retransmittable) { RetransmittableFrames* retransmittable_frames = retransmittable == HAS_RETRANSMITTABLE_DATA ? new RetransmittableFrames() : NULL; OnSerializedPacket( SerializedPacket(sequence_number, PACKET_6BYTE_SEQUENCE_NUMBER, packet, entropy_hash, retransmittable_frames)); } QuicConsumedData SendStreamDataWithString( QuicStreamId id, StringPiece data, QuicStreamOffset offset, bool fin, QuicAckNotifier::DelegateInterface* delegate) { IOVector data_iov; if (!data.empty()) { data_iov.Append(const_cast<char*>(data.data()), data.size()); } return QuicConnection::SendStreamData(id, data_iov, offset, fin, delegate); } QuicConsumedData SendStreamData3() { return SendStreamDataWithString(kStreamId3, "food", 0, !kFin, NULL); } QuicConsumedData SendStreamData5() { return SendStreamDataWithString(kStreamId5, "food2", 0, !kFin, NULL); } // The crypto stream has special semantics so that it is not blocked by a // congestion window limitation, and also so that it gets put into a separate // packet (so that it is easier to reason about a crypto frame not being // split needlessly across packet boundaries). As a result, we have separate // tests for some cases for this stream. QuicConsumedData SendCryptoStreamData() { this->Flush(); QuicConsumedData consumed = SendStreamDataWithString(kCryptoStreamId, "chlo", 0, !kFin, NULL); this->Flush(); return consumed; } bool is_server() { return QuicConnectionPeer::IsServer(this); } void set_version(QuicVersion version) { framer_.set_version(version); } void set_is_server(bool is_server) { writer_->set_is_server(is_server); QuicPacketCreatorPeer::SetIsServer( QuicConnectionPeer::GetPacketCreator(this), is_server); QuicConnectionPeer::SetIsServer(this, is_server); } TestConnectionHelper::TestAlarm* GetAckAlarm() { return reinterpret_cast<TestConnectionHelper::TestAlarm*>( QuicConnectionPeer::GetAckAlarm(this)); } TestConnectionHelper::TestAlarm* GetRetransmissionAlarm() { return reinterpret_cast<TestConnectionHelper::TestAlarm*>( QuicConnectionPeer::GetRetransmissionAlarm(this)); } TestConnectionHelper::TestAlarm* GetSendAlarm() { return reinterpret_cast<TestConnectionHelper::TestAlarm*>( QuicConnectionPeer::GetSendAlarm(this)); } TestConnectionHelper::TestAlarm* GetResumeWritesAlarm() { return reinterpret_cast<TestConnectionHelper::TestAlarm*>( QuicConnectionPeer::GetResumeWritesAlarm(this)); } TestConnectionHelper::TestAlarm* GetTimeoutAlarm() { return reinterpret_cast<TestConnectionHelper::TestAlarm*>( QuicConnectionPeer::GetTimeoutAlarm(this)); } using QuicConnection::SelectMutualVersion; private: TestConnectionHelper* helper_; TestPacketWriter* writer_; DISALLOW_COPY_AND_ASSIGN(TestConnection); }; class QuicConnectionTest : public ::testing::TestWithParam<bool> { protected: QuicConnectionTest() : guid_(42), framer_(QuicSupportedVersions(), QuicTime::Zero(), false), creator_(guid_, &framer_, &random_generator_, false), send_algorithm_(new StrictMock<MockSendAlgorithm>), helper_(new TestConnectionHelper(&clock_, &random_generator_)), writer_(new TestPacketWriter()), connection_(guid_, IPEndPoint(), helper_.get(), writer_.get(), false), frame1_(1, false, 0, MakeIOVector(data1)), frame2_(1, false, 3, MakeIOVector(data2)), accept_packet_(true) { connection_.set_visitor(&visitor_); connection_.SetSendAlgorithm(send_algorithm_); framer_.set_received_entropy_calculator(&entropy_calculator_); // Simplify tests by not sending feedback unless specifically configured. SetFeedback(NULL); EXPECT_CALL( *send_algorithm_, TimeUntilSend(_, _, _, _)).WillRepeatedly(Return( QuicTime::Delta::Zero())); EXPECT_CALL(*receive_algorithm_, RecordIncomingPacket(_, _, _, _)).Times(AnyNumber()); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .Times(AnyNumber()); EXPECT_CALL(*send_algorithm_, RetransmissionDelay()).WillRepeatedly( Return(QuicTime::Delta::Zero())); EXPECT_CALL(*send_algorithm_, BandwidthEstimate()).WillRepeatedly(Return( QuicBandwidth::FromKBitsPerSecond(100))); EXPECT_CALL(*send_algorithm_, SmoothedRtt()).WillRepeatedly(Return( QuicTime::Delta::FromMilliseconds(100))); ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .WillByDefault(Return(true)); EXPECT_CALL(visitor_, HasPendingHandshake()).Times(AnyNumber()); EXPECT_CALL(visitor_, OnCanWrite()).Times(AnyNumber()).WillRepeatedly( Return(true)); } QuicAckFrame* outgoing_ack() { outgoing_ack_.reset(QuicConnectionPeer::CreateAckFrame(&connection_)); return outgoing_ack_.get(); } QuicAckFrame* last_ack() { return writer_->ack(); } QuicCongestionFeedbackFrame* last_feedback() { return writer_->feedback(); } QuicConnectionCloseFrame* last_close() { return writer_->close(); } QuicPacketHeader* last_header() { return writer_->header(); } size_t last_sent_packet_size() { return writer_->last_packet_size(); } uint32 final_bytes_of_last_packet() { return writer_->final_bytes_of_last_packet(); } uint32 final_bytes_of_previous_packet() { return writer_->final_bytes_of_previous_packet(); } void use_tagging_decrypter() { writer_->use_tagging_decrypter(); } void ProcessPacket(QuicPacketSequenceNumber number) { EXPECT_CALL(visitor_, OnStreamFrames(_)).WillOnce(Return(accept_packet_)); ProcessDataPacket(number, 0, !kEntropyFlag); } QuicPacketEntropyHash ProcessFramePacket(QuicFrame frame) { QuicFrames frames; frames.push_back(QuicFrame(frame)); QuicPacketCreatorPeer::SetSendVersionInPacket(&creator_, connection_.is_server()); SerializedPacket serialized_packet = creator_.SerializeAllFrames(frames); scoped_ptr<QuicPacket> packet(serialized_packet.packet); scoped_ptr<QuicEncryptedPacket> encrypted( framer_.EncryptPacket(ENCRYPTION_NONE, serialized_packet.sequence_number, *packet)); connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); return serialized_packet.entropy_hash; } size_t ProcessDataPacket(QuicPacketSequenceNumber number, QuicFecGroupNumber fec_group, bool entropy_flag) { return ProcessDataPacketAtLevel(number, fec_group, entropy_flag, ENCRYPTION_NONE); } size_t ProcessDataPacketAtLevel(QuicPacketSequenceNumber number, QuicFecGroupNumber fec_group, bool entropy_flag, EncryptionLevel level) { scoped_ptr<QuicPacket> packet(ConstructDataPacket(number, fec_group, entropy_flag)); scoped_ptr<QuicEncryptedPacket> encrypted(framer_.EncryptPacket( level, number, *packet)); connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); return encrypted->length(); } void ProcessClosePacket(QuicPacketSequenceNumber number, QuicFecGroupNumber fec_group) { scoped_ptr<QuicPacket> packet(ConstructClosePacket(number, fec_group)); scoped_ptr<QuicEncryptedPacket> encrypted(framer_.EncryptPacket( ENCRYPTION_NONE, number, *packet)); connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); } size_t ProcessFecProtectedPacket(QuicPacketSequenceNumber number, bool expect_revival, bool entropy_flag) { if (expect_revival) { EXPECT_CALL(visitor_, OnStreamFrames(_)).WillOnce(Return(accept_packet_)); } EXPECT_CALL(visitor_, OnStreamFrames(_)).WillOnce(Return(accept_packet_)) .RetiresOnSaturation(); return ProcessDataPacket(number, 1, entropy_flag); } // Processes an FEC packet that covers the packets that would have been // received. size_t ProcessFecPacket(QuicPacketSequenceNumber number, QuicPacketSequenceNumber min_protected_packet, bool expect_revival, bool entropy_flag, QuicPacket* packet) { if (expect_revival) { EXPECT_CALL(visitor_, OnStreamFrames(_)).WillOnce(Return(accept_packet_)); } // Construct the decrypted data packet so we can compute the correct // redundancy. If |packet| has been provided then use that, otherwise // construct a default data packet. scoped_ptr<QuicPacket> data_packet; if (packet) { data_packet.reset(packet); } else { data_packet.reset(ConstructDataPacket(number, 1, !kEntropyFlag)); } header_.public_header.guid = guid_; header_.public_header.reset_flag = false; header_.public_header.version_flag = false; header_.entropy_flag = entropy_flag; header_.fec_flag = true; header_.packet_sequence_number = number; header_.is_in_fec_group = IN_FEC_GROUP; header_.fec_group = min_protected_packet; QuicFecData fec_data; fec_data.fec_group = header_.fec_group; // Since all data packets in this test have the same payload, the // redundancy is either equal to that payload or the xor of that payload // with itself, depending on the number of packets. if (((number - min_protected_packet) % 2) == 0) { for (size_t i = GetStartOfFecProtectedData( header_.public_header.guid_length, header_.public_header.version_flag, header_.public_header.sequence_number_length); i < data_packet->length(); ++i) { data_packet->mutable_data()[i] ^= data_packet->data()[i]; } } fec_data.redundancy = data_packet->FecProtectedData(); scoped_ptr<QuicPacket> fec_packet( framer_.BuildFecPacket(header_, fec_data).packet); scoped_ptr<QuicEncryptedPacket> encrypted( framer_.EncryptPacket(ENCRYPTION_NONE, number, *fec_packet)); connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); return encrypted->length(); } QuicByteCount SendStreamDataToPeer(QuicStreamId id, StringPiece data, QuicStreamOffset offset, bool fin, QuicPacketSequenceNumber* last_packet) { QuicByteCount packet_size; EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .WillOnce(DoAll(SaveArg<2>(&packet_size), Return(true))); connection_.SendStreamDataWithString(id, data, offset, fin, NULL); if (last_packet != NULL) { *last_packet = QuicConnectionPeer::GetPacketCreator(&connection_)->sequence_number(); } EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .Times(AnyNumber()); return packet_size; } void SendAckPacketToPeer() { EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); connection_.SendAck(); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) .Times(AnyNumber()); } QuicPacketEntropyHash ProcessAckPacket(QuicAckFrame* frame) { return ProcessFramePacket(QuicFrame(frame)); } QuicPacketEntropyHash ProcessGoAwayPacket(QuicGoAwayFrame* frame) { return ProcessFramePacket(QuicFrame(frame)); } bool IsMissing(QuicPacketSequenceNumber number) { return IsAwaitingPacket(outgoing_ack()->received_info, number); } QuicPacket* ConstructDataPacket(QuicPacketSequenceNumber number, QuicFecGroupNumber fec_group, bool entropy_flag) { header_.public_header.guid = guid_; header_.public_header.reset_flag = false; header_.public_header.version_flag = false; header_.entropy_flag = entropy_flag; header_.fec_flag = false; header_.packet_sequence_number = number; header_.is_in_fec_group = fec_group == 0u ? NOT_IN_FEC_GROUP : IN_FEC_GROUP; header_.fec_group = fec_group; QuicFrames frames; QuicFrame frame(&frame1_); frames.push_back(frame); QuicPacket* packet = framer_.BuildUnsizedDataPacket(header_, frames).packet; EXPECT_TRUE(packet != NULL); return packet; } QuicPacket* ConstructClosePacket(QuicPacketSequenceNumber number, QuicFecGroupNumber fec_group) { header_.public_header.guid = guid_; header_.packet_sequence_number = number; header_.public_header.reset_flag = false; header_.public_header.version_flag = false; header_.entropy_flag = false; header_.fec_flag = false; header_.is_in_fec_group = fec_group == 0u ? NOT_IN_FEC_GROUP : IN_FEC_GROUP; header_.fec_group = fec_group; QuicConnectionCloseFrame qccf; qccf.error_code = QUIC_PEER_GOING_AWAY; QuicFrames frames; QuicFrame frame(&qccf); frames.push_back(frame); QuicPacket* packet = framer_.BuildUnsizedDataPacket(header_, frames).packet; EXPECT_TRUE(packet != NULL); return packet; } void SetFeedback(QuicCongestionFeedbackFrame* feedback) { receive_algorithm_ = new TestReceiveAlgorithm(feedback); connection_.SetReceiveAlgorithm(receive_algorithm_); } QuicTime::Delta DefaultRetransmissionTime() { return QuicTime::Delta::FromMilliseconds(kDefaultRetransmissionTimeMs); } QuicTime::Delta DefaultDelayedAckTime() { return QuicTime::Delta::FromMilliseconds(kMinRetransmissionTimeMs/2); } QuicGuid guid_; QuicFramer framer_; QuicPacketCreator creator_; MockEntropyCalculator entropy_calculator_; MockSendAlgorithm* send_algorithm_; TestReceiveAlgorithm* receive_algorithm_; MockClock clock_; MockRandom random_generator_; scoped_ptr<TestConnectionHelper> helper_; scoped_ptr<TestPacketWriter> writer_; TestConnection connection_; StrictMock<MockConnectionVisitor> visitor_; QuicPacketHeader header_; QuicStreamFrame frame1_; QuicStreamFrame frame2_; scoped_ptr<QuicAckFrame> outgoing_ack_; bool accept_packet_; private: DISALLOW_COPY_AND_ASSIGN(QuicConnectionTest); }; TEST_F(QuicConnectionTest, PacketsInOrder) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessPacket(1); EXPECT_EQ(1u, outgoing_ack()->received_info.largest_observed); EXPECT_EQ(0u, outgoing_ack()->received_info.missing_packets.size()); ProcessPacket(2); EXPECT_EQ(2u, outgoing_ack()->received_info.largest_observed); EXPECT_EQ(0u, outgoing_ack()->received_info.missing_packets.size()); ProcessPacket(3); EXPECT_EQ(3u, outgoing_ack()->received_info.largest_observed); EXPECT_EQ(0u, outgoing_ack()->received_info.missing_packets.size()); } TEST_F(QuicConnectionTest, PacketsRejected) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessPacket(1); EXPECT_EQ(1u, outgoing_ack()->received_info.largest_observed); EXPECT_EQ(0u, outgoing_ack()->received_info.missing_packets.size()); accept_packet_ = false; ProcessPacket(2); // We should not have an ack for two. EXPECT_EQ(1u, outgoing_ack()->received_info.largest_observed); EXPECT_EQ(0u, outgoing_ack()->received_info.missing_packets.size()); } TEST_F(QuicConnectionTest, PacketsOutOfOrder) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessPacket(3); EXPECT_EQ(3u, outgoing_ack()->received_info.largest_observed); EXPECT_TRUE(IsMissing(2)); EXPECT_TRUE(IsMissing(1)); ProcessPacket(2); EXPECT_EQ(3u, outgoing_ack()->received_info.largest_observed); EXPECT_FALSE(IsMissing(2)); EXPECT_TRUE(IsMissing(1)); ProcessPacket(1); EXPECT_EQ(3u, outgoing_ack()->received_info.largest_observed); EXPECT_FALSE(IsMissing(2)); EXPECT_FALSE(IsMissing(1)); } TEST_F(QuicConnectionTest, DuplicatePacket) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessPacket(3); EXPECT_EQ(3u, outgoing_ack()->received_info.largest_observed); EXPECT_TRUE(IsMissing(2)); EXPECT_TRUE(IsMissing(1)); // Send