/* LzmaEnc.c -- LZMA Encoder 2010-04-16 : Igor Pavlov : Public domain */ #include <string.h> /* #define SHOW_STAT */ /* #define SHOW_STAT2 */ #if defined(SHOW_STAT) || defined(SHOW_STAT2) #include <stdio.h> #endif #include "LzmaEnc.h" #include "LzFind.h" #ifndef _7ZIP_ST #include "LzFindMt.h" #endif #ifdef SHOW_STAT static int ttt = 0; #endif #define kBlockSizeMax ((1 << LZMA_NUM_BLOCK_SIZE_BITS) - 1) #define kBlockSize (9 << 10) #define kUnpackBlockSize (1 << 18) #define kMatchArraySize (1 << 21) #define kMatchRecordMaxSize ((LZMA_MATCH_LEN_MAX * 2 + 3) * LZMA_MATCH_LEN_MAX) #define kNumMaxDirectBits (31) #define kNumTopBits 24 #define kTopValue ((UInt32)1 << kNumTopBits) #define kNumBitModelTotalBits 11 #define kBitModelTotal (1 << kNumBitModelTotalBits) #define kNumMoveBits 5 #define kProbInitValue (kBitModelTotal >> 1) #define kNumMoveReducingBits 4 #define kNumBitPriceShiftBits 4 #define kBitPrice (1 << kNumBitPriceShiftBits) void LzmaEncProps_Init(CLzmaEncProps *p) { p->level = 5; p->dictSize = p->mc = 0; p->lc = p->lp = p->pb = p->algo = p->fb = p->btMode = p->numHashBytes = p->numThreads = -1; p->writeEndMark = 0; } void LzmaEncProps_Normalize(CLzmaEncProps *p) { int level = p->level; if (level < 0) level = 5; p->level = level; if (p->dictSize == 0) p->dictSize = (level <= 5 ? (1 << (level * 2 + 14)) : (level == 6 ? (1 << 25) : (1 << 26))); if (p->lc < 0) p->lc = 3; if (p->lp < 0) p->lp = 0; if (p->pb < 0) p->pb = 2; if (p->algo < 0) p->algo = (level < 5 ? 0 : 1); if (p->fb < 0) p->fb = (level < 7 ? 32 : 64); if (p->btMode < 0) p->btMode = (p->algo == 0 ? 0 : 1); if (p->numHashBytes < 0) p->numHashBytes = 4; if (p->mc == 0) p->mc = (16 + (p->fb >> 1)) >> (p->btMode ? 0 : 1); if (p->numThreads < 0) p->numThreads = #ifndef _7ZIP_ST ((p->btMode && p->algo) ? 2 : 1); #else 1; #endif } UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2) { CLzmaEncProps props = *props2; LzmaEncProps_Normalize(&props); return props.dictSize; } /* #define LZMA_LOG_BSR */ /* Define it for Intel's CPU */ #ifdef LZMA_LOG_BSR #define kDicLogSizeMaxCompress 30 #define BSR2_RET(pos, res) { unsigned long i; _BitScanReverse(&i, (pos)); res = (i + i) + ((pos >> (i - 1)) & 1); } UInt32 GetPosSlot1(UInt32 pos) { UInt32 res; BSR2_RET(pos, res); return res; } #define GetPosSlot2(pos, res) { BSR2_RET(pos, res); } #define GetPosSlot(pos, res) { if (pos < 2) res = pos; else BSR2_RET(pos, res); } #else #define kNumLogBits (9 + (int)sizeof(size_t) / 2) #define kDicLogSizeMaxCompress ((kNumLogBits - 1) * 2 + 7) void LzmaEnc_FastPosInit(Byte *g_FastPos) { int c = 2, slotFast; g_FastPos[0] = 0; g_FastPos[1] = 1; for (slotFast = 2; slotFast < kNumLogBits * 2; slotFast++) { UInt32 k = (1 << ((slotFast >> 1) - 1)); UInt32 j; for (j = 0; j < k; j++, c++) g_FastPos[c] = (Byte)slotFast; } } #define BSR2_RET(pos, res) { UInt32 i = 6 + ((kNumLogBits - 1) & \ (0 - (((((UInt32)1 << (kNumLogBits + 6)) - 1) - pos) >> 31))); \ res = p->g_FastPos[pos >> i] + (i * 2); } /* #define BSR2_RET(pos, res) { res = (pos < (1 << (kNumLogBits + 6))) ? \ p->g_FastPos[pos >> 6] + 12 : \ p->g_FastPos[pos >> (6 + kNumLogBits - 1)] + (6 + (kNumLogBits - 1)) * 2; } */ #define GetPosSlot1(pos) p->g_FastPos[pos] #define GetPosSlot2(pos, res) { BSR2_RET(pos, res); } #define GetPosSlot(pos, res) { if (pos < kNumFullDistances) res = p->g_FastPos[pos]; else BSR2_RET(pos, res); } #endif #define LZMA_NUM_REPS 4 typedef unsigned CState; typedef struct { UInt32 price; CState state; int prev1IsChar; int prev2; UInt32 posPrev2; UInt32 backPrev2; UInt32 posPrev; UInt32 backPrev; UInt32 backs[LZMA_NUM_REPS]; } COptimal; #define kNumOpts (1 << 12) #define kNumLenToPosStates 4 #define kNumPosSlotBits 6 #define kDicLogSizeMin 0 #define kDicLogSizeMax 32 #define kDistTableSizeMax (kDicLogSizeMax * 2) #define kNumAlignBits 4 #define kAlignTableSize (1 << kNumAlignBits) #define kAlignMask (kAlignTableSize - 1) #define kStartPosModelIndex 4 #define kEndPosModelIndex 14 #define kNumPosModels (kEndPosModelIndex - kStartPosModelIndex) #define kNumFullDistances (1 << (kEndPosModelIndex >> 1)) #ifdef _LZMA_PROB32 #define CLzmaProb UInt32 #else #define CLzmaProb UInt16 #endif #define LZMA_PB_MAX 4 #define LZMA_LC_MAX 8 #define LZMA_LP_MAX 4 #define LZMA_NUM_PB_STATES_MAX (1 << LZMA_PB_MAX) #define kLenNumLowBits 3 #define kLenNumLowSymbols (1 << kLenNumLowBits) #define kLenNumMidBits 3 #define kLenNumMidSymbols (1 << kLenNumMidBits) #define kLenNumHighBits 8 #define kLenNumHighSymbols (1 << kLenNumHighBits) #define kLenNumSymbolsTotal (kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols) #define LZMA_MATCH_LEN_MIN 2 #define LZMA_MATCH_LEN_MAX (LZMA_MATCH_LEN_MIN + kLenNumSymbolsTotal - 1) #define kNumStates 12 typedef struct { CLzmaProb choice; CLzmaProb choice2; CLzmaProb