packet 3 again, but do not set the expectation that // the visitor OnStreamFrames() will be called. ProcessDataPacket(3, 0, !kEntropyFlag); EXPECT_EQ(3u, outgoing_ack()->received_info.largest_observed); EXPECT_TRUE(IsMissing(2)); EXPECT_TRUE(IsMissing(1)); } TEST_F(QuicConnectionTest, PacketsOutOfOrderWithAdditionsAndLeastAwaiting) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessPacket(3); EXPECT_EQ(3u, outgoing_ack()->received_info.largest_observed); EXPECT_TRUE(IsMissing(2)); EXPECT_TRUE(IsMissing(1)); ProcessPacket(2); EXPECT_EQ(3u, outgoing_ack()->received_info.largest_observed); EXPECT_TRUE(IsMissing(1)); ProcessPacket(5); EXPECT_EQ(5u, outgoing_ack()->received_info.largest_observed); EXPECT_TRUE(IsMissing(1)); EXPECT_TRUE(IsMissing(4)); // Pretend at this point the client has gotten acks for 2 and 3 and 1 is a // packet the peer will not retransmit. It indicates this by sending 'least // awaiting' is 4. The connection should then realize 1 will not be // retransmitted, and will remove it from the missing list. creator_.set_sequence_number(5); QuicAckFrame frame(0, QuicTime::Zero(), 4); ProcessAckPacket(&frame); // Force an ack to be sent. SendAckPacketToPeer(); EXPECT_TRUE(IsMissing(4)); } TEST_F(QuicConnectionTest, RejectPacketTooFarOut) { // Call ProcessDataPacket rather than ProcessPacket, as we should not get a // packet call to the visitor. EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_PACKET_HEADER, false)); ProcessDataPacket(6000, 0, !kEntropyFlag); } TEST_F(QuicConnectionTest, TruncatedAck) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); QuicPacketSequenceNumber num_packets = 256 * 2 + 1; for (QuicPacketSequenceNumber i = 0; i < num_packets; ++i) { SendStreamDataToPeer(1, "foo", i * 3, !kFin, NULL); } QuicAckFrame frame(num_packets, QuicTime::Zero(), 1); // Create an ack with 256 nacks, none adjacent to one another. for (QuicPacketSequenceNumber i = 1; i <= 256; ++i) { frame.received_info.missing_packets.insert(i * 2); } frame.received_info.entropy_hash = 0; EXPECT_CALL(entropy_calculator_, EntropyHash(511)).WillOnce(testing::Return(0)); EXPECT_CALL(*send_algorithm_, OnPacketAcked(_, _, _)).Times(256); EXPECT_CALL(*send_algorithm_, OnPacketLost(_, _)).Times(2); EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(_, _)).Times(2); ProcessAckPacket(&frame); QuicReceivedPacketManager* received_packet_manager = QuicConnectionPeer::GetReceivedPacketManager(&connection_); // A truncated ack will not have the true largest observed. EXPECT_GT(num_packets, received_packet_manager->peer_largest_observed_packet()); frame.received_info.missing_packets.erase(192); frame.received_info.entropy_hash = 2; // Removing one missing packet allows us to ack 192 and one more range. EXPECT_CALL(*send_algorithm_, OnPacketAcked(_, _, _)).Times(2); EXPECT_CALL(*send_algorithm_, OnPacketLost(_, _)).Times(2); EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(_, _)).Times(2); ProcessAckPacket(&frame); EXPECT_EQ(num_packets, received_packet_manager->peer_largest_observed_packet()); } TEST_F(QuicConnectionTest, AckReceiptCausesAckSendBadEntropy) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessPacket(1); // Delay sending, then queue up an ack. EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillOnce( testing::Return(QuicTime::Delta::FromMicroseconds(1))); QuicConnectionPeer::SendAck(&connection_); // Process an ack with a least unacked of the received ack. // This causes an ack to be sent when TimeUntilSend returns 0. EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillRepeatedly( testing::Return(QuicTime::Delta::Zero())); // Skip a packet and then record an ack. creator_.set_sequence_number(2); QuicAckFrame frame(0, QuicTime::Zero(), 3); ProcessAckPacket(&frame); } TEST_F(QuicConnectionTest, OutOfOrderReceiptCausesAckSend) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessPacket(3); // Should ack immediately since we have missing packets. EXPECT_EQ(1u, writer_->packets_write_attempts()); ProcessPacket(2); // Should ack immediately since we have missing packets. EXPECT_EQ(2u, writer_->packets_write_attempts()); ProcessPacket(1); // Should ack immediately, since this fills the last hole. EXPECT_EQ(3u, writer_->packets_write_attempts()); ProcessPacket(4); // Should not cause an ack. EXPECT_EQ(3u, writer_->packets_write_attempts()); } TEST_F(QuicConnectionTest, AckReceiptCausesAckSend) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_CALL(*send_algorithm_, OnPacketLost(_, _)).Times(1); QuicPacketSequenceNumber original; QuicByteCount packet_size; EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, NOT_RETRANSMISSION, _)) .WillOnce(DoAll(SaveArg<1>(&original), SaveArg<2>(&packet_size), Return(true))); EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(1, _)).Times(1); connection_.SendStreamDataWithString(3, "foo", 0, !kFin, NULL); QuicAckFrame frame(original, QuicTime::Zero(), 1); frame.received_info.missing_packets.insert(original); frame.received_info.entropy_hash = QuicConnectionPeer::GetSentEntropyHash( &connection_, original - 1); // First nack triggers early retransmit. QuicPacketSequenceNumber retransmission; EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, packet_size - kQuicVersionSize, NACK_RETRANSMISSION, _)) .WillOnce(DoAll(SaveArg<1>(&retransmission), Return(true))); ProcessAckPacket(&frame); QuicAckFrame frame2(retransmission, QuicTime::Zero(), 1); frame2.received_info.missing_packets.insert(original); frame2.received_info.entropy_hash = QuicConnectionPeer::GetSentEntropyHash(&connection_, retransmission) ^ QuicConnectionPeer::GetSentEntropyHash(&connection_, original); EXPECT_CALL(*send_algorithm_, OnPacketAcked(_, _, _)); ProcessAckPacket(&frame2); // Now if the peer sends an ack which still reports the retransmitted packet // as missing, then that will count as a packet which instigates an ack. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, NOT_RETRANSMISSION, _)); ProcessAckPacket(&frame2); ProcessAckPacket(&frame2); // But an ack with no missing packets will not send an ack. frame2.received_info.missing_packets.clear(); frame2.received_info.entropy_hash = QuicConnectionPeer::GetSentEntropyHash(&connection_, retransmission); ProcessAckPacket(&frame2); ProcessAckPacket(&frame2); } TEST_F(QuicConnectionTest, LeastUnackedLower) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); SendStreamDataToPeer(1, "foo", 0, !kFin, NULL); SendStreamDataToPeer(1, "bar", 3, !kFin, NULL); SendStreamDataToPeer(1, "eep", 6, !kFin, NULL); // Start out saying the least unacked is 2. creator_.set_sequence_number(5); QuicAckFrame frame(0, QuicTime::Zero(), 2); ProcessAckPacket(&frame); // Change it to 1, but lower the sequence number to fake out-of-order packets. // This should be fine. creator_.set_sequence_number(1); QuicAckFrame frame2(0, QuicTime::Zero(), 1); // The scheduler will not process out of order acks. EXPECT_CALL(visitor_, OnCanWrite()).Times(0); ProcessAckPacket(&frame2); // Now claim it's one, but set the ordering so it was sent "after" the first // one. This should cause a connection error. EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_ACK_DATA, false)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); creator_.set_sequence_number(7); ProcessAckPacket(&frame2); } TEST_F(QuicConnectionTest, LargestObservedLower) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); SendStreamDataToPeer(1, "foo", 0, !kFin, NULL); SendStreamDataToPeer(1, "bar", 3, !kFin, NULL); SendStreamDataToPeer(1, "eep", 6, !kFin, NULL); EXPECT_CALL(*send_algorithm_, OnPacketAcked(_, _, _)).Times(2); // Start out saying the largest observed is 2. QuicAckFrame frame(2, QuicTime::Zero(), 0); frame.received_info.entropy_hash = QuicConnectionPeer::GetSentEntropyHash( &connection_, 2); ProcessAckPacket(&frame); // Now change it to 1, and it should cause a connection error. QuicAckFrame frame2(1, QuicTime::Zero(), 0); EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_ACK_DATA, false)); EXPECT_CALL(visitor_, OnCanWrite()).Times(0); ProcessAckPacket(&frame2); } TEST_F(QuicConnectionTest, AckUnsentData) { // Ack a packet which has not been sent. EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_ACK_DATA, false)); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); QuicAckFrame frame(1, QuicTime::Zero(), 0); EXPECT_CALL(visitor_, OnCanWrite()).Times(0); ProcessAckPacket(&frame); } TEST_F(QuicConnectionTest, AckAll) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessPacket(1); creator_.set_sequence_number(1); QuicAckFrame frame1(0, QuicTime::Zero(), 1); ProcessAckPacket(&frame1); } TEST_F(QuicConnectionTest, SendingDifferentSequenceNumberLengthsBandwidth) { EXPECT_CALL(*send_algorithm_, BandwidthEstimate()).WillOnce(Return( QuicBandwidth::FromKBitsPerSecond(1000))); QuicPacketSequenceNumber last_packet; SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet); EXPECT_EQ(1u, last_packet); EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER, connection_.options()->send_sequence_number_length); EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER, last_header()->public_header.sequence_number_length); EXPECT_CALL(*send_algorithm_, BandwidthEstimate()).WillOnce(Return( QuicBandwidth::FromKBitsPerSecond(1000 * 256))); SendStreamDataToPeer(1, "bar", 3, !kFin, &last_packet); EXPECT_EQ(2u, last_packet); EXPECT_EQ(PACKET_2BYTE_SEQUENCE_NUMBER, connection_.options()->send_sequence_number_length); // The 1 packet lag is due to the sequence number length being recalculated in // QuicConnection after a packet is sent. EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER, last_header()->public_header.sequence_number_length); EXPECT_CALL(*send_algorithm_, BandwidthEstimate()).WillOnce(Return( QuicBandwidth::FromKBitsPerSecond(1000 * 256 * 256))); SendStreamDataToPeer(1, "foo", 6, !kFin, &last_packet); EXPECT_EQ(3u, last_packet); EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER, connection_.options()->send_sequence_number_length); EXPECT_EQ(PACKET_2BYTE_SEQUENCE_NUMBER, last_header()->public_header.sequence_number_length); EXPECT_CALL(*send_algorithm_, BandwidthEstimate()).WillOnce(Return( QuicBandwidth::FromKBitsPerSecond(1000ll * 256 * 256 * 256))); SendStreamDataToPeer(1, "bar", 9, !kFin, &last_packet); EXPECT_EQ(4u, last_packet); EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER, connection_.options()->send_sequence_number_length); EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER, last_header()->public_header.sequence_number_length); EXPECT_CALL(*send_algorithm_, BandwidthEstimate()).WillOnce(Return( QuicBandwidth::FromKBitsPerSecond(1000ll * 256 * 256 * 256 * 256))); SendStreamDataToPeer(1, "foo", 12, !kFin, &last_packet); EXPECT_EQ(5u, last_packet); EXPECT_EQ(PACKET_6BYTE_SEQUENCE_NUMBER, connection_.options()->send_sequence_number_length); EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER, last_header()->public_header.sequence_number_length); } TEST_F(QuicConnectionTest, SendingDifferentSequenceNumberLengthsUnackedDelta) { QuicPacketSequenceNumber last_packet; SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet); EXPECT_EQ(1u, last_packet); EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER, connection_.options()->send_sequence_number_length); EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER, last_header()->public_header.sequence_number_length); QuicConnectionPeer::GetPacketCreator(&connection_)->set_sequence_number(100); SendStreamDataToPeer(1, "bar", 3, !kFin, &last_packet); EXPECT_EQ(PACKET_2BYTE_SEQUENCE_NUMBER, connection_.options()->send_sequence_number_length); EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER, last_header()->public_header.sequence_number_length); QuicConnectionPeer::GetPacketCreator(&connection_)->set_sequence_number( 100 * 256); SendStreamDataToPeer(1, "foo", 6, !kFin, &last_packet); EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER, connection_.options()->send_sequence_number_length); EXPECT_EQ(PACKET_2BYTE_SEQUENCE_NUMBER, last_header()->public_header.sequence_number_length); QuicConnectionPeer::GetPacketCreator(&connection_)->set_sequence_number( 100 * 256 * 256); SendStreamDataToPeer(1, "bar", 9, !kFin, &last_packet); EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER, connection_.options()->send_sequence_number_length); EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER, last_header()->public_header.sequence_number_length); QuicConnectionPeer::GetPacketCreator(&connection_)->set_sequence_number( 100 * 256 * 256 * 256); SendStreamDataToPeer(1, "foo", 12, !kFin, &last_packet); EXPECT_EQ(PACKET_6BYTE_SEQUENCE_NUMBER, connection_.options()->send_sequence_number_length); EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER, last_header()->public_header.sequence_number_length); } TEST_F(QuicConnectionTest, BasicSending) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_CALL(*send_algorithm_, OnPacketAcked(_, _, _)).Times(6); QuicPacketSequenceNumber last_packet; SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet); // Packet 1 EXPECT_EQ(1u, last_packet); SendAckPacketToPeer(); // Packet 2 EXPECT_EQ(1u, last_ack()->sent_info.least_unacked); SendAckPacketToPeer(); // Packet 3 EXPECT_EQ(1u, last_ack()->sent_info.least_unacked); SendStreamDataToPeer(1, "bar", 3, !kFin, &last_packet); // Packet 4 EXPECT_EQ(4u, last_packet); SendAckPacketToPeer(); // Packet 5 EXPECT_EQ(1u, last_ack()->sent_info.least_unacked); // Peer acks up to packet 3. QuicAckFrame frame(3, QuicTime::Zero(), 0); frame.received_info.entropy_hash = QuicConnectionPeer::GetSentEntropyHash(&connection_, 3); ProcessAckPacket(&frame); SendAckPacketToPeer(); // Packet 6 // As soon as we've acked one, we skip ack packets 2 and 3 and note lack of // ack for 4. EXPECT_EQ(4u, last_ack()->sent_info.least_unacked); // Peer acks up to packet 4, the last packet. QuicAckFrame frame2(6, QuicTime::Zero(), 0); frame2.received_info.entropy_hash = QuicConnectionPeer::GetSentEntropyHash(&connection_, 6); ProcessAckPacket(&frame2); // Acks don't instigate acks. // Verify that we did not send an ack. EXPECT_EQ(6u, last_header()->packet_sequence_number); // So the last ack has not changed. EXPECT_EQ(4u, last_ack()->sent_info.least_unacked); // If we force an ack, we shouldn't change our retransmit state. SendAckPacketToPeer(); // Packet 7 EXPECT_EQ(7u, last_ack()->sent_info.least_unacked); // But if we send more data it should. SendStreamDataToPeer(1, "eep", 6, !kFin, &last_packet); // Packet 8 EXPECT_EQ(8u, last_packet); SendAckPacketToPeer(); // Packet 9 EXPECT_EQ(8u, last_ack()->sent_info.least_unacked); } TEST_F(QuicConnectionTest, FECSending) { // All packets carry version info till version is negotiated. size_t payload_length; connection_.options()->max_packet_length = GetPacketLengthForOneStream( connection_.version(), kIncludeVersion, PACKET_1BYTE_SEQUENCE_NUMBER, IN_FEC_GROUP, &payload_length); // And send FEC every two packets. connection_.options()->max_packets_per_fec_group = 2; // Send 4 data packets and 2 FEC packets. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(6); // The first stream frame will consume 2 fewer bytes than the other three. const string payload(payload_length * 4 - 6, 'a'); connection_.SendStreamDataWithString(1, payload, 0, !kFin, NULL); // Expect the FEC group to be closed after SendStreamDataWithString. EXPECT_FALSE(creator_.ShouldSendFec(true)); } TEST_F(QuicConnectionTest, FECQueueing) { // All packets carry version info till version is negotiated. size_t payload_length; connection_.options()->max_packet_length = GetPacketLengthForOneStream( connection_.version(), kIncludeVersion, PACKET_1BYTE_SEQUENCE_NUMBER, IN_FEC_GROUP, &payload_length); // And send FEC every two packets. connection_.options()->max_packets_per_fec_group = 2; EXPECT_EQ(0u, connection_.NumQueuedPackets()); writer_->set_blocked(true); const string payload(payload_length, 'a'); connection_.SendStreamDataWithString(1, payload, 0, !kFin, NULL); EXPECT_FALSE(creator_.ShouldSendFec(true)); // Expect the first data packet and the fec packet to be queued. EXPECT_EQ(2u, connection_.NumQueuedPackets()); } TEST_F(QuicConnectionTest, AbandonFECFromCongestionWindow) { connection_.options()->max_packets_per_fec_group = 1; // 1 Data and 1 FEC packet. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); connection_.SendStreamDataWithString(1, "foo", 0, !kFin, NULL); const QuicTime::Delta retransmission_time = QuicTime::Delta::FromMilliseconds(5000); clock_.AdvanceTime(retransmission_time); // Abandon FEC packet and data packet. EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(_, _)).Times(2); EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout()); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); EXPECT_CALL(visitor_, OnCanWrite()); connection_.OnRetransmissionTimeout(); } TEST_F(QuicConnectionTest, DontAbandonAckedFEC) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); connection_.options()->max_packets_per_fec_group = 1; // 1 Data and 1 FEC packet. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(6); connection_.SendStreamDataWithString(1, "foo", 0, !kFin, NULL); // Send some more data afterwards to ensure early retransmit doesn't trigger. connection_.SendStreamDataWithString(1, "foo", 3, !kFin, NULL); connection_.SendStreamDataWithString(1, "foo", 6, !kFin, NULL); QuicAckFrame ack_fec(2, QuicTime::Zero(), 1); // Data packet missing. // TODO(ianswett): Note that this is not a sensible ack, since if the FEC was // received, it would cause the covered packet to be acked as well. ack_fec.received_info.missing_packets.insert(1); ack_fec.received_info.entropy_hash = QuicConnectionPeer::GetSentEntropyHash(&connection_, 2) ^ QuicConnectionPeer::GetSentEntropyHash(&connection_, 1); EXPECT_CALL(*send_algorithm_, OnPacketAcked(_, _, _)).Times(1); ProcessAckPacket(&ack_fec); clock_.AdvanceTime(DefaultRetransmissionTime()); // Don't abandon the acked FEC packet, but it will abandon 2 the subsequent // FEC packets. EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(_, _)).Times(5); EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout()); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(3); connection_.GetRetransmissionAlarm()->Fire(); } TEST_F(QuicConnectionTest, DontAbandonAllFEC) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); connection_.options()->max_packets_per_fec_group = 1; // 1 Data and 1 FEC packet. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(6); connection_.SendStreamDataWithString(1, "foo", 0, !kFin, NULL); // Send some more data afterwards to ensure early retransmit doesn't trigger. connection_.SendStreamDataWithString(1, "foo", 3, !kFin, NULL); // Advance the time so not all the FEC packets are abandoned. clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(1)); connection_.SendStreamDataWithString(1, "foo", 6, !kFin, NULL); QuicAckFrame ack_fec(5, QuicTime::Zero(), 1); // Ack all data packets, but no fec packets. ack_fec.received_info.missing_packets.insert(2); ack_fec.received_info.missing_packets.insert(4); ack_fec.received_info.entropy_hash = QuicConnectionPeer::GetSentEntropyHash(&connection_, 5) ^ QuicConnectionPeer::GetSentEntropyHash(&connection_, 4) ^ QuicConnectionPeer::GetSentEntropyHash(&connection_, 3) ^ QuicConnectionPeer::GetSentEntropyHash(&connection_, 2) ^ QuicConnectionPeer::GetSentEntropyHash(&connection_, 1); // Lose the first FEC packet and ack the three data packets. EXPECT_CALL(*send_algorithm_, OnPacketAcked(_, _, _)).Times(3); EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(2, _)); EXPECT_CALL(*send_algorithm_, OnPacketLost(2, _)); ProcessAckPacket(&ack_fec); clock_.AdvanceTime(DefaultRetransmissionTime().Subtract( QuicTime::Delta::FromMilliseconds(1))); // Don't abandon the acked FEC packet, but it will abandon 1 of the subsequent // FEC packets. EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(4, _)); connection_.GetRetransmissionAlarm()->Fire(); // Ensure the connection's alarm is still set, in order to abandon the third // FEC packet. EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); } TEST_F(QuicConnectionTest, FramePacking) { // Block the connection. connection_.GetSendAlarm()->Set( clock_.ApproximateNow().Add(QuicTime::Delta::FromSeconds(1))); // Send an ack and two stream frames in 1 packet by queueing them. connection_.SendAck(); EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll( IgnoreResult(InvokeWithoutArgs(&connection_, &TestConnection::SendStreamData3)), IgnoreResult(InvokeWithoutArgs(&connection_, &TestConnection::SendStreamData5)), Return(true))); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, NOT_RETRANSMISSION, _)) .Times(1); // Unblock the connection. connection_.GetSendAlarm()->Fire(); EXPECT_EQ(0u, connection_.NumQueuedPackets()); EXPECT_FALSE(connection_.HasQueuedData()); // Parse the last packet and ensure it's an ack and two stream frames from // two different streams. EXPECT_EQ(3u, writer_->frame_count()); EXPECT_TRUE(writer_->ack()); EXPECT_EQ(2u, writer_->stream_frames()->size()); EXPECT_EQ(kStreamId3, (*writer_->stream_frames())[0].stream_id); EXPECT_EQ(kStreamId5, (*writer_->stream_frames())[1].stream_id); } TEST_F(QuicConnectionTest, FramePackingNonCryptoThenCrypto) { // Block the connection. connection_.GetSendAlarm()->Set( clock_.ApproximateNow().Add(QuicTime::Delta::FromSeconds(1))); // Send an ack and two stream frames (one non-crypto, then one crypto) in 2 // packets by queueing them. connection_.SendAck(); EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll( IgnoreResult(InvokeWithoutArgs(&connection_, &TestConnection::SendStreamData3)), IgnoreResult(InvokeWithoutArgs(&connection_, &TestConnection::SendCryptoStreamData)), Return(true))); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, NOT_RETRANSMISSION, _)) .Times(2); // Unblock the connection. connection_.GetSendAlarm()->Fire(); EXPECT_EQ(0u, connection_.NumQueuedPackets()); EXPECT_FALSE(connection_.HasQueuedData()); // Parse the last packet and ensure it's the crypto stream frame. EXPECT_EQ(1u, writer_->frame_count()); EXPECT_EQ(1u, writer_->stream_frames()->size()); EXPECT_EQ(kCryptoStreamId, (*writer_->stream_frames())[0].stream_id); } TEST_F(QuicConnectionTest, FramePackingCryptoThenNonCrypto) { // Block the connection. connection_.GetSendAlarm()->Set( clock_.ApproximateNow().Add(QuicTime::Delta::FromSeconds(1))); // Send an ack and two stream frames (one crypto, then one non-crypto) in 3 // packets by queueing them. connection_.SendAck(); EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll( IgnoreResult(InvokeWithoutArgs(&connection_, &TestConnection::SendCryptoStreamData)), IgnoreResult(InvokeWithoutArgs(&connection_, &TestConnection::SendStreamData3)), Return(true))); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, NOT_RETRANSMISSION, _)) .Times(3); // Unblock the connection. connection_.GetSendAlarm()->Fire(); EXPECT_EQ(0u, connection_.NumQueuedPackets()); EXPECT_FALSE(connection_.HasQueuedData()); // Parse the last packet and ensure it's the stream frame from stream 3. EXPECT_EQ(1u, writer_->frame_count()); EXPECT_EQ(1u, writer_->stream_frames()->size()); EXPECT_EQ(kStreamId3, (*writer_->stream_frames())[0].stream_id); } TEST_F(QuicConnectionTest, FramePackingFEC) { // Enable fec. connection_.options()->max_packets_per_fec_group = 6; // Block the connection. connection_.GetSendAlarm()->Set( clock_.ApproximateNow().Add(QuicTime::Delta::FromSeconds(1))); // Send an ack and two stream frames in 1 packet by queueing them. connection_.SendAck(); EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll( IgnoreResult(InvokeWithoutArgs(&connection_, &TestConnection::SendStreamData3)), IgnoreResult(InvokeWithoutArgs(&connection_, &TestConnection::SendStreamData5)), Return(true))); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, NOT_RETRANSMISSION, _)).Times(2); // Unblock the connection. connection_.GetSendAlarm()->Fire(); EXPECT_EQ(0u, connection_.NumQueuedPackets()); EXPECT_FALSE(connection_.HasQueuedData()); // Parse the last packet and ensure it's in an fec group. EXPECT_EQ(1u, writer_->header()->fec_group); EXPECT_EQ(0u, writer_->frame_count()); } TEST_F(QuicConnectionTest, FramePackingAckResponse) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); // Process a data packet to queue up a pending ack. EXPECT_CALL(visitor_, OnStreamFrames(_)).WillOnce(Return(true)); ProcessDataPacket(1, 1, kEntropyFlag); EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll( IgnoreResult(InvokeWithoutArgs(&connection_, &TestConnection::SendStreamData3)), IgnoreResult(InvokeWithoutArgs(&connection_, &TestConnection::SendStreamData5)), Return(true))); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, NOT_RETRANSMISSION, _)) .Times(1); // Process an ack to cause the visitor's OnCanWrite to be invoked. creator_.set_sequence_number(2); QuicAckFrame ack_one(0, QuicTime::Zero(), 0); ProcessAckPacket(&ack_one); EXPECT_EQ(0u, connection_.NumQueuedPackets()); EXPECT_FALSE(connection_.HasQueuedData()); // Parse the last packet and ensure it's an ack and two stream frames from // two different streams. EXPECT_EQ(3u, writer_->frame_count()); EXPECT_TRUE(writer_->ack()); ASSERT_EQ(2u, writer_->stream_frames()->size()); EXPECT_EQ(kStreamId3, (*writer_->stream_frames())[0].stream_id); EXPECT_EQ(kStreamId5, (*writer_->stream_frames())[1].stream_id); } TEST_F(QuicConnectionTest, FramePackingSendv) { // Send data in 1 packet by writing multiple blocks in a single iovector // using writev. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, NOT_RETRANSMISSION, _)); char data[] = "ABCD"; IOVector data_iov; data_iov.AppendNoCoalesce(data, 2); data_iov.AppendNoCoalesce(data + 2, 2); connection_.SendStreamData(1, data_iov, 0, !kFin, NULL); EXPECT_EQ(0u, connection_.NumQueuedPackets()); EXPECT_FALSE(connection_.HasQueuedData()); // Parse the last packet and ensure multiple iovector blocks have // been packed into a single stream frame from one stream. EXPECT_EQ(1u, writer_->frame_count()); EXPECT_EQ(1u, writer_->stream_frames()->size()); QuicStreamFrame frame = (*writer_->stream_frames())[0]; EXPECT_EQ(1u, frame.stream_id); EXPECT_EQ("ABCD", string(static_cast<char*> (frame.data.iovec()[0].iov_base), (frame.data.iovec()[0].iov_len))); } TEST_F(QuicConnectionTest, FramePackingSendvQueued) { // Try to send two stream frames in 1 packet by using writev. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, NOT_RETRANSMISSION, _)); writer_->set_blocked(true); char data[] = "ABCD"; IOVector data_iov; data_iov.AppendNoCoalesce(data, 2); data_iov.AppendNoCoalesce(data + 2, 2); connection_.SendStreamData(1, data_iov, 0, !kFin, NULL); EXPECT_EQ(1u, connection_.NumQueuedPackets()); EXPECT_TRUE(connection_.HasQueuedData()); // Attempt to send all packets, but since we're actually still // blocked, they should all remain queued. EXPECT_FALSE(connection_.OnCanWrite()); EXPECT_EQ(1u, connection_.NumQueuedPackets()); // Unblock the writes and actually send. writer_->set_blocked(false); EXPECT_TRUE(connection_.OnCanWrite()); EXPECT_EQ(0u, connection_.NumQueuedPackets()); // Parse the last packet and ensure it's one stream frame from one stream. EXPECT_EQ(1u, writer_->frame_count()); EXPECT_EQ(1u, writer_->stream_frames()->size()); EXPECT_EQ(1u, (*writer_->stream_frames())[0].stream_id); } TEST_F(QuicConnectionTest, SendingZeroBytes) { // Send a zero byte write with a fin using writev. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, NOT_RETRANSMISSION, _)); IOVector empty_iov; connection_.SendStreamData(1, empty_iov, 0, kFin, NULL); EXPECT_EQ(0u, connection_.NumQueuedPackets()); EXPECT_FALSE(connection_.HasQueuedData()); // Parse the last packet and ensure it's one stream frame from one stream. EXPECT_EQ(1u, writer_->frame_count()); EXPECT_EQ(1u, writer_->stream_frames()->size()); EXPECT_EQ(1u, (*writer_->stream_frames())[0].stream_id); EXPECT_TRUE((*writer_->stream_frames())[0].fin); } TEST_F(QuicConnectionTest, OnCanWrite) { // Visitor's OnCanWill send data, but will return false. EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll( IgnoreResult(InvokeWithoutArgs(&connection_, &TestConnection::SendStreamData3)), IgnoreResult(InvokeWithoutArgs(&connection_, &TestConnection::SendStreamData5)), Return(false))); EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillRepeatedly( testing::Return(QuicTime::Delta::Zero())); // Unblock the connection. connection_.OnCanWrite(); // Parse the last packet and ensure it's the two stream frames from // two different streams. EXPECT_EQ(2u, writer_->frame_count()); EXPECT_EQ(2u, writer_->stream_frames()->size()); EXPECT_EQ(kStreamId3, (*writer_->stream_frames())[0].stream_id); EXPECT_EQ(kStreamId5, (*writer_->stream_frames())[1].stream_id); } TEST_F(QuicConnectionTest, RetransmitOnNack) { EXPECT_CALL(*send_algorithm_, OnPacketAcked(_, _, _)).Times(2); EXPECT_CALL(*send_algorithm_, OnPacketLost(_, _)).Times(1); EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(2, _)).Times(1); QuicPacketSequenceNumber last_packet; QuicByteCount second_packet_size; SendStreamDataToPeer(3, "foo", 0, !kFin, &last_packet); // Packet 1 second_packet_size = SendStreamDataToPeer(3, "foos", 3, !kFin, &last_packet); // Packet 2 SendStreamDataToPeer(3, "fooos", 7, !kFin, &last_packet); // Packet 3 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); // Peer acks one but not two or three. Right now we only retransmit on // explicit nack, so it should not trigger a retransmission. QuicAckFrame ack_one(1, QuicTime::Zero(), 0); ack_one.received_info.entropy_hash = QuicConnectionPeer::GetSentEntropyHash(&connection_, 1); ProcessAckPacket(&ack_one); ProcessAckPacket(&ack_one); ProcessAckPacket(&ack_one); // Peer acks up to 3 with two explicitly missing. // Early retransmit causes 2 to be retransmitted on the first ack. QuicAckFrame nack_two(3, QuicTime::Zero(), 0); nack_two.received_info.missing_packets.insert(2); nack_two.received_info.entropy_hash = QuicConnectionPeer::GetSentEntropyHash(&connection_, 3) ^ QuicConnectionPeer::GetSentEntropyHash(&connection_, 2) ^ QuicConnectionPeer::GetSentEntropyHash(&connection_, 1); // The third nack should trigger a retransmission. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, second_packet_size - kQuicVersionSize, NACK_RETRANSMISSION, _)).Times(1); ProcessAckPacket(&nack_two); } TEST_F(QuicConnectionTest, DiscardRetransmit) { EXPECT_CALL(*send_algorithm_, OnPacketAcked(_, _, _)).Times(2); EXPECT_CALL(*send_algorithm_, OnPacketLost(_, _)).Times(1); EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(2, _)).Times(1); QuicPacketSequenceNumber last_packet; SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet); // Packet 1 SendStreamDataToPeer(1, "foos", 3, !kFin, &last_packet); // Packet 2 SendStreamDataToPeer(1, "fooos", 7, !kFin, &last_packet); // Packet 3 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); // Peer acks one but not two or three. Right now we only retransmit on // explicit nack, so it should not trigger a retransmission. QuicAckFrame ack_one(1, QuicTime::Zero(), 0); ack_one.received_info.entropy_hash = QuicConnectionPeer::GetSentEntropyHash(&connection_, 1); ProcessAckPacket(&ack_one); ProcessAckPacket(&ack_one); ProcessAckPacket(&ack_one); // Peer acks up to 3 with two explicitly missing. Two nacks should cause no // change. QuicAckFrame nack_two(3, QuicTime::Zero(), 0); nack_two.received_info.missing_packets.insert(2); nack_two.received_info.entropy_hash = QuicConnectionPeer::GetSentEntropyHash(&connection_, 3) ^ QuicConnectionPeer::GetSentEntropyHash(&connection_, 2) ^ QuicConnectionPeer::GetSentEntropyHash(&connection_, 1); // The first nack should trigger a fast retransmission, but we'll be // write blocked, so the packet will be queued. writer_->set_blocked(true); ProcessAckPacket(&nack_two); EXPECT_EQ(1u, connection_.NumQueuedPackets()); // Now, ack the previous transmission. QuicAckFrame ack_all(3, QuicTime::Zero(), 0); ack_all.received_info.entropy_hash = QuicConnectionPeer::GetSentEntropyHash(&connection_, 3); ProcessAckPacket(&ack_all); // Unblock the socket and attempt to send the queued packets. However, // since the previous transmission has been acked, we will not // send the retransmission. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); writer_->set_blocked(false); connection_.OnCanWrite(); EXPECT_EQ(0u, connection_.NumQueuedPackets()); } TEST_F(QuicConnectionTest, RetransmitNackedLargestObserved) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_CALL(*send_algorithm_, OnPacketLost(_, _)).Times(1); QuicPacketSequenceNumber largest_observed; QuicByteCount packet_size; EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, NOT_RETRANSMISSION, _)) .WillOnce(DoAll(SaveArg<1>(&largest_observed), SaveArg<2>(&packet_size), Return(true))); EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(1, _)).Times(1); connection_.SendStreamDataWithString(3, "foo", 0, !kFin, NULL); QuicAckFrame frame(1, QuicTime::Zero(), largest_observed); frame.received_info.missing_packets.insert(largest_observed); frame.received_info.entropy_hash = QuicConnectionPeer::GetSentEntropyHash( &connection_, largest_observed - 1); // The first nack should retransmit the largest observed packet. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, packet_size - kQuicVersionSize, NACK_RETRANSMISSION, _)); ProcessAckPacket(&frame); } TEST_F(QuicConnectionTest, QueueAfterTwoRTOs) { for (int i = 0; i < 10; ++i) { EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); connection_.SendStreamDataWithString(1, "foo", i * 3, !kFin, NULL); } // Block the congestion window and ensure they're queued. writer_->set_blocked(true); clock_.AdvanceTime(DefaultRetransmissionTime()); // Only one packet should be retransmitted. EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout()); EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(_, _)).Times(10); connection_.GetRetransmissionAlarm()->Fire(); EXPECT_TRUE(connection_.HasQueuedData()); // Unblock the congestion window. writer_->set_blocked(false); clock_.AdvanceTime(QuicTime::Delta::FromMicroseconds( 2 * DefaultRetransmissionTime().ToMicroseconds())); // Retransmit already retransmitted packets event though the sequence number // greater than the largest observed. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(10); connection_.GetRetransmissionAlarm()->Fire(); connection_.OnCanWrite(); } TEST_F(QuicConnectionTest, WriteBlockedThenSent) { writer_->set_blocked(true); writer_->set_is_write_blocked_data_buffered(true); connection_.SendStreamDataWithString(1, "foo", 0, !kFin, NULL); EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); connection_.OnPacketSent(WriteResult(WRITE_STATUS_OK, 0)); EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); } TEST_F(QuicConnectionTest, ResumptionAlarmThenWriteBlocked) { // Set the send and resumption alarm, then block the connection. connection_.GetResumeWritesAlarm()->Set(clock_.ApproximateNow()); connection_.GetSendAlarm()->Set(clock_.ApproximateNow()); QuicConnectionPeer::SetIsWriteBlocked(&connection_, true); // Fire the alarms and ensure the connection is still write blocked. connection_.GetResumeWritesAlarm()->Fire(); connection_.GetSendAlarm()->Fire(); EXPECT_TRUE(QuicConnectionPeer::IsWriteBlocked(&connection_)); } TEST_F(QuicConnectionTest, LimitPacketsPerNack) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_CALL(*send_algorithm_, OnPacketAcked(15, _, _)).Times(1); EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(_, _)).Times(4); int offset = 0; // Send packets 1 to 15. for (int i = 0; i < 15; ++i) { SendStreamDataToPeer(1, "foo", offset, !kFin, NULL); offset += 3; } // Ack 15, nack 1-14. QuicAckFrame nack(15, QuicTime::Zero(), 0); for (int i = 1; i < 15; ++i) { nack.received_info.missing_packets.insert(i); } nack.received_info.entropy_hash = QuicConnectionPeer::GetSentEntropyHash(&connection_, 15) ^ QuicConnectionPeer::GetSentEntropyHash(&connection_, 14); // 13 packets have been NACK'd 3 times, but we limit retransmissions to 2. EXPECT_CALL(*send_algorithm_, OnPacketLost(_, _)).Times(2); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); ProcessAckPacket(&nack); // The next call should trigger retransmitting 2 more packets. EXPECT_CALL(*send_algorithm_, OnPacketLost(_, _)).Times(2); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); ProcessAckPacket(&nack); } // Test sending multiple acks from the connection to the session. TEST_F(QuicConnectionTest, MultipleAcks) { EXPECT_CALL(*send_algorithm_, OnPacketAcked(_, _, _)).Times(6); QuicPacketSequenceNumber last_packet; SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet); // Packet 1 EXPECT_EQ(1u, last_packet); SendStreamDataToPeer(3, "foo", 0, !kFin, &last_packet); // Packet 2 EXPECT_EQ(2u, last_packet); SendAckPacketToPeer(); // Packet 3 SendStreamDataToPeer(5, "foo", 0, !kFin, &last_packet); // Packet 4 EXPECT_EQ(4u, last_packet); SendStreamDataToPeer(1, "foo", 3, !kFin, &last_packet); // Packet 5 EXPECT_EQ(5u, last_packet); SendStreamDataToPeer(3, "foo", 3, !kFin, &last_packet); // Packet 6 EXPECT_EQ(6u, last_packet); // Client will ack packets 1, 2, [!3], 4, 5. QuicAckFrame frame1(5, QuicTime::Zero(), 0); frame1.received_info.missing_packets.insert(3); frame1.received_info.entropy_hash = QuicConnectionPeer::GetSentEntropyHash(&connection_, 5) ^ QuicConnectionPeer::GetSentEntropyHash(&connection_, 3) ^ QuicConnectionPeer::GetSentEntropyHash(&connection_, 2); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessAckPacket(&frame1); // Now the client implicitly acks 3, and explicitly acks 6. QuicAckFrame frame2(6, QuicTime::Zero(), 0); frame2.received_info.entropy_hash = QuicConnectionPeer::GetSentEntropyHash(&connection_, 6); ProcessAckPacket(&frame2); } TEST_F(QuicConnectionTest, DontLatchUnackedPacket) { EXPECT_CALL(*send_algorithm_, OnPacketAcked(_, _, _)).Times(1); SendStreamDataToPeer(1, "foo", 0, !kFin, NULL); // Packet 1; SendAckPacketToPeer(); // Packet 2 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); QuicAckFrame frame(1, QuicTime::Zero(), 0); frame.received_info.entropy_hash = QuicConnectionPeer::GetSentEntropyHash( &connection_, 1); ProcessAckPacket(&frame); // Verify that our internal state has least-unacked as 3. EXPECT_EQ(3u, outgoing_ack()->sent_info.least_unacked); // When we send an ack, we make sure our least-unacked makes sense. In this // case since we're not waiting on an ack for 2 and all packets are acked, we // set it to 3. SendAckPacketToPeer(); // Packet 3 // Since this was an ack packet, we set least_unacked to 4. EXPECT_EQ(4u, outgoing_ack()->sent_info.least_unacked); // Check that the outgoing ack had its sequence number as least_unacked. EXPECT_EQ(3u, last_ack()->sent_info.least_unacked); SendStreamDataToPeer(1, "bar", 3, false, NULL); // Packet 4 EXPECT_EQ(4u, outgoing_ack()->sent_info.least_unacked); SendAckPacketToPeer(); // Packet 5 EXPECT_EQ(4u, last_ack()->sent_info.least_unacked); } TEST_F(QuicConnectionTest, ReviveMissingPacketAfterFecPacket) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); // Don't send missing packet 1. ProcessFecPacket(2, 1, true, !kEntropyFlag, NULL); // Entropy flag should be false, so entropy should be 0. EXPECT_EQ(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 2)); } TEST_F(QuicConnectionTest, ReviveMissingPacketAfterDataPacketThenFecPacket) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessFecProtectedPacket(1, false, kEntropyFlag); // Don't send missing packet 2. ProcessFecPacket(3, 1, true, !kEntropyFlag, NULL); // Entropy flag should be true, so entropy should not be 0. EXPECT_NE(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 2)); } TEST_F(QuicConnectionTest, ReviveMissingPacketAfterDataPacketsThenFecPacket) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessFecProtectedPacket(1, false, !kEntropyFlag); // Don't send missing packet 2. ProcessFecProtectedPacket(3, false, !kEntropyFlag); ProcessFecPacket(4, 1, true, kEntropyFlag, NULL); // Entropy flag should be true, so entropy should not be 0. EXPECT_NE(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 2)); } TEST_F(QuicConnectionTest, ReviveMissingPacketAfterDataPacket) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); // Don't send missing packet 1. ProcessFecPacket(3, 1, false, !kEntropyFlag, NULL); // Out of order. ProcessFecProtectedPacket(2, true, !kEntropyFlag); // Entropy flag should be false, so entropy should be 0. EXPECT_EQ(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 2)); } TEST_F(QuicConnectionTest, ReviveMissingPacketAfterDataPackets) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessFecProtectedPacket(1, false, !kEntropyFlag); // Don't send missing packet 2. ProcessFecPacket(6, 1, false, kEntropyFlag, NULL); ProcessFecProtectedPacket(3, false, kEntropyFlag); ProcessFecProtectedPacket(4, false, kEntropyFlag); ProcessFecProtectedPacket(5, true, !kEntropyFlag); // Entropy flag should be true, so entropy should be 0. EXPECT_NE(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 2)); } TEST_F(QuicConnectionTest, RTO) { QuicTime