low[LZMA_NUM_PB_STATES_MAX << kLenNumLowBits]; CLzmaProb mid[LZMA_NUM_PB_STATES_MAX << kLenNumMidBits]; CLzmaProb high[kLenNumHighSymbols]; } CLenEnc; typedef struct { CLenEnc p; UInt32 prices[LZMA_NUM_PB_STATES_MAX][kLenNumSymbolsTotal]; UInt32 tableSize; UInt32 counters[LZMA_NUM_PB_STATES_MAX]; } CLenPriceEnc; typedef struct { UInt32 range; Byte cache; UInt64 low; UInt64 cacheSize; Byte *buf; Byte *bufLim; Byte *bufBase; ISeqOutStream *outStream; UInt64 processed; SRes res; } CRangeEnc; typedef struct { CLzmaProb *litProbs; CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX]; CLzmaProb isRep[kNumStates]; CLzmaProb isRepG0[kNumStates]; CLzmaProb isRepG1[kNumStates]; CLzmaProb isRepG2[kNumStates]; CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX]; CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits]; CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex]; CLzmaProb posAlignEncoder[1 << kNumAlignBits]; CLenPriceEnc lenEnc; CLenPriceEnc repLenEnc; UInt32 reps[LZMA_NUM_REPS]; UInt32 state; } CSaveState; typedef struct { IMatchFinder matchFinder; void *matchFinderObj; #ifndef _7ZIP_ST Bool mtMode; CMatchFinderMt matchFinderMt; #endif CMatchFinder matchFinderBase; #ifndef _7ZIP_ST Byte pad[128]; #endif UInt32 optimumEndIndex; UInt32 optimumCurrentIndex; UInt32 longestMatchLength; UInt32 numPairs; UInt32 numAvail; COptimal opt[kNumOpts]; #ifndef LZMA_LOG_BSR Byte g_FastPos[1 << kNumLogBits]; #endif UInt32 ProbPrices[kBitModelTotal >> kNumMoveReducingBits]; UInt32 matches[LZMA_MATCH_LEN_MAX * 2 + 2 + 1]; UInt32 numFastBytes; UInt32 additionalOffset; UInt32 reps[LZMA_NUM_REPS]; UInt32 state; UInt32 posSlotPrices[kNumLenToPosStates][kDistTableSizeMax]; UInt32 distancesPrices[kNumLenToPosStates][kNumFullDistances]; UInt32 alignPrices[kAlignTableSize]; UInt32 alignPriceCount; UInt32 distTableSize; unsigned lc, lp, pb; unsigned lpMask, pbMask; CLzmaProb *litProbs; CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX]; CLzmaProb isRep[kNumStates]; CLzmaProb isRepG0[kNumStates]; CLzmaProb isRepG1[kNumStates]; CLzmaProb isRepG2[kNumStates]; CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX]; CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits]; CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex]; CLzmaProb posAlignEncoder[1 << kNumAlignBits]; CLenPriceEnc lenEnc; CLenPriceEnc repLenEnc; unsigned lclp; Bool fastMode; CRangeEnc rc; Bool writeEndMark; UInt64 nowPos64; UInt32 matchPriceCount; Bool finished; Bool multiThread; SRes result; UInt32 dictSize; UInt32 matchFinderCycles; int needInit; CSaveState saveState; } CLzmaEnc; void LzmaEnc_SaveState(CLzmaEncHandle pp) { CLzmaEnc *p = (CLzmaEnc *)pp; CSaveState *dest = &p->saveState; int i; dest->lenEnc = p->lenEnc; dest->repLenEnc = p->repLenEnc; dest->state = p->state; for (i = 0; i < kNumStates; i++) { memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i])); memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i])); } for (i = 0; i < kNumLenToPosStates; i++) memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i])); memcpy(dest->isRep, p->isRep, sizeof(p->isRep)); memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0)); memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1)); memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2)); memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders)); memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder)); memcpy(dest->reps, p->reps, sizeof(p->reps)); memcpy(dest->litProbs, p->litProbs, (0x300 << p->lclp) * sizeof(CLzmaProb)); } void LzmaEnc_RestoreState(CLzmaEncHandle pp) { CLzmaEnc *dest = (CLzmaEnc *)pp; const CSaveState *p = &dest->saveState; int i; dest->lenEnc = p->lenEnc; dest->repLenEnc = p->repLenEnc; dest->state = p->state; for (i = 0; i < kNumStates; i++) { memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i])); memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i])); } for (i = 0; i < kNumLenToPosStates; i++) memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i])); memcpy(dest->isRep, p->isRep, sizeof(p->isRep)); memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0)); memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1)); memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2)); memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders)); memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder)); memcpy(dest->reps, p->reps, sizeof(p->reps)); memcpy(dest->litProbs, p->litProbs, (0x300 << dest->lclp) * sizeof(CLzmaProb)); } SRes LzmaEnc_SetProps(CLzmaEncHandle pp, const CLzmaEncProps *props2) { CLzmaEnc *p = (CLzmaEnc *)pp; CLzmaEncProps props = *props2; LzmaEncProps_Normalize(&props); if (props.lc > LZMA_LC_MAX || props.lp > LZMA_LP_MAX || props.pb > LZMA_PB_MAX || props.dictSize > ((UInt32)1 << kDicLogSizeMaxCompress) || props.dictSize > ((UInt32)1 << 30)) return SZ_ERROR_PARAM; p->dictSize = props.dictSize; p->matchFinderCycles = props.mc; { unsigned fb = props.fb; if (fb < 5) fb = 5; if (fb > LZMA_MATCH_LEN_MAX) fb = LZMA_MATCH_LEN_MAX; p->numFastBytes = fb; } p->lc = props.lc; p->lp = props.lp; p->pb = props.pb; p->fastMode = (props.algo == 0); p->matchFinderBase.btMode = props.btMode; { UInt32 numHashBytes = 4; if (props.btMode) { if (props.numHashBytes < 2) numHashBytes = 2; else if (props.numHashBytes < 4) numHashBytes = props.numHashBytes; } p->matchFinderBase.numHashBytes = numHashBytes; } p->matchFinderBase.cutValue = props.mc; p->writeEndMark = props.writeEndMark; #ifndef _7ZIP_ST /* if (newMultiThread != _multiThread) { ReleaseMatchFinder(); _multiThread = newMultiThread; } */ p->multiThread = (props.numThreads > 1); #endif return SZ_OK; } static const int kLiteralNextStates[kNumStates] = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 4, 5}; static const int kMatchNextStates[kNumStates] = {7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10}; static const int kRepNextStates[kNumStates] = {8, 8, 8, 8, 8, 8, 8, 11, 11, 11, 11, 11}; static const int kShortRepNextStates[kNumStates]= {9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11}; #define IsCharState(s) ((s) < 7) #define GetLenToPosState(len) (((len) < kNumLenToPosStates + 1) ? (len) - 2 : kNumLenToPosStates - 1) #define kInfinityPrice (1 << 30) static void RangeEnc_Construct(CRangeEnc *p) { p->outStream = 0; p->bufBase = 0; } #define RangeEnc_GetProcessed(p) ((p)->processed + ((p)->buf - (p)->bufBase) + (p)->cacheSize) #define RC_BUF_SIZE (1 << 16) static int RangeEnc_Alloc(CRangeEnc *p, ISzAlloc *alloc) { if (p->bufBase == 0) { p->bufBase = (Byte *)alloc->Alloc(alloc, RC_BUF_SIZE); if (p->bufBase == 0) return 0; p->bufLim = p->bufBase + RC_BUF_SIZE; } return 1; } static void RangeEnc_Free(CRangeEnc *p, ISzAlloc *alloc) { alloc->Free(alloc, p->bufBase); p->bufBase = 0; } static void RangeEnc_Init(CRangeEnc *p) { /* Stream.Init(); */ p->low = 0; p->range = 0xFFFFFFFF; p->cacheSize = 1; p->cache = 0; p->buf = p->bufBase; p->processed = 0; p->res = SZ_OK; } static void RangeEnc_FlushStream(CRangeEnc *p) { size_t num; if (p->res != SZ_OK) return; num = p->buf - p->bufBase; if (num != p->outStream->Write(p->outStream, p->bufBase, num)) p->res = SZ_ERROR_WRITE; p->processed += num; p->buf = p->bufBase; } static void MY_FAST_CALL RangeEnc_ShiftLow(CRangeEnc *p) { if ((UInt32)p->low < (UInt32)0xFF000000 || (int)(p->low >> 32) != 0) { Byte temp = p->cache; do { Byte *buf = p->buf; *buf++ = (Byte)(temp + (Byte)(p->low >> 32)); p->buf = buf; if (buf == p->bufLim) RangeEnc_FlushStream(p); temp = 0xFF; } while (--p->cacheSize != 0); p->cache = (Byte)((UInt32)p->low >> 24); } p->cacheSize++; p->low = (UInt32)p->low << 8; } static void RangeEnc_FlushData(CRangeEnc *p) { int i; for (i = 0; i < 5; i++) RangeEnc_ShiftLow(p); } static void RangeEnc_EncodeDirectBits(CRangeEnc *p, UInt32 value, int numBits) { do { p->range >>= 1; p->low += p->range & (0 - ((value >> --numBits) & 1)); if (p->range < kTopValue) { p->range <<= 8; RangeEnc_ShiftLow(p); } } while (numBits != 0); } static void RangeEnc_EncodeBit(CRangeEnc *p, CLzmaProb *prob, UInt32 symbol) { UInt32 ttt = *prob; UInt32 newBound = (p->range >> kNumBitModelTotalBits) * ttt; if (symbol == 0) { p->range = newBound; ttt += (kBitModelTotal - ttt) >> kNumMoveBits; } else { p->low += newBound; p->range -= newBound; ttt -= ttt >> kNumMoveBits; } *prob = (CLzmaProb)ttt; if (p->range < kTopValue) { p->range <<= 8; RangeEnc_ShiftLow(p); } } static void LitEnc_Encode(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol) { symbol |= 0x100; do { RangeEnc_EncodeBit(p, probs + (symbol >> 8), (symbol >> 7) & 1); symbol <<= 1; } while (symbol < 0x10000); } static void LitEnc_EncodeMatched(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol, UInt32 matchByte) { UInt32 offs = 0x100; symbol |= 0x100; do { matchByte <<= 1; RangeEnc_EncodeBit(p, probs + (offs + (matchByte & offs) + (symbol >> 8)), (symbol >> 7) & 1); symbol <<= 1; offs &= ~(matchByte ^ symbol); } while (symbol < 0x10000); } void LzmaEnc_InitPriceTables(UInt32 *ProbPrices) { UInt32 i; for (i = (1 << kNumMoveReducingBits) / 2; i < kBitModelTotal; i += (1 << kNumMoveReducingBits)) { const int kCyclesBits = kNumBitPriceShiftBits; UInt32 w = i; UInt32 bitCount = 0; int j; for (j = 0; j < kCyclesBits; j++) { w = w * w; bitCount <<= 1; while (w >= ((UInt32)1 << 16)) { w >>= 1; bitCount++; } } ProbPrices[i >> kNumMoveReducingBits] = ((kNumBitModelTotalBits << kCyclesBits) - 15 - bitCount); } } #define GET_PRICE(prob, symbol) \ p->ProbPrices[((prob) ^ (((-(int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits]; #define