default_retransmission_time = clock_.ApproximateNow().Add( DefaultRetransmissionTime()); SendStreamDataToPeer(1, "foo", 0, !kFin, NULL); EXPECT_EQ(1u, outgoing_ack()->sent_info.least_unacked); EXPECT_EQ(1u, last_header()->packet_sequence_number); EXPECT_EQ(default_retransmission_time, connection_.GetRetransmissionAlarm()->deadline()); // Simulate the retransmission alarm firing. clock_.AdvanceTime(DefaultRetransmissionTime()); EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout()); EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(1u, _)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, 2u, _, _, _)); connection_.GetRetransmissionAlarm()->Fire(); EXPECT_EQ(2u, last_header()->packet_sequence_number); // We do not raise the high water mark yet. EXPECT_EQ(1u, outgoing_ack()->sent_info.least_unacked); } TEST_F(QuicConnectionTest, RTOWithSameEncryptionLevel) { QuicTime default_retransmission_time = clock_.ApproximateNow().Add( DefaultRetransmissionTime()); use_tagging_decrypter(); // A TaggingEncrypter puts kTagSize copies of the given byte (0x01 here) at // the end of the packet. We can test this to check which encrypter was used. connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01)); SendStreamDataToPeer(1, "foo", 0, !kFin, NULL); EXPECT_EQ(0x01010101u, final_bytes_of_last_packet()); connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02)); connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); SendStreamDataToPeer(1, "foo", 0, !kFin, NULL); EXPECT_EQ(0x02020202u, final_bytes_of_last_packet()); EXPECT_EQ(default_retransmission_time, connection_.GetRetransmissionAlarm()->deadline()); { InSequence s; EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(1, _)); EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(2, _)); EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout()); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, 3, _, RTO_RETRANSMISSION, _)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, 4, _, RTO_RETRANSMISSION, _)); } // Simulate the retransmission alarm firing. clock_.AdvanceTime(DefaultRetransmissionTime()); connection_.GetRetransmissionAlarm()->Fire(); // Packet should have been sent with ENCRYPTION_NONE. EXPECT_EQ(0x01010101u, final_bytes_of_previous_packet()); // Packet should have been sent with ENCRYPTION_INITIAL. EXPECT_EQ(0x02020202u, final_bytes_of_last_packet()); } TEST_F(QuicConnectionTest, SendHandshakeMessages) { use_tagging_decrypter(); // A TaggingEncrypter puts kTagSize copies of the given byte (0x01 here) at // the end of the packet. We can test this to check which encrypter was used. connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01)); // Attempt to send a handshake message while the congestion manager // does not permit sending. EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _, _, IS_HANDSHAKE)).WillRepeatedly( testing::Return(QuicTime::Delta::Infinite())); connection_.SendStreamDataWithString(1, "foo", 0, !kFin, NULL); // The packet should be serialized, but not queued. EXPECT_EQ(1u, connection_.NumQueuedPackets()); // Switch to the new encrypter. connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02)); connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); // Now become writeable and flush the packets. EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _, _, IS_HANDSHAKE)).WillRepeatedly( testing::Return(QuicTime::Delta::Zero())); EXPECT_CALL(visitor_, OnCanWrite()); connection_.OnCanWrite(); EXPECT_EQ(0u, connection_.NumQueuedPackets()); // Verify that the handshake packet went out at the null encryption. EXPECT_EQ(0x01010101u, final_bytes_of_last_packet()); } TEST_F(QuicConnectionTest, DropRetransmitsForNullEncryptedPacketAfterForwardSecure) { use_tagging_decrypter(); connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01)); QuicPacketSequenceNumber sequence_number; SendStreamDataToPeer(1, "foo", 0, !kFin, &sequence_number); connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, new TaggingEncrypter(0x02)); connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout()); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(sequence_number, _)).Times(1); QuicTime default_retransmission_time = clock_.ApproximateNow().Add( DefaultRetransmissionTime()); EXPECT_EQ(default_retransmission_time, connection_.GetRetransmissionAlarm()->deadline()); // Simulate the retransmission alarm firing. clock_.AdvanceTime(DefaultRetransmissionTime()); connection_.GetRetransmissionAlarm()->Fire(); } TEST_F(QuicConnectionTest, RetransmitPacketsWithInitialEncryption) { use_tagging_decrypter(); connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01)); connection_.SetDefaultEncryptionLevel(ENCRYPTION_NONE); SendStreamDataToPeer(1, "foo", 0, !kFin, NULL); connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02)); connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); SendStreamDataToPeer(2, "bar", 0, !kFin, NULL); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(_, _)).Times(1); connection_.RetransmitUnackedPackets(INITIAL_ENCRYPTION_ONLY); } TEST_F(QuicConnectionTest, BufferNonDecryptablePackets) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); use_tagging_decrypter(); const uint8 tag = 0x07; framer_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag)); // Process an encrypted packet which can not yet be decrypted // which should result in the packet being buffered. ProcessDataPacketAtLevel(1, false, kEntropyFlag, ENCRYPTION_INITIAL); // Transition to the new encryption state and process another // encrypted packet which should result in the original packet being // processed. connection_.SetDecrypter(new StrictTaggingDecrypter(tag)); connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag)); EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(2).WillRepeatedly( Return(true)); ProcessDataPacketAtLevel(2, false, kEntropyFlag, ENCRYPTION_INITIAL); // Finally, process a third packet and note that we do not // reprocess the buffered packet. EXPECT_CALL(visitor_, OnStreamFrames(_)).WillOnce(Return(true)); ProcessDataPacketAtLevel(3, false, kEntropyFlag, ENCRYPTION_INITIAL); } TEST_F(QuicConnectionTest, TestRetransmitOrder) { QuicByteCount first_packet_size; EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).WillOnce( DoAll(SaveArg<2>(&first_packet_size), Return(true))); connection_.SendStreamDataWithString(3, "first_packet", 0, !kFin, NULL); QuicByteCount second_packet_size; EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).WillOnce( DoAll(SaveArg<2>(&second_packet_size), Return(true))); connection_.SendStreamDataWithString(3, "second_packet", 12, !kFin, NULL); EXPECT_NE(first_packet_size, second_packet_size); // Advance the clock by huge time to make sure packets will be retransmitted. clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10)); EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout()); EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(_, _)).Times(2); { InSequence s; EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, first_packet_size, _, _)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, second_packet_size, _, _)); } connection_.GetRetransmissionAlarm()->Fire(); // Advance again and expect the packets to be sent again in the same order. clock_.AdvanceTime(QuicTime::Delta::FromSeconds(20)); EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout()); EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(_, _)).Times(2); { InSequence s; EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, first_packet_size, _, _)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, second_packet_size, _, _)); } connection_.GetRetransmissionAlarm()->Fire(); } TEST_F(QuicConnectionTest, RetransmissionCountCalculation) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); QuicPacketSequenceNumber original_sequence_number; EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, NOT_RETRANSMISSION, _)) .WillOnce(DoAll(SaveArg<1>(&original_sequence_number), Return(true))); connection_.SendStreamDataWithString(1, "foo", 0, !kFin, NULL); EXPECT_TRUE(QuicConnectionPeer::IsSavedForRetransmission( &connection_, original_sequence_number)); EXPECT_FALSE(QuicConnectionPeer::IsRetransmission( &connection_, original_sequence_number)); // Force retransmission due to RTO. clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10)); EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout()); EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(original_sequence_number, _)).Times(1); QuicPacketSequenceNumber rto_sequence_number; EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, RTO_RETRANSMISSION, _)) .WillOnce(DoAll(SaveArg<1>(&rto_sequence_number), Return(true))); connection_.GetRetransmissionAlarm()->Fire(); EXPECT_FALSE(QuicConnectionPeer::IsSavedForRetransmission( &connection_, original_sequence_number)); ASSERT_TRUE(QuicConnectionPeer::IsSavedForRetransmission( &connection_, rto_sequence_number)); EXPECT_TRUE(QuicConnectionPeer::IsRetransmission( &connection_, rto_sequence_number)); // Once by explicit nack. EXPECT_CALL(*send_algorithm_, OnPacketLost(_, _)).Times(1); EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(rto_sequence_number, _)).Times(1); QuicPacketSequenceNumber nack_sequence_number = 0; // Ack packets might generate some other packets, which are not // retransmissions. (More ack packets). EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, NOT_RETRANSMISSION, _)) .Times(AnyNumber()); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, NACK_RETRANSMISSION, _)) .WillOnce(DoAll(SaveArg<1>(&nack_sequence_number), Return(true))); QuicAckFrame ack(rto_sequence_number, QuicTime::Zero(), 0); // Ack the retransmitted packet. ack.received_info.missing_packets.insert(original_sequence_number); ack.received_info.missing_packets.insert(rto_sequence_number); ack.received_info.entropy_hash = QuicConnectionPeer::GetSentEntropyHash(&connection_, rto_sequence_number - 1) ^ QuicConnectionPeer::GetSentEntropyHash(&connection_, original_sequence_number); for (int i = 0; i < 3; i++) { ProcessAckPacket(&ack); } ASSERT_NE(0u, nack_sequence_number); EXPECT_FALSE(QuicConnectionPeer::IsSavedForRetransmission( &connection_, rto_sequence_number)); ASSERT_TRUE(QuicConnectionPeer::IsSavedForRetransmission( &connection_, nack_sequence_number)); EXPECT_TRUE(QuicConnectionPeer::IsRetransmission( &connection_, nack_sequence_number)); } TEST_F(QuicConnectionTest, SetRTOAfterWritingToSocket) { writer_->set_blocked(true); connection_.SendStreamDataWithString(1, "foo", 0, !kFin, NULL); // Make sure that RTO is not started when the packet is queued. EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); // Test that RTO is started once we write to the socket. writer_->set_blocked(false); connection_.OnCanWrite(); EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); } TEST_F(QuicConnectionTest, DelayRTOWithAckReceipt) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, NOT_RETRANSMISSION, _)) .Times(2); connection_.SendStreamDataWithString(1, "foo", 0, !kFin, NULL); connection_.SendStreamDataWithString(2, "bar", 0, !kFin, NULL); QuicAlarm* retransmission_alarm = connection_.GetRetransmissionAlarm(); EXPECT_TRUE(retransmission_alarm->IsSet()); // Advance the time right before the RTO, then receive an ack for the first // packet to delay the RTO. clock_.AdvanceTime(DefaultRetransmissionTime()); EXPECT_CALL(*send_algorithm_, OnPacketAcked(_, _, _)).Times(1); QuicAckFrame ack(1, QuicTime::Zero(), 0); ack.received_info.entropy_hash = QuicConnectionPeer::GetSentEntropyHash(&connection_, 1); ProcessAckPacket(&ack); EXPECT_TRUE(retransmission_alarm->IsSet()); // Move forward past the original RTO and ensure the RTO is still pending. clock_.AdvanceTime(DefaultRetransmissionTime()); // Ensure the second packet gets retransmitted when it finally fires. EXPECT_TRUE(retransmission_alarm->IsSet()); EXPECT_GE(retransmission_alarm->deadline(), clock_.ApproximateNow()); clock_.AdvanceTime(DefaultRetransmissionTime()); EXPECT_LT(retransmission_alarm->deadline(), clock_.ApproximateNow()); EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout()); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, RTO_RETRANSMISSION, _)); EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(_, _)); // Manually cancel the alarm to simulate a real test. connection_.GetRetransmissionAlarm()->Fire(); // The new retransmitted sequence number should set the RTO to a larger value // than previously. EXPECT_TRUE(retransmission_alarm->IsSet()); QuicTime next_rto_time = retransmission_alarm->deadline(); QuicTime::Delta expected_rto = connection_.sent_packet_manager().GetRetransmissionDelay(); EXPECT_EQ(next_rto_time, clock_.ApproximateNow().Add(expected_rto)); } TEST_F(QuicConnectionTest, TestQueued) { EXPECT_EQ(0u, connection_.NumQueuedPackets()); writer_->set_blocked(true); connection_.SendStreamDataWithString(1, "foo", 0, !kFin, NULL); EXPECT_EQ(1u, connection_.NumQueuedPackets()); // Attempt to send all packets, but since we're actually still // blocked, they should all remain queued. EXPECT_FALSE(connection_.OnCanWrite()); EXPECT_EQ(1u, connection_.NumQueuedPackets()); // Unblock the writes and actually send. writer_->set_blocked(false); EXPECT_TRUE(connection_.OnCanWrite()); EXPECT_EQ(0u, connection_.NumQueuedPackets()); } TEST_F(QuicConnectionTest, CloseFecGroup) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); // Don't send missing packet 1. // Don't send missing packet 2. ProcessFecProtectedPacket(3, false, !kEntropyFlag); // Don't send missing FEC packet 3. ASSERT_EQ(1u, connection_.NumFecGroups()); // Now send non-fec protected ack packet and close the group. QuicAckFrame frame(0, QuicTime::Zero(), 5); creator_.set_sequence_number(4); ProcessAckPacket(&frame); ASSERT_EQ(0u, connection_.NumFecGroups()); } TEST_F(QuicConnectionTest, NoQuicCongestionFeedbackFrame) { SendAckPacketToPeer(); EXPECT_TRUE(last_feedback() == NULL); } TEST_F(QuicConnectionTest, WithQuicCongestionFeedbackFrame) { QuicCongestionFeedbackFrame info; info.type = kFixRate; info.fix_rate.bitrate = QuicBandwidth::FromBytesPerSecond(123); SetFeedback(&info); SendAckPacketToPeer(); EXPECT_EQ(kFixRate, last_feedback()->type); EXPECT_EQ(info.fix_rate.bitrate, last_feedback()->fix_rate.bitrate); } TEST_F(QuicConnectionTest, UpdateQuicCongestionFeedbackFrame) { SendAckPacketToPeer(); EXPECT_CALL(*receive_algorithm_, RecordIncomingPacket(_, _, _, _)); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessPacket(1); } TEST_F(QuicConnectionTest, DontUpdateQuicCongestionFeedbackFrameForRevived) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); SendAckPacketToPeer(); // Process an FEC packet, and revive the missing data packet // but only contact the receive_algorithm once. EXPECT_CALL(*receive_algorithm_, RecordIncomingPacket(_, _, _, _)); ProcessFecPacket(2, 1, true, !kEntropyFlag, NULL); } TEST_F(QuicConnectionTest, InitialTimeout) { EXPECT_TRUE(connection_.connected()); EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_CONNECTION_TIMED_OUT, false)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); QuicTime default_timeout = clock_.ApproximateNow().Add( QuicTime::Delta::FromSeconds(kDefaultInitialTimeoutSecs)); EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); // Simulate the timeout alarm firing. clock_.AdvanceTime( QuicTime::Delta::FromSeconds(kDefaultInitialTimeoutSecs)); connection_.GetTimeoutAlarm()->Fire(); EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); EXPECT_FALSE(connection_.connected()); EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); EXPECT_FALSE(connection_.GetResumeWritesAlarm()->IsSet()); EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); EXPECT_FALSE(connection_.GetSendAlarm()->IsSet()); EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); } TEST_F(QuicConnectionTest, TimeoutAfterSend) { EXPECT_TRUE(connection_.connected()); QuicTime default_timeout = clock_.ApproximateNow().Add( QuicTime::Delta::FromSeconds(kDefaultInitialTimeoutSecs)); // When we send a packet, the timeout will change to 5000 + // kDefaultInitialTimeoutSecs. clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); // Send an ack so we don't set the retransmission alarm. SendAckPacketToPeer(); EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); // The original alarm will fire. We should not time out because we had a // network event at t=5000. The alarm will reregister. clock_.AdvanceTime(QuicTime::Delta::FromMicroseconds( kDefaultInitialTimeoutSecs * 1000000 - 5000)); EXPECT_EQ(default_timeout, clock_.ApproximateNow()); connection_.GetTimeoutAlarm()->Fire(); EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); EXPECT_TRUE(connection_.connected()); EXPECT_EQ(default_timeout.Add(QuicTime::Delta::FromMilliseconds(5)), connection_.GetTimeoutAlarm()->deadline()); // This time, we should time out. EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_CONNECTION_TIMED_OUT, false)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); EXPECT_EQ(default_timeout.Add(QuicTime::Delta::FromMilliseconds(5)), clock_.ApproximateNow()); connection_.GetTimeoutAlarm()->Fire(); EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); EXPECT_FALSE(connection_.connected()); } // TODO(ianswett): Add scheduler tests when should_retransmit is false. TEST_F(QuicConnectionTest, SendScheduler) { // Test that if we send a packet without delay, it is not queued. QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag); EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillOnce( testing::Return(QuicTime::Delta::Zero())); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); connection_.SendPacket( ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA); EXPECT_EQ(0u, connection_.NumQueuedPackets()); } TEST_F(QuicConnectionTest, SendSchedulerDelay) { // Test that if we send a packet with a delay, it ends up queued. QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag); EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillOnce( testing::Return(QuicTime::Delta::FromMicroseconds(1))); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, 1, _, _, _)).Times(0); connection_.SendPacket( ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA); EXPECT_EQ(1u, connection_.NumQueuedPackets()); } TEST_F(QuicConnectionTest, SendSchedulerForce) { // Test that if we force send a packet, it is not queued. QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag); EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, NACK_RETRANSMISSION, _, _)).Times(0); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); connection_.SendPacket( ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA); // XXX: fixme. was: connection_.SendPacket(1, packet, kForce); EXPECT_EQ(0u, connection_.NumQueuedPackets()); } TEST_F(QuicConnectionTest, SendSchedulerEAGAIN) { QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag); writer_->set_blocked(true); EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillOnce( testing::Return(QuicTime::Delta::Zero())); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, 1, _, _, _)).Times(0); connection_.SendPacket( ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA); EXPECT_EQ(1u, connection_.NumQueuedPackets()); } TEST_F(QuicConnectionTest, SendSchedulerDelayThenSend) { // Test that if we send a packet with a delay, it ends up queued. QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag); EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillOnce( testing::Return(QuicTime::Delta::FromMicroseconds(1))); connection_.SendPacket( ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA); EXPECT_EQ(1u, connection_.NumQueuedPackets()); // Advance the clock to fire the alarm, and configure the scheduler // to permit the packet to be sent. EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillRepeatedly( testing::Return(QuicTime::Delta::Zero())); clock_.AdvanceTime(QuicTime::Delta::FromMicroseconds(1)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); connection_.GetSendAlarm()->Fire(); EXPECT_EQ(0u, connection_.NumQueuedPackets()); } TEST_F(QuicConnectionTest, SendSchedulerDelayThenRetransmit) { EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, NOT_RETRANSMISSION, _, _)) .WillRepeatedly(testing::Return(QuicTime::Delta::Zero())); EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(1, _)).Times(1); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, 1, _, NOT_RETRANSMISSION, _)); connection_.SendStreamDataWithString(1, "foo", 0, !kFin, NULL); EXPECT_EQ(0u, connection_.NumQueuedPackets()); // Advance the time for retransmission of lost packet. clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(501)); // Test that if we send a retransmit with a delay, it ends up queued in the // sent packet manager, but not yet serialized. EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout()); EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, RTO_RETRANSMISSION, _, _)).WillOnce( testing::Return(QuicTime::Delta::FromMicroseconds(1))); connection_.GetRetransmissionAlarm()->Fire(); EXPECT_EQ(0u, connection_.NumQueuedPackets()); // Advance the clock to fire the alarm, and configure the scheduler // to permit the packet to be sent. EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, RTO_RETRANSMISSION, _, _)).Times(2). WillRepeatedly(testing::Return(QuicTime::Delta::Zero())); // Ensure the scheduler is notified this is a retransmit. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, RTO_RETRANSMISSION, _)); clock_.AdvanceTime(QuicTime::Delta::FromMicroseconds(1)); connection_.GetSendAlarm()->Fire(); EXPECT_EQ(0u, connection_.NumQueuedPackets()); } TEST_F(QuicConnectionTest, SendSchedulerDelayAndQueue) { QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag); EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillOnce( testing::Return(QuicTime::Delta::FromMicroseconds(1))); connection_.SendPacket( ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA); EXPECT_EQ(1u, connection_.NumQueuedPackets()); // Attempt to send another packet and make sure that it gets queued. packet = ConstructDataPacket(2, 0, !kEntropyFlag); connection_.SendPacket( ENCRYPTION_NONE, 2, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA); EXPECT_EQ(2u, connection_.NumQueuedPackets()); } TEST_F(QuicConnectionTest, SendSchedulerDelayThenAckAndSend) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag); EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillOnce( testing::Return(QuicTime::Delta::FromMicroseconds(10))); connection_.SendPacket( ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA); EXPECT_EQ(1u, connection_.NumQueuedPackets()); // Now send non-retransmitting information, that we're not going to // retransmit 3. The far end should stop waiting for it. QuicAckFrame frame(0, QuicTime::Zero(), 1); EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillRepeatedly( testing::Return(QuicTime::Delta::Zero())); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); ProcessAckPacket(&frame); EXPECT_EQ(0u, connection_.NumQueuedPackets()); // Ensure alarm is not set EXPECT_FALSE(connection_.GetSendAlarm()->IsSet()); } TEST_F(QuicConnectionTest, SendSchedulerDelayThenAckAndHold) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag); EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillOnce( testing::Return(QuicTime::Delta::FromMicroseconds(10))); connection_.SendPacket( ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA); EXPECT_EQ(1u, connection_.NumQueuedPackets()); // Now send non-retransmitting information, that we're not going to // retransmit 3. The far end should stop waiting for it. QuicAckFrame frame(0, QuicTime::Zero(), 1); EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillOnce( testing::Return(QuicTime::Delta::FromMicroseconds(1))); ProcessAckPacket(&frame); EXPECT_EQ(1u, connection_.NumQueuedPackets()); } TEST_F(QuicConnectionTest, SendSchedulerDelayThenOnCanWrite) { QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag); EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillOnce( testing::Return(QuicTime::Delta::FromMicroseconds(10))); connection_.SendPacket( ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA); EXPECT_EQ(1u, connection_.NumQueuedPackets()); // OnCanWrite should not send the packet (because of the delay) // but should still return true. EXPECT_TRUE(connection_.OnCanWrite()); EXPECT_EQ(1u, connection_.NumQueuedPackets()); } TEST_F(QuicConnectionTest, TestQueueLimitsOnSendStreamData) { // All packets carry version info till version is negotiated. size_t payload_length; connection_.options()->max_packet_length = GetPacketLengthForOneStream( connection_.version(), kIncludeVersion, PACKET_1BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP, &payload_length); // Queue the first packet. EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillOnce( testing::Return(QuicTime::Delta::FromMicroseconds(10))); const string payload(payload_length, 'a'); EXPECT_EQ(0u, connection_.SendStreamDataWithString(3, payload, 0, !kFin, NULL).bytes_consumed); EXPECT_EQ(0u, connection_.NumQueuedPackets()); } TEST_F(QuicConnectionTest, LoopThroughSendingPackets) { // All packets carry version info till version is negotiated. size_t payload_length; connection_.options()->max_packet_length = GetPacketLengthForOneStream( connection_.version(), kIncludeVersion, PACKET_1BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP, &payload_length); // Queue the first packet. EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(7); // The first stream frame will consume 2 fewer bytes than the other six. const string payload(payload_length * 7 - 12, 'a'); EXPECT_EQ(payload.size(), connection_.SendStreamDataWithString(1, payload, 0, !kFin, NULL).bytes_consumed); } TEST_F(QuicConnectionTest, SendDelayedAckOnTimer) { QuicTime ack_time = clock_.ApproximateNow().Add(DefaultDelayedAckTime()); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); ProcessPacket(1); // Check if delayed ack timer is running for the expected interval. EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); // Simulate delayed ack alarm firing. connection_.GetAckAlarm()->Fire(); // Check that ack is sent and that delayed ack alarm is reset. EXPECT_EQ(1u, writer_->frame_count()); EXPECT_TRUE(writer_->ack()); EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); } TEST_F(QuicConnectionTest, SendDelayedAckOnSecondPacket) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessPacket(1); ProcessPacket(2); // Check that ack is sent and that delayed ack alarm is reset. EXPECT_EQ(1u, writer_->frame_count()); EXPECT_TRUE(writer_->ack()); EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); } TEST_F(QuicConnectionTest, NoAckOnOldNacks) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); // Drop one packet, triggering a sequence of acks. ProcessPacket(2); EXPECT_EQ(1u, writer_->frame_count()); EXPECT_TRUE(writer_->ack()); writer_->Reset(); ProcessPacket(3); EXPECT_EQ(1u, writer_->frame_count()); EXPECT_TRUE(writer_->ack()); writer_->Reset(); ProcessPacket(4); EXPECT_EQ(1u, writer_->frame_count()); EXPECT_TRUE(writer_->ack()); writer_->Reset(); ProcessPacket(5); EXPECT_EQ(1u, writer_->frame_count()); EXPECT_TRUE(writer_->ack()); // Now only set the timer on the 6th packet, instead of sending another ack. writer_->Reset(); ProcessPacket(6); EXPECT_EQ(0u, writer_->frame_count()); EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); } TEST_F(QuicConnectionTest, SendDelayedAckOnOutgoingPacket) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessPacket(1); connection_.SendStreamDataWithString(kStreamId3, "foo", 