GET_PRICEa(prob, symbol) \ ProbPrices[((prob) ^ ((-((int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits]; #define GET_PRICE_0(prob) p->ProbPrices[(prob) >> kNumMoveReducingBits] #define GET_PRICE_1(prob) p->ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits] #define GET_PRICE_0a(prob) ProbPrices[(prob) >> kNumMoveReducingBits] #define GET_PRICE_1a(prob) ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits] static UInt32 LitEnc_GetPrice(const CLzmaProb *probs, UInt32 symbol, UInt32 *ProbPrices) { UInt32 price = 0; symbol |= 0x100; do { price += GET_PRICEa(probs[symbol >> 8], (symbol >> 7) & 1); symbol <<= 1; } while (symbol < 0x10000); return price; } static UInt32 LitEnc_GetPriceMatched(const CLzmaProb *probs, UInt32 symbol, UInt32 matchByte, UInt32 *ProbPrices) { UInt32 price = 0; UInt32 offs = 0x100; symbol |= 0x100; do { matchByte <<= 1; price += GET_PRICEa(probs[offs + (matchByte & offs) + (symbol >> 8)], (symbol >> 7) & 1); symbol <<= 1; offs &= ~(matchByte ^ symbol); } while (symbol < 0x10000); return price; } static void RcTree_Encode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol) { UInt32 m = 1; int i; for (i = numBitLevels; i != 0;) { UInt32 bit; i--; bit = (symbol >> i) & 1; RangeEnc_EncodeBit(rc, probs + m, bit); m = (m << 1) | bit; } } static void RcTree_ReverseEncode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol) { UInt32 m = 1; int i; for (i = 0; i < numBitLevels; i++) { UInt32 bit = symbol & 1; RangeEnc_EncodeBit(rc, probs + m, bit); m = (m << 1) | bit; symbol >>= 1; } } static UInt32 RcTree_GetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices) { UInt32 price = 0; symbol |= (1 << numBitLevels); while (symbol != 1) { price += GET_PRICEa(probs[symbol >> 1], symbol & 1); symbol >>= 1; } return price; } static UInt32 RcTree_ReverseGetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices) { UInt32 price = 0; UInt32 m = 1; int i; for (i = numBitLevels; i != 0; i--) { UInt32 bit = symbol & 1; symbol >>= 1; price += GET_PRICEa(probs[m], bit); m = (m << 1) | bit; } return price; } static void LenEnc_Init(CLenEnc *p) { unsigned i; p->choice = p->choice2 = kProbInitValue; for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumLowBits); i++) p->low[i] = kProbInitValue; for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumMidBits); i++) p->mid[i] = kProbInitValue; for (i = 0; i < kLenNumHighSymbols; i++) p->high[i] = kProbInitValue; } static void LenEnc_Encode(CLenEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState) { if (symbol < kLenNumLowSymbols) { RangeEnc_EncodeBit(rc, &p->choice, 0); RcTree_Encode(rc, p->low + (posState << kLenNumLowBits), kLenNumLowBits, symbol); } else { RangeEnc_EncodeBit(rc, &p->choice, 1); if (symbol < kLenNumLowSymbols + kLenNumMidSymbols) { RangeEnc_EncodeBit(rc, &p->choice2, 0); RcTree_Encode(rc, p->mid + (posState << kLenNumMidBits), kLenNumMidBits, symbol - kLenNumLowSymbols); } else { RangeEnc_EncodeBit(rc, &p->choice2, 1); RcTree_Encode(rc, p->high, kLenNumHighBits, symbol - kLenNumLowSymbols - kLenNumMidSymbols); } } } static void LenEnc_SetPrices(CLenEnc *p, UInt32 posState, UInt32 numSymbols, UInt32 *prices, UInt32 *ProbPrices) { UInt32 a0 = GET_PRICE_0a(p->choice); UInt32 a1 = GET_PRICE_1a(p->choice); UInt32 b0 = a1 + GET_PRICE_0a(p->choice2); UInt32 b1 = a1 + GET_PRICE_1a(p->choice2); UInt32 i = 0; for (i = 0; i < kLenNumLowSymbols; i++) { if (i >= numSymbols) return; prices[i] = a0 + RcTree_GetPrice(p->low + (posState << kLenNumLowBits), kLenNumLowBits, i, ProbPrices); } for (; i < kLenNumLowSymbols + kLenNumMidSymbols; i++) { if (i >= numSymbols) return; prices[i] = b0 + RcTree_GetPrice(p->mid + (posState << kLenNumMidBits), kLenNumMidBits, i - kLenNumLowSymbols, ProbPrices); } for (; i < numSymbols; i++) prices[i] = b1 + RcTree_GetPrice(p->high, kLenNumHighBits, i - kLenNumLowSymbols - kLenNumMidSymbols, ProbPrices); } static void MY_FAST_CALL LenPriceEnc_UpdateTable(CLenPriceEnc *p, UInt32 posState, UInt32 *ProbPrices) { LenEnc_SetPrices(&p->p, posState, p->tableSize, p->prices[posState], ProbPrices); p->counters[posState] = p->tableSize; } static void LenPriceEnc_UpdateTables(CLenPriceEnc *p, UInt32 numPosStates, UInt32 *ProbPrices) { UInt32 posState; for (posState = 0; posState < numPosStates; posState++) LenPriceEnc_UpdateTable(p, posState, ProbPrices); } static void LenEnc_Encode2(CLenPriceEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState, Bool updatePrice, UInt32 *ProbPrices) { LenEnc_Encode(&p->p, rc, symbol, posState); if (updatePrice) if (--p->counters[posState] == 0) LenPriceEnc_UpdateTable(p, posState, ProbPrices); } static void MovePos(CLzmaEnc *p, UInt32 num) { #ifdef SHOW_STAT ttt += num; printf("\n MovePos %d", num); #endif if (num != 0) { p->additionalOffset += num; p->matchFinder.Skip(p->matchFinderObj, num); } } static UInt32 ReadMatchDistances(CLzmaEnc *p, UInt32 *numDistancePairsRes) { UInt32 lenRes = 0, numPairs; p->numAvail = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj); numPairs = p->matchFinder.GetMatches(p->matchFinderObj, p->matches); #ifdef SHOW_STAT printf("\n i = %d numPairs = %d ", ttt, numPairs / 2); ttt++; { UInt32 i; for (i = 0; i < numPairs; i += 2) printf("%2d %6d | ", p->matches[i], p->matches[i + 1]); } #endif if (numPairs > 0) { lenRes = p->matches[numPairs - 2]; if (lenRes == p->numFastBytes) { const Byte *pby = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1; UInt32 distance = p->matches[numPairs - 1] + 1; UInt32 numAvail = p->numAvail; if (numAvail > LZMA_MATCH_LEN_MAX) numAvail = LZMA_MATCH_LEN_MAX; { const Byte *pby2 = pby - distance; for (; lenRes < numAvail && pby[lenRes] == pby2[lenRes]; lenRes++); } } } p->additionalOffset++; *numDistancePairsRes = numPairs; return lenRes; } #define MakeAsChar(p) (p)->backPrev = (UInt32)(-1); (p)->prev1IsChar = False; #define MakeAsShortRep(p) (p)->backPrev = 0; (p)->prev1IsChar = False; #define IsShortRep(p) ((p)->backPrev == 0) static UInt32 GetRepLen1Price(CLzmaEnc *p, UInt32 state, UInt32 posState) { return GET_PRICE_0(p->isRepG0[state]) + GET_PRICE_0(p->isRep0Long[state][posState]); } static UInt32 GetPureRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 state, UInt32 posState) { UInt32 price; if (repIndex == 0) { price = GET_PRICE_0(p->isRepG0[state]); price += GET_PRICE_1(p->isRep0Long[state][posState]); } else { price = GET_PRICE_1(p->isRepG0[state]); if (repIndex == 1) price += GET_PRICE_0(p->isRepG1[state]); else { price += GET_PRICE_1(p->isRepG1[state]); price += GET_PRICE(p->isRepG2[state], repIndex - 2); } } return price; } static UInt32 GetRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 len, UInt32 state, UInt32 posState) { return p->repLenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN] + GetPureRepPrice(p, repIndex, state, posState); } static UInt32 Backward(CLzmaEnc *p, UInt32 *backRes, UInt32 cur) { UInt32 posMem = p->opt[cur].posPrev; UInt32 backMem = p->opt[cur].backPrev; p->optimumEndIndex = cur; do { if (p->opt[cur].prev1IsChar) { MakeAsChar(&p->opt[posMem]) p->opt[posMem].posPrev = posMem - 1; if (p->opt[cur].prev2) { p->opt[posMem - 1].prev1IsChar = False; p->opt[posMem - 1].posPrev = p->opt[cur].posPrev2; p->opt[posMem - 1].backPrev = p->opt[cur].backPrev2; } } { UInt32 posPrev = posMem; UInt32 backCur = backMem; backMem = p->opt[posPrev].backPrev; posMem = p->opt[posPrev].posPrev; p->opt[posPrev].backPrev = backCur; p->opt[posPrev].posPrev = cur; cur = posPrev; } } while (cur != 0); *backRes = p->opt[0].backPrev; p->optimumCurrentIndex = p->opt[0].posPrev; return p->optimumCurrentIndex; } #define LIT_PROBS(pos, prevByte) (p->litProbs + ((((pos) & p->lpMask) << p->lc) + ((prevByte) >> (8 - p->lc))) * 0x300) static UInt32 GetOptimum(CLzmaEnc *p, UInt32 position, UInt32 *backRes) { UInt32 numAvail, mainLen, numPairs, repMaxIndex, i, posState, lenEnd, len, cur; UInt32 matchPrice, repMatchPrice, normalMatchPrice; UInt32 reps[LZMA_NUM_REPS], repLens[LZMA_NUM_REPS]; UInt32 *matches; const Byte *data; Byte curByte, matchByte; if (p->optimumEndIndex != p->optimumCurrentIndex) { const COptimal *opt = &p->opt[p->optimumCurrentIndex]; UInt32 lenRes = opt->posPrev - p->optimumCurrentIndex; *backRes = opt->backPrev; p->optimumCurrentIndex = opt->posPrev; return lenRes; } p->optimumCurrentIndex = p->optimumEndIndex = 0; if (p->additionalOffset == 0) mainLen = ReadMatchDistances(p, &numPairs); else { mainLen = p->longestMatchLength; numPairs = p->numPairs; } numAvail = p->numAvail; if (numAvail < 2) { *backRes = (UInt32)(-1); return 1; } if (numAvail > LZMA_MATCH_LEN_MAX) numAvail = LZMA_MATCH_LEN_MAX; data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1; repMaxIndex = 0; for (i = 0; i < LZMA_NUM_REPS; i++) { UInt32 lenTest; const Byte *data2; reps[i] = p->reps[i]; data2 = data - (reps[i] + 1); if (data[0] != data2[0] || data[1] != data2[1]) { repLens[i] = 0; continue; } for (lenTest = 2; lenTest < numAvail && data[lenTest] == data2[lenTest]; lenTest++); repLens[i] = lenTest; if (lenTest > repLens[repMaxIndex]) repMaxIndex = i; } if (repLens[repMaxIndex] >= p->numFastBytes) { UInt32 lenRes; *backRes = repMaxIndex; lenRes = repLens[repMaxIndex]; MovePos(p, lenRes - 1); return lenRes; } matches = p->matches; if (mainLen >= p->numFastBytes) { *backRes = matches[numPairs - 1] + LZMA_NUM_REPS; MovePos(p, mainLen - 1); return mainLen; } curByte = *data; matchByte = *(data - (reps[0] + 1)); if (mainLen < 2 && curByte != matchByte && repLens[repMaxIndex] < 2) { *backRes = (UInt32)-1; return 1; } p->opt[0].state = (CState)p->state; posState = (position & p->pbMask); { const CLzmaProb *probs = LIT_PROBS(position, *(data - 1)); p->opt[1].price = GET_PRICE_0(p->isMatch[p->state][posState]) + (!IsCharState(p->state) ? LitEnc_GetPriceMatched(probs, curByte, matchByte, p->ProbPrices) : LitEnc_GetPrice(probs, curByte, p->ProbPrices)); } MakeAsChar(&p->opt[1]); matchPrice = GET_PRICE_1(p->isMatch[p->state][posState]); repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[p->state]); if (matchByte == curByte) { UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, p->state, posState); if (shortRepPrice < p->opt[1].price) { p->opt[1].price = shortRepPrice; MakeAsShortRep(&p->opt[1]); } } lenEnd = ((mainLen >= repLens[repMaxIndex]) ? mainLen : repLens[repMaxIndex]); if (lenEnd < 2) { *backRes = p->opt[1].backPrev; return 1; } p->opt[1].posPrev = 0; for (i = 0; i < LZMA_NUM_REPS; i++) p->opt[0].backs[i] = reps[i]; len = lenEnd; do p->opt[len--].price = kInfinityPrice; while (len >= 2); for (i = 0; i < LZMA_NUM_REPS; i++) { UInt32 repLen = repLens[i]; UInt32 price; if (repLen < 2) continue; price = repMatchPrice + GetPureRepPrice(p, i, p->state, posState); do { UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][repLen - 2]; COptimal *opt = &p->opt[repLen]; if (curAndLenPrice < opt->price) { opt->price = curAndLenPrice; opt->posPrev = 0; opt->backPrev = i; opt->prev1IsChar = False; } } while (--repLen >= 2); } normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[p->state]); len = ((repLens[0] >= 2) ? repLens[0] + 1 : 2); if (len <= mainLen) { UInt32 offs = 0; while (len > matches[offs]) offs += 2; for (; ; len++) { COptimal *opt; UInt32 distance = matches[offs + 1]; UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN]; UInt32 lenToPosState = GetLenToPosState(len); if (distance < kNumFullDistances) curAndLenPrice += p->distancesPrices[lenToPosState][distance]; else { UInt32 slot; GetPosSlot2(distance, slot); curAndLenPrice += p->alignPrices[distance & kAlignMask] + p->posSlotPrices[lenToPosState][slot]; } opt = &p->opt[len]; if (curAndLenPrice < opt->price) { opt->price = curAndLenPrice; opt->posPrev = 0; opt->backPrev = distance + LZMA_NUM_REPS; opt->prev1IsChar = False; } if (len == matches[offs]) { offs += 2; if (offs == numPairs) break; } } } cur = 0; #ifdef SHOW_STAT2 if (position >= 0) { unsigned i; printf("\n pos = %4X", position); for (i = cur; i <= lenEnd; i++) printf("\nprice[%4X] = %d", position - cur + i, p->opt[i].price); } #endif for (;;) { UInt32 numAvailFull, newLen, numPairs, posPrev, state, posState, startLen; UInt32 curPrice, curAnd1Price, matchPrice, repMatchPrice; Bool nextIsChar; Byte curByte, matchByte; const Byte *data; COptimal *curOpt; COptimal *nextOpt; cur++; if (cur == lenEnd) return Backward(p, backRes, cur); newLen = ReadMatchDistances(p, &numPairs); if (newLen >= p->numFastBytes) { p->numPairs = numPairs; p->longestMatchLength = newLen; return Backward(p, backRes, cur); } position++; curOpt = &p->opt[cur]; posPrev = curOpt->posPrev; if (curOpt->prev1IsChar) { posPrev--; if (curOpt->prev2) { state = p->opt[curOpt->posPrev2].state; if (curOpt->backPrev2 < LZMA_NUM_REPS) state = kRepNextStates[state]; else state = kMatchNextStates[state]; } else state = p->opt[posPrev].state; state = kLiteralNextStates[state]; } else state = p->opt[posPrev].state; if (posPrev == cur - 1) { if (IsShortRep(curOpt)) state = kShortRepNextStates[state]; else state = kLiteralNextStates[state]; } else { UInt32 pos; const COptimal *prevOpt; if (curOpt->prev1IsChar && curOpt->prev2) { posPrev = curOpt->posPrev2; pos = curOpt->backPrev2; state = kRepNextStates[state]; } else { pos = curOpt->backPrev; if (pos < LZMA_NUM_REPS) state = kRepNextStates[state]; else state = kMatchNextStates[state]; } prevOpt = &p->opt[posPrev]; if (pos < LZMA_NUM_REPS) { UInt32 i; reps[0] = prevOpt->backs[pos]; for (i = 1; i <= pos; i++) reps[i] = prevOpt->backs[i - 1]; for (; i < LZMA_NUM_REPS; i++) reps[i] = prevOpt->backs[i]; } else { UInt32 i; reps[0] = (pos - LZMA_NUM_REPS); for (i = 1; i < LZMA_NUM_REPS; i++) reps[i] = prevOpt->backs[i - 1]; } } curOpt->state = (CState)state; curOpt->backs[0] = reps[0]; curOpt->backs[1] = reps[1]; curOpt->backs[2] = reps[2]; curOpt->backs[3] = reps[3]; curPrice = curOpt->price; nextIsChar = False; data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1; curByte = *data; matchByte = *(data - (reps[0] + 1)); posState = (position & p->pbMask); curAnd1Price = curPrice + GET_PRICE_0(p->isMatch[state][posState]); { const CLzmaProb *probs = LIT_PROBS(position, *(data - 1)); curAnd1Price += (!IsCharState(state) ? LitEnc_GetPriceMatched(probs, curByte, matchByte, p->ProbPrices) : LitEnc_GetPrice(probs, curByte, p->ProbPrices)); } nextOpt = &p->opt[cur + 1]; if (curAnd1Price < nextOpt->price) { nextOpt->price = curAnd1Price; nextOpt->posPrev = cur; MakeAsChar(nextOpt); nextIsChar = True; } matchPrice = curPrice + GET_PRICE_1(p->isMatch[state][posState]); repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[state]); if (matchByte == curByte && !