0, !kFin, NULL); // Check that ack is bundled with outgoing data and that delayed ack // alarm is reset. EXPECT_EQ(2u, writer_->frame_count()); EXPECT_TRUE(writer_->ack()); EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); } TEST_F(QuicConnectionTest, DontSendDelayedAckOnOutgoingCryptoPacket) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessPacket(1); connection_.SendStreamDataWithString(kCryptoStreamId, "foo", 0, !kFin, NULL); // Check that ack is not bundled with outgoing data. EXPECT_EQ(1u, writer_->frame_count()); EXPECT_FALSE(writer_->ack()); EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); } TEST_F(QuicConnectionTest, NoAckForClose) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessPacket(1); EXPECT_CALL(*send_algorithm_, OnPacketAcked(_, _, _)).Times(0); EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PEER_GOING_AWAY, true)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); ProcessClosePacket(2, 0); } TEST_F(QuicConnectionTest, SendWhenDisconnected) { EXPECT_TRUE(connection_.connected()); EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PEER_GOING_AWAY, false)); connection_.CloseConnection(QUIC_PEER_GOING_AWAY, false); EXPECT_FALSE(connection_.connected()); QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, 1, _, _, _)).Times(0); connection_.SendPacket( ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA); } TEST_F(QuicConnectionTest, PublicReset) { QuicPublicResetPacket header; header.public_header.guid = guid_; header.public_header.reset_flag = true; header.public_header.version_flag = false; header.rejected_sequence_number = 10101; scoped_ptr<QuicEncryptedPacket> packet( framer_.BuildPublicResetPacket(header)); EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PUBLIC_RESET, true)); connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *packet); } TEST_F(QuicConnectionTest, GoAway) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); QuicGoAwayFrame goaway; goaway.last_good_stream_id = 1; goaway.error_code = QUIC_PEER_GOING_AWAY; goaway.reason_phrase = "Going away."; EXPECT_CALL(visitor_, OnGoAway(_)); ProcessGoAwayPacket(&goaway); } TEST_F(QuicConnectionTest, InvalidPacket) { EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_PACKET_HEADER, false)); QuicEncryptedPacket encrypted(NULL, 0); connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), encrypted); // The connection close packet should have error details. ASSERT_TRUE(last_close() != NULL); EXPECT_EQ("Unable to read public flags.", last_close()->error_details); } TEST_F(QuicConnectionTest, MissingPacketsBeforeLeastUnacked) { QuicAckFrame ack(0, QuicTime::Zero(), 4); // Set the sequence number of the ack packet to be least unacked (4). creator_.set_sequence_number(3); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessAckPacket(&ack); EXPECT_TRUE(outgoing_ack()->received_info.missing_packets.empty()); } TEST_F(QuicConnectionTest, ReceivedEntropyHashCalculation) { EXPECT_CALL(visitor_, OnStreamFrames(_)).WillRepeatedly(Return(true)); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessDataPacket(1, 1, kEntropyFlag); ProcessDataPacket(4, 1, kEntropyFlag); ProcessDataPacket(3, 1, !kEntropyFlag); ProcessDataPacket(7, 1, kEntropyFlag); EXPECT_EQ(146u, outgoing_ack()->received_info.entropy_hash); } TEST_F(QuicConnectionTest, UpdateEntropyForReceivedPackets) { EXPECT_CALL(visitor_, OnStreamFrames(_)).WillRepeatedly(Return(true)); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessDataPacket(1, 1, kEntropyFlag); ProcessDataPacket(5, 1, kEntropyFlag); ProcessDataPacket(4, 1, !kEntropyFlag); EXPECT_EQ(34u, outgoing_ack()->received_info.entropy_hash); // Make 4th packet my least unacked, and update entropy for 2, 3 packets. QuicAckFrame ack(0, QuicTime::Zero(), 4); QuicPacketEntropyHash kRandomEntropyHash = 129u; ack.sent_info.entropy_hash = kRandomEntropyHash; creator_.set_sequence_number(5); QuicPacketEntropyHash six_packet_entropy_hash = 0; if (ProcessAckPacket(&ack)) { six_packet_entropy_hash = 1 << 6; } EXPECT_EQ((kRandomEntropyHash + (1 << 5) + six_packet_entropy_hash), outgoing_ack()->received_info.entropy_hash); } TEST_F(QuicConnectionTest, UpdateEntropyHashUptoCurrentPacket) { EXPECT_CALL(visitor_, OnStreamFrames(_)).WillRepeatedly(Return(true)); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessDataPacket(1, 1, kEntropyFlag); ProcessDataPacket(5, 1, !kEntropyFlag); ProcessDataPacket(22, 1, kEntropyFlag); EXPECT_EQ(66u, outgoing_ack()->received_info.entropy_hash); creator_.set_sequence_number(22); QuicPacketEntropyHash kRandomEntropyHash = 85u; // Current packet is the least unacked packet. QuicAckFrame ack(0, QuicTime::Zero(), 23); ack.sent_info.entropy_hash = kRandomEntropyHash; QuicPacketEntropyHash ack_entropy_hash = ProcessAckPacket(&ack); EXPECT_EQ((kRandomEntropyHash + ack_entropy_hash), outgoing_ack()->received_info.entropy_hash); ProcessDataPacket(25, 1, kEntropyFlag); EXPECT_EQ((kRandomEntropyHash + ack_entropy_hash + (1 << (25 % 8))), outgoing_ack()->received_info.entropy_hash); } TEST_F(QuicConnectionTest, EntropyCalculationForTruncatedAck) { EXPECT_CALL(visitor_, OnStreamFrames(_)).WillRepeatedly(Return(true)); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); QuicPacketEntropyHash entropy[51]; entropy[0] = 0; for (int i = 1; i < 51; ++i) { bool should_send = i % 10 != 0; bool entropy_flag = (i & (i - 1)) != 0; if (!should_send) { entropy[i] = entropy[i - 1]; continue; } if (entropy_flag) { entropy[i] = entropy[i - 1] ^ (1 << (i % 8)); } else { entropy[i] = entropy[i - 1]; } ProcessDataPacket(i, 1, entropy_flag); } // Till 50 since 50th packet is not sent. for (int i = 1; i < 50; ++i) { EXPECT_EQ(entropy[i], QuicConnectionPeer::ReceivedEntropyHash( &connection_, i)); } } TEST_F(QuicConnectionTest, CheckSentEntropyHash) { creator_.set_sequence_number(1); SequenceNumberSet missing_packets; QuicPacketEntropyHash entropy_hash = 0; QuicPacketSequenceNumber max_sequence_number = 51; for (QuicPacketSequenceNumber i = 1; i <= max_sequence_number; ++i) { bool is_missing = i % 10 != 0; bool entropy_flag = (i & (i - 1)) != 0; QuicPacketEntropyHash packet_entropy_hash = 0; if (entropy_flag) { packet_entropy_hash = 1 << (i % 8); } QuicPacket* packet = ConstructDataPacket(i, 0, entropy_flag); connection_.SendPacket( ENCRYPTION_NONE, i, packet, packet_entropy_hash, HAS_RETRANSMITTABLE_DATA); if (is_missing) { missing_packets.insert(i); continue; } entropy_hash ^= packet_entropy_hash; } EXPECT_TRUE(QuicConnectionPeer::IsValidEntropy( &connection_, max_sequence_number, missing_packets, entropy_hash)) << ""; } TEST_F(QuicConnectionTest, ServerSendsVersionNegotiationPacket) { framer_.set_version_for_tests(QUIC_VERSION_UNSUPPORTED); QuicPacketHeader header; header.public_header.guid = guid_; header.public_header.reset_flag = false; header.public_header.version_flag = true; header.entropy_flag = false; header.fec_flag = false; header.packet_sequence_number = 12; header.fec_group = 0; QuicFrames frames; QuicFrame frame(&frame1_); frames.push_back(frame); scoped_ptr<QuicPacket> packet( framer_.BuildUnsizedDataPacket(header, frames).packet); scoped_ptr<QuicEncryptedPacket> encrypted( framer_.EncryptPacket(ENCRYPTION_NONE, 12, *packet)); framer_.set_version(QuicVersionMax()); connection_.set_is_server(true); connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); EXPECT_TRUE(writer_->version_negotiation_packet() != NULL); size_t num_versions = arraysize(kSupportedQuicVersions); EXPECT_EQ(num_versions, writer_->version_negotiation_packet()->versions.size()); // We expect all versions in kSupportedQuicVersions to be // included in the packet. for (size_t i = 0; i < num_versions; ++i) { EXPECT_EQ(kSupportedQuicVersions[i], writer_->version_negotiation_packet()->versions[i]); } } TEST_F(QuicConnectionTest, ServerSendsVersionNegotiationPacketSocketBlocked) { framer_.set_version_for_tests(QUIC_VERSION_UNSUPPORTED); QuicPacketHeader header; header.public_header.guid = guid_; header.public_header.reset_flag = false; header.public_header.version_flag = true; header.entropy_flag = false; header.fec_flag = false; header.packet_sequence_number = 12; header.fec_group = 0; QuicFrames frames; QuicFrame frame(&frame1_); frames.push_back(frame); scoped_ptr<QuicPacket> packet( framer_.BuildUnsizedDataPacket(header, frames).packet); scoped_ptr<QuicEncryptedPacket> encrypted( framer_.EncryptPacket(ENCRYPTION_NONE, 12, *packet)); framer_.set_version(QuicVersionMax()); connection_.set_is_server(true); writer_->set_blocked(true); connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); EXPECT_EQ(0u, writer_->last_packet_size()); EXPECT_TRUE(connection_.HasQueuedData()); EXPECT_TRUE(QuicConnectionPeer::IsWriteBlocked(&connection_)); writer_->set_blocked(false); connection_.OnCanWrite(); EXPECT_TRUE(writer_->version_negotiation_packet() != NULL); size_t num_versions = arraysize(kSupportedQuicVersions); EXPECT_EQ(num_versions, writer_->version_negotiation_packet()->versions.size()); // We expect all versions in kSupportedQuicVersions to be // included in the packet. for (size_t i = 0; i < num_versions; ++i) { EXPECT_EQ(kSupportedQuicVersions[i], writer_->version_negotiation_packet()->versions[i]); } } TEST_F(QuicConnectionTest, ServerSendsVersionNegotiationPacketSocketBlockedDataBuffered) { framer_.set_version_for_tests(QUIC_VERSION_UNSUPPORTED); QuicPacketHeader header; header.public_header.guid = guid_; header.public_header.reset_flag = false; header.public_header.version_flag = true; header.entropy_flag = false; header.fec_flag = false; header.packet_sequence_number = 12; header.fec_group = 0; QuicFrames frames; QuicFrame frame(&frame1_); frames.push_back(frame); scoped_ptr<QuicPacket> packet( framer_.BuildUnsizedDataPacket(header, frames).packet); scoped_ptr<QuicEncryptedPacket> encrypted( framer_.EncryptPacket(ENCRYPTION_NONE, 12, *packet)); framer_.set_version(QuicVersionMax()); connection_.set_is_server(true); writer_->set_blocked(true); writer_->set_is_write_blocked_data_buffered(true); connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); EXPECT_EQ(0u, writer_->last_packet_size()); EXPECT_FALSE(connection_.HasQueuedData()); EXPECT_TRUE(QuicConnectionPeer::IsWriteBlocked(&connection_)); } TEST_F(QuicConnectionTest, ClientHandlesVersionNegotiation) { // Start out with some unsupported version. QuicConnectionPeer::GetFramer(&connection_)->set_version_for_tests( QUIC_VERSION_UNSUPPORTED); QuicPacketHeader header; header.public_header.guid = guid_; header.public_header.reset_flag = false; header.public_header.version_flag = true; header.entropy_flag = false; header.fec_flag = false; header.packet_sequence_number = 12; header.fec_group = 0; QuicVersionVector supported_versions; for (size_t i = 0; i < arraysize(kSupportedQuicVersions); ++i) { supported_versions.push_back(kSupportedQuicVersions[i]); } // Send a version negotiation packet. scoped_ptr<QuicEncryptedPacket> encrypted( framer_.BuildVersionNegotiationPacket( header.public_header, supported_versions)); connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); // Now force another packet. The connection should transition into // NEGOTIATED_VERSION state and tell the packet creator to StopSendingVersion. header.public_header.version_flag = false; QuicFrames frames; QuicFrame frame(&frame1_); frames.push_back(frame); scoped_ptr<QuicPacket> packet( framer_.BuildUnsizedDataPacket(header, frames).packet); encrypted.reset(framer_.EncryptPacket(ENCRYPTION_NONE, 12, *packet)); EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); ASSERT_FALSE(QuicPacketCreatorPeer::SendVersionInPacket( QuicConnectionPeer::GetPacketCreator(&connection_))); } TEST_F(QuicConnectionTest, BadVersionNegotiation) { QuicPacketHeader header; header.public_header.guid = guid_; header.public_header.reset_flag = false; header.public_header.version_flag = true; header.entropy_flag = false; header.fec_flag = false; header.packet_sequence_number = 12; header.fec_group = 0; QuicVersionVector supported_versions; for (size_t i = 0; i < arraysize(kSupportedQuicVersions); ++i) { supported_versions.push_back(kSupportedQuicVersions[i]); } // Send a version negotiation packet with the version the client started with. // It should be rejected. EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_VERSION_NEGOTIATION_PACKET, false)); scoped_ptr<QuicEncryptedPacket> encrypted( framer_.BuildVersionNegotiationPacket( header.public_header, supported_versions)); connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); } TEST_F(QuicConnectionTest, CheckSendStats) { EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, NOT_RETRANSMISSION, _)); connection_.SendStreamDataWithString(3, "first", 0, !kFin, NULL); size_t first_packet_size = last_sent_packet_size(); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, NOT_RETRANSMISSION, _)); connection_.SendStreamDataWithString(5, "second", 0, !kFin, NULL); size_t second_packet_size = last_sent_packet_size(); // 2 retransmissions due to rto, 1 due to explicit nack. EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout()); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, RTO_RETRANSMISSION, _)).Times(2); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, NACK_RETRANSMISSION, _)); EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(_, _)).Times(3); EXPECT_CALL(visitor_, OnCanWrite()).WillRepeatedly(Return(true)); // Retransmit due to RTO. clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10)); connection_.GetRetransmissionAlarm()->Fire(); // Retransmit due to explicit nacks. QuicAckFrame nack_three(4, QuicTime::Zero(), 0); nack_three.received_info.missing_packets.insert(3); nack_three.received_info.missing_packets.insert(1); nack_three.received_info.entropy_hash = QuicConnectionPeer::GetSentEntropyHash(&connection_, 4) ^ QuicConnectionPeer::GetSentEntropyHash(&connection_, 3) ^ QuicConnectionPeer::GetSentEntropyHash(&connection_, 2) ^ QuicConnectionPeer::GetSentEntropyHash(&connection_, 1); QuicFrame frame(&nack_three); EXPECT_CALL(*send_algorithm_, OnPacketAcked(_, _, _)).Times(1); EXPECT_CALL(*send_algorithm_, OnPacketLost(_, _)).Times(1); EXPECT_CALL(visitor_, OnCanWrite()).Times(4).WillRepeatedly(Return(true)); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); ProcessFramePacket(frame); ProcessFramePacket(frame); ProcessFramePacket(frame); EXPECT_CALL(*send_algorithm_, SmoothedRtt()).WillOnce( Return(QuicTime::Delta::Zero())); EXPECT_CALL(*send_algorithm_, BandwidthEstimate()).WillOnce( Return(QuicBandwidth::Zero())); const QuicConnectionStats& stats = connection_.GetStats(); EXPECT_EQ(3 * first_packet_size + 2 * second_packet_size - kQuicVersionSize, stats.bytes_sent); EXPECT_EQ(5u, stats.packets_sent); EXPECT_EQ(2 * first_packet_size + second_packet_size - kQuicVersionSize, stats.bytes_retransmitted); EXPECT_EQ(3u, stats.packets_retransmitted); EXPECT_EQ(1u, stats.rto_count); } TEST_F(QuicConnectionTest, CheckReceiveStats) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); size_t received_bytes = 0; received_bytes += ProcessFecProtectedPacket(1, false, !kEntropyFlag); received_bytes += ProcessFecProtectedPacket(3, false, !kEntropyFlag); // Should be counted against dropped packets. received_bytes += ProcessDataPacket(3, 1, !kEntropyFlag); received_bytes += ProcessFecPacket(4, 1, true, !kEntropyFlag, NULL); EXPECT_CALL(*send_algorithm_, SmoothedRtt()).WillOnce( Return(QuicTime::Delta::Zero())); EXPECT_CALL(*send_algorithm_, BandwidthEstimate()).WillOnce( Return(QuicBandwidth::Zero())); const QuicConnectionStats& stats = connection_.GetStats(); EXPECT_EQ(received_bytes, stats.bytes_received); EXPECT_EQ(4u, stats.packets_received); EXPECT_EQ(1u, stats.packets_revived); EXPECT_EQ(1u, stats.packets_dropped); } TEST_F(QuicConnectionTest, TestFecGroupLimits) { // Create and return a group for 1. ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 1) != NULL); // Create and return a group for 2. ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 2) != NULL); // Create and return a group for 4. This should remove 1 but not 2. ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 4) != NULL); ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 1) == NULL); ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 2) != NULL); // Create and return a group for 3. This will kill off 2. ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 3) != NULL); ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 2) == NULL); // Verify that adding 5 kills off 3, despite 4 being created before 3. ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 5) != NULL); ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 4) != NULL); ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 3) == NULL); } TEST_F(QuicConnectionTest, ProcessFramesIfPacketClosedConnection) { // Construct a packet with stream frame and connection close frame. header_.public_header.guid = guid_; header_.packet_sequence_number = 1; header_.public_header.reset_flag = false; header_.public_header.version_flag = false; header_.entropy_flag = false; header_.fec_flag = false; header_.fec_group = 0; QuicConnectionCloseFrame qccf; qccf.error_code = QUIC_PEER_GOING_AWAY; QuicFrame close_frame(&qccf); QuicFrame stream_frame(&frame1_); QuicFrames frames; frames.push_back(stream_frame); frames.push_back(close_frame); scoped_ptr<QuicPacket> packet( framer_.BuildUnsizedDataPacket(header_, frames).packet); EXPECT_TRUE(NULL != packet.get()); scoped_ptr<QuicEncryptedPacket> encrypted(framer_.EncryptPacket( ENCRYPTION_NONE, 1, *packet)); EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PEER_GOING_AWAY, true)); EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1); EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); } TEST_F(QuicConnectionTest, SelectMutualVersion) { // Set the connection to speak the lowest quic version. connection_.set_version(QuicVersionMin()); EXPECT_EQ(QuicVersionMin(), connection_.version()); // Pass in available versions which includes a higher mutually supported // version. The higher mutually supported version should be selected. QuicVersionVector supported_versions; for (size_t i = 0; i < arraysize(kSupportedQuicVersions); ++i) { supported_versions.push_back(kSupportedQuicVersions[i]); } EXPECT_TRUE(connection_.SelectMutualVersion(supported_versions)); EXPECT_EQ(QuicVersionMax(), connection_.version()); // Expect that the lowest version is selected. // Ensure the lowest supported version is less than the max, unless they're // the same. EXPECT_LE(QuicVersionMin(), QuicVersionMax()); QuicVersionVector lowest_version_vector; lowest_version_vector.push_back(QuicVersionMin()); EXPECT_TRUE(connection_.SelectMutualVersion(lowest_version_vector)); EXPECT_EQ(QuicVersionMin(), connection_.version()); // Shouldn't be able to find a mutually supported version. QuicVersionVector unsupported_version; unsupported_version.push_back(QUIC_VERSION_UNSUPPORTED); EXPECT_FALSE(connection_.SelectMutualVersion(unsupported_version)); } TEST_F(QuicConnectionTest, ConnectionCloseWhenNotWriteBlocked) { writer_->set_blocked(false); // Already default. // Send a packet (but write will not block). connection_.SendStreamDataWithString(1, "foo", 0, !kFin, NULL); EXPECT_EQ(0u, connection_.NumQueuedPackets()); EXPECT_EQ(1u, writer_->packets_write_attempts()); // Send an erroneous packet to close the connection. EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_PACKET_HEADER, false)); ProcessDataPacket(6000, 0, !kEntropyFlag); EXPECT_EQ(2u, writer_->packets_write_attempts()); } TEST_F(QuicConnectionTest, ConnectionCloseWhenWriteBlocked) { EXPECT_EQ(0u, connection_.NumQueuedPackets()); writer_->set_blocked(true); // Send a packet to so that write will really block. connection_.SendStreamDataWithString(1, "foo", 0, !kFin, NULL); EXPECT_EQ(1u, connection_.NumQueuedPackets()); EXPECT_EQ(1u, writer_->packets_write_attempts()); // Send an erroneous packet to close the connection. EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_PACKET_HEADER, false)); ProcessDataPacket(6000, 0, !kEntropyFlag); EXPECT_EQ(1u, writer_->packets_write_attempts()); } TEST_F(QuicConnectionTest, ConnectionCloseWhenNothingPending) { writer_->set_blocked(true); // Send an erroneous packet to close the connection. EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_PACKET_HEADER, false)); ProcessDataPacket(6000, 0, !kEntropyFlag); EXPECT_EQ(1u, writer_->packets_write_attempts()); } TEST_F(QuicConnectionTest, AckNotifierTriggerCallback) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); // Create a delegate which we expect to be called. MockAckNotifierDelegate delegate; EXPECT_CALL(delegate, OnAckNotification()).Times(1);; // Send some data, which will register the delegate to be notified. connection_.SendStreamDataWithString(1, "foo", 0, !kFin, &delegate); // Process an ACK from the server which should trigger the callback. EXPECT_CALL(*send_algorithm_, OnPacketAcked(_, _, _)).Times(1); QuicAckFrame frame(1, QuicTime::Zero(), 0); frame.received_info.entropy_hash = QuicConnectionPeer::GetSentEntropyHash(&connection_, 1); ProcessAckPacket(&frame); } TEST_F(QuicConnectionTest, AckNotifierFailToTriggerCallback) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); // Create a delegate which we don't expect to be called. MockAckNotifierDelegate delegate; EXPECT_CALL(delegate, OnAckNotification()).Times(0);; EXPECT_CALL(*send_algorithm_, OnPacketAcked(_, _, _)).Times(2); // Send some data, which will register the delegate to be notified. This will // not be ACKed and so the delegate should never be called. connection_.SendStreamDataWithString(1, "foo", 0, !kFin, &delegate); // Send some other data which we will ACK. connection_.SendStreamDataWithString(1, "foo", 0, !kFin, NULL); connection_.SendStreamDataWithString(1, "bar", 0, !kFin, NULL); // Now we receive ACK for packets 2 and 3, but importantly missing packet 1 // which we registered to be notified about. QuicAckFrame frame(3, QuicTime::Zero(), 0); frame.received_info.missing_packets.insert(1); frame.received_info.entropy_hash = QuicConnectionPeer::GetSentEntropyHash(&connection_, 3) ^ QuicConnectionPeer::GetSentEntropyHash(&connection_, 1); EXPECT_CALL(*send_algorithm_, OnPacketLost(_, _)); EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(_, _)); ProcessAckPacket(&frame); } TEST_F(QuicConnectionTest, AckNotifierCallbackAfterRetransmission) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); // Create a delegate which we expect to be called. MockAckNotifierDelegate delegate; EXPECT_CALL(delegate, OnAckNotification()).Times(1);; // In total expect ACKs for all 4 packets. EXPECT_CALL(*send_algorithm_, OnPacketAcked(_, _, _)).Times(4); // Send four packets, and register to be notified on ACK of packet 2. connection_.SendStreamDataWithString(1, "foo", 0, !kFin, NULL); connection_.SendStreamDataWithString(1, "bar", 0, !kFin, &delegate); connection_.SendStreamDataWithString(1, "baz", 0, !kFin, NULL); connection_.SendStreamDataWithString(1, "qux", 0, !kFin, NULL); // Now we receive ACK for packets 1, 3, and 4, which invokes fast retransmit. QuicAckFrame frame(4, QuicTime::Zero(), 0); frame.received_info.missing_packets.insert(2); frame.received_info.entropy_hash = QuicConnectionPeer::GetSentEntropyHash(&connection_, 4) ^ QuicConnectionPeer::GetSentEntropyHash(&connection_, 2) ^ QuicConnectionPeer::GetSentEntropyHash(&connection_, 1); EXPECT_CALL(*send_algorithm_, OnPacketLost(2, _)); EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(2, _)); EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); ProcessAckPacket(&frame); // Now we get an ACK for packet 5 (retransmitted packet 2), which should // trigger the callback. QuicAckFrame second_ack_frame(5, QuicTime::Zero(), 0); second_ack_frame.received_info.entropy_hash = QuicConnectionPeer::GetSentEntropyHash(&connection_, 5); ProcessAckPacket(&second_ack_frame); } // TODO(rjshade): Add a similar test that FEC recovery on peer (and resulting // ACK) triggers notification on our end. TEST_F(QuicConnectionTest, AckNotifierCallbackAfterFECRecovery) { EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); EXPECT_CALL(visitor_, OnCanWrite()).Times(1).WillOnce(Return(true)); // Create a delegate which we expect to be called. MockAckNotifierDelegate delegate; EXPECT_CALL(delegate, OnAckNotification()).Times(1);; // Expect ACKs for 1 packet. EXPECT_CALL(*send_algorithm_, OnPacketAcked(_, _, _)).Times(1); // Send one packet, and register to be notified on ACK. connection_.SendStreamDataWithString(1, "foo", 0, !kFin, &delegate); // Ack packet gets dropped, but we receive an FEC packet that covers it. // Should recover the Ack packet and trigger the notification callback. QuicFrames frames; QuicAckFrame ack_frame(1, QuicTime::Zero(), 0); ack_frame.received_info.entropy_hash = QuicConnectionPeer::GetSentEntropyHash(&connection_, 1); frames.push_back(QuicFrame(&ack_frame)); // Dummy stream frame to satisfy expectations set elsewhere. frames.push_back(QuicFrame(&frame1_)); QuicPacketHeader ack_header; ack_header.public_header.guid = guid_; ack_header.public_header.reset_flag = false; ack_header.public_header.version_flag = false; ack_header.entropy_flag = !kEntropyFlag; ack_header.fec_flag = true; ack_header.packet_sequence_number = 1; ack_header.is_in_fec_group = IN_FEC_GROUP; ack_header.fec_group = 1; QuicPacket* packet = framer_.BuildUnsizedDataPacket(ack_header, frames).packet; // Take the packet which contains the ACK frame, and construct and deliver an // FEC packet which allows the ACK packet to be recovered. ProcessFecPacket(2, 1, true, !kEntropyFlag, packet); } class MockQuicConnectionDebugVisitor : public QuicConnectionDebugVisitorInterface { public: MOCK_METHOD1(OnFrameAddedToPacket, void(const QuicFrame&)); MOCK_METHOD4(OnPacketSent, void(QuicPacketSequenceNumber, EncryptionLevel, const QuicEncryptedPacket&, WriteResult)); MOCK_METHOD2(OnPacketRetransmitted, void(QuicPacketSequenceNumber, QuicPacketSequenceNumber)); MOCK_METHOD3(OnPacketReceived, void(const IPEndPoint&, const IPEndPoint&, const QuicEncryptedPacket&)); MOCK_METHOD1(OnProtocolVersionMismatch, void(QuicVersion)); MOCK_METHOD1(OnPacketHeader, void(const QuicPacketHeader& header)); MOCK_METHOD1(OnStreamFrame, void(const QuicStreamFrame&)); MOCK_METHOD1(OnAckFrame, void(const QuicAckFrame& frame)); MOCK_METHOD1(OnCongestionFeedbackFrame, void(const QuicCongestionFeedbackFrame&)); MOCK_METHOD1(OnRstStreamFrame, void(const QuicRstStreamFrame&)); MOCK_METHOD1(OnConnectionCloseFrame, void(const QuicConnectionCloseFrame&)); MOCK_METHOD1(OnPublicResetPacket, void(const QuicPublicResetPacket&)); MOCK_METHOD1(OnVersionNegotiationPacket, void(const QuicVersionNegotiationPacket&)); MOCK_METHOD2(OnRevivedPacket, void(const QuicPacketHeader&, StringPiece payload)); }; TEST_F(QuicConnectionTest, OnPacketHeaderDebugVisitor) { QuicPacketHeader header; scoped_ptr<MockQuicConnectionDebugVisitor> debug_visitor(new StrictMock<MockQuicConnectionDebugVisitor>); connection_.set_debug_visitor(debug_visitor.get()); EXPECT_CALL(*debug_visitor, OnPacketHeader(Ref(header))).Times(1); connection_.OnPacketHeader(header); } TEST_F(QuicConnectionTest, Pacing) { ValueRestore<bool> old_flag(&FLAGS_enable_quic_pacing, true); TestConnection server(guid_, IPEndPoint(), helper_.get(), writer_.get(), true); TestConnection client(guid_, IPEndPoint(), helper_.get(), writer_.get(), false); EXPECT_TRUE(client.sent_packet_manager().using_pacing()); EXPECT_FALSE(server.sent_packet_manager().using_pacing()); } } // namespace } // namespace test } // namespace net