(nextOpt->posPrev < cur && nextOpt->backPrev == 0)) { UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, state, posState); if (shortRepPrice <= nextOpt->price) { nextOpt->price = shortRepPrice; nextOpt->posPrev = cur; MakeAsShortRep(nextOpt); nextIsChar = True; } } numAvailFull = p->numAvail; { UInt32 temp = kNumOpts - 1 - cur; if (temp < numAvailFull) numAvailFull = temp; } if (numAvailFull < 2) continue; numAvail = (numAvailFull <= p->numFastBytes ? numAvailFull : p->numFastBytes); if (!nextIsChar && matchByte != curByte) /* speed optimization */ { /* try Literal + rep0 */ UInt32 temp; UInt32 lenTest2; const Byte *data2 = data - (reps[0] + 1); UInt32 limit = p->numFastBytes + 1; if (limit > numAvailFull) limit = numAvailFull; for (temp = 1; temp < limit && data[temp] == data2[temp]; temp++); lenTest2 = temp - 1; if (lenTest2 >= 2) { UInt32 state2 = kLiteralNextStates[state]; UInt32 posStateNext = (position + 1) & p->pbMask; UInt32 nextRepMatchPrice = curAnd1Price + GET_PRICE_1(p->isMatch[state2][posStateNext]) + GET_PRICE_1(p->isRep[state2]); /* for (; lenTest2 >= 2; lenTest2--) */ { UInt32 curAndLenPrice; COptimal *opt; UInt32 offset = cur + 1 + lenTest2; while (lenEnd < offset) p->opt[++lenEnd].price = kInfinityPrice; curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext); opt = &p->opt[offset]; if (curAndLenPrice < opt->price) { opt->price = curAndLenPrice; opt->posPrev = cur + 1; opt->backPrev = 0; opt->prev1IsChar = True; opt->prev2 = False; } } } } startLen = 2; /* speed optimization */ { UInt32 repIndex; for (repIndex = 0; repIndex < LZMA_NUM_REPS; repIndex++) { UInt32 lenTest; UInt32 lenTestTemp; UInt32 price; const Byte *data2 = data - (reps[repIndex] + 1); if (data[0] != data2[0] || data[1] != data2[1]) continue; for (lenTest = 2; lenTest < numAvail && data[lenTest] == data2[lenTest]; lenTest++); while (lenEnd < cur + lenTest) p->opt[++lenEnd].price = kInfinityPrice; lenTestTemp = lenTest; price = repMatchPrice + GetPureRepPrice(p, repIndex, state, posState); do { UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][lenTest - 2]; COptimal *opt = &p->opt[cur + lenTest]; if (curAndLenPrice < opt->price) { opt->price = curAndLenPrice; opt->posPrev = cur; opt->backPrev = repIndex; opt->prev1IsChar = False; } } while (--lenTest >= 2); lenTest = lenTestTemp; if (repIndex == 0) startLen = lenTest + 1; /* if (_maxMode) */ { UInt32 lenTest2 = lenTest + 1; UInt32 limit = lenTest2 + p->numFastBytes; UInt32 nextRepMatchPrice; if (limit > numAvailFull) limit = numAvailFull; for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++); lenTest2 -= lenTest + 1; if (lenTest2 >= 2) { UInt32 state2 = kRepNextStates[state]; UInt32 posStateNext = (position + lenTest) & p->pbMask; UInt32 curAndLenCharPrice = price + p->repLenEnc.prices[posState][lenTest - 2] + GET_PRICE_0(p->isMatch[state2][posStateNext]) + LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]), data[lenTest], data2[lenTest], p->ProbPrices); state2 = kLiteralNextStates[state2]; posStateNext = (position + lenTest + 1) & p->pbMask; nextRepMatchPrice = curAndLenCharPrice + GET_PRICE_1(p->isMatch[state2][posStateNext]) + GET_PRICE_1(p->isRep[state2]); /* for (; lenTest2 >= 2; lenTest2--) */ { UInt32 curAndLenPrice; COptimal *opt; UInt32 offset = cur + lenTest + 1 + lenTest2; while (lenEnd < offset) p->opt[++lenEnd].price = kInfinityPrice; curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext); opt = &p->opt[offset]; if (curAndLenPrice < opt->price) { opt->price = curAndLenPrice; opt->posPrev = cur + lenTest + 1; opt->backPrev = 0; opt->prev1IsChar = True; opt->prev2 = True; opt->posPrev2 = cur; opt->backPrev2 = repIndex; } } } } } } /* for (UInt32 lenTest = 2; lenTest <= newLen; lenTest++) */ if (newLen > numAvail) { newLen = numAvail; for (numPairs = 0; newLen > matches[numPairs]; numPairs += 2); matches[numPairs] = newLen; numPairs += 2; } if (newLen >= startLen) { UInt32 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[state]); UInt32 offs, curBack, posSlot; UInt32 lenTest; while (lenEnd < cur + newLen) p->opt[++lenEnd].price = kInfinityPrice; offs = 0; while (startLen > matches[offs]) offs += 2; curBack = matches[offs + 1]; GetPosSlot2(curBack, posSlot); for (lenTest = /*2*/ startLen; ; lenTest++) { UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][lenTest - LZMA_MATCH_LEN_MIN]; UInt32 lenToPosState = GetLenToPosState(lenTest); COptimal *opt; if (curBack < kNumFullDistances) curAndLenPrice += p->distancesPrices[lenToPosState][curBack]; else curAndLenPrice += p->posSlotPrices[lenToPosState][posSlot] + p->alignPrices[curBack & kAlignMask]; opt = &p->opt[cur + lenTest]; if (curAndLenPrice < opt->price) { opt->price = curAndLenPrice; opt->posPrev = cur; opt->backPrev = curBack + LZMA_NUM_REPS; opt->prev1IsChar = False; } if (/*_maxMode && */lenTest == matches[offs]) { /* Try Match + Literal + Rep0 */ const Byte *data2 = data - (curBack + 1); UInt32 lenTest2 = lenTest + 1; UInt32 limit = lenTest2 + p->numFastBytes; UInt32 nextRepMatchPrice; if (limit > numAvailFull) limit = numAvailFull; for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++); lenTest2 -= lenTest + 1; if (lenTest2 >= 2) { UInt32 state2 = kMatchNextStates[state]; UInt32 posStateNext = (position + lenTest) & p->pbMask; UInt32 curAndLenCharPrice = curAndLenPrice + GET_PRICE_0(p->isMatch[state2][posStateNext]) + LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]), data[lenTest], data2[lenTest], p->ProbPrices); state2 = kLiteralNextStates[state2]; posStateNext = (posStateNext + 1) & p->pbMask; nextRepMatchPrice = curAndLenCharPrice + GET_PRICE_1(p->isMatch[state2][posStateNext]) + GET_PRICE_1(p->isRep[state2]); /* for (; lenTest2 >= 2; lenTest2--) */ { UInt32 offset = cur + lenTest + 1 + lenTest2; UInt32 curAndLenPrice; COptimal *opt; while (lenEnd < offset) p->opt[++lenEnd].price = kInfinityPrice; curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext); opt = &p->opt[offset]; if (curAndLenPrice < opt->price) { opt->price = curAndLenPrice; opt->posPrev = cur + lenTest + 1; opt->backPrev = 0; opt->prev1IsChar = True; opt->prev2 = True; opt->posPrev2 = cur; opt->backPrev2 = curBack + LZMA_NUM_REPS; } } } offs += 2; if (offs == numPairs) break; curBack = matches[offs + 1]; if (curBack >= kNumFullDistances) GetPosSlot2(curBack, posSlot); } } } } } #define ChangePair(smallDist, bigDist) (((bigDist) >> 7) > (smallDist)) static UInt32 GetOptimumFast(CLzmaEnc *p, UInt32 *backRes) { UInt32 numAvail, mainLen, mainDist, numPairs, repIndex, repLen, i; const Byte *data; const UInt32 *matches; if (p->additionalOffset == 0) mainLen = ReadMatchDistances(p, &numPairs); else { mainLen = p->longestMatchLength; numPairs = p->numPairs; } numAvail = p->numAvail; *backRes = (UInt32)-1; if (numAvail < 2) return 1; if (numAvail > LZMA_MATCH_LEN_MAX) numAvail = LZMA_MATCH_LEN_MAX; data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1; repLen = repIndex = 0; for (i = 0; i < LZMA_NUM_REPS; i++) { UInt32 len; const Byte *data2 = data - (p->reps[i] + 1); if (data[0] != data2[0] || data[1] != data2[1]) continue; for (len = 2; len < numAvail && data[len] == data2[len]; len++); if (len >= p->numFastBytes) { *backRes = i; MovePos(p, len - 1); return len; } if (len > repLen) { repIndex = i; repLen = len; } } matches = p->matches; if (mainLen >= p->numFastBytes) { *backRes = matches[numPairs - 1] + LZMA_NUM_REPS; MovePos(p, mainLen - 1); return mainLen; } mainDist = 0; /* for GCC */ if (mainLen >= 2) { mainDist = matches[numPairs - 1]; while (numPairs > 2 && mainLen == matches[numPairs - 4] + 1) { if (!ChangePair(matches[numPairs - 3], mainDist)) break; numPairs -= 2; mainLen = matches[numPairs - 2]; mainDist = matches[numPairs - 1]; } if (mainLen == 2 && mainDist >= 0x80) mainLen = 1; } if (repLen >= 2 && ( (repLen + 1 >= mainLen) || (repLen + 2 >= mainLen && mainDist >= (1 << 9)) || (repLen + 3 >= mainLen && mainDist >= (1 << 15)))) { *backRes = repIndex; MovePos(p, repLen - 1); return repLen; } if (mainLen < 2 || numAvail <= 2) return 1; p->longestMatchLength = ReadMatchDistances(p, &p->numPairs); if (p->longestMatchLength >= 2) { UInt32 newDistance = matches[p->numPairs - 1]; if ((p->longestMatchLength >= mainLen && newDistance < mainDist) || (p->longestMatchLength == mainLen + 1 && !ChangePair(mainDist, newDistance)) || (p->longestMatchLength > mainLen + 1) || (p->longestMatchLength + 1 >= mainLen && mainLen >= 3 && ChangePair(newDistance, mainDist))) return 1; } data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1; for (i = 0; i < LZMA_NUM_REPS; i++) { UInt32 len, limit; const Byte *data2 = data - (p->reps[i] + 1); if (data[0] != data2[0] || data[1] != data2[1]) continue; limit = mainLen - 1; for (len = 2; len < limit && data[len] == data2[len]; len++); if (len >= limit) return 1; } *backRes = mainDist + LZMA_NUM_REPS; MovePos(p, mainLen - 2); return mainLen; } static void WriteEndMarker(CLzmaEnc *p, UInt32 posState) { UInt32 len; RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1); RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0); p->state = kMatchNextStates[p->state]; len = LZMA_MATCH_LEN_MIN; LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices); RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, (1 << kNumPosSlotBits) - 1); RangeEnc_EncodeDirectBits(&p->rc, (((UInt32)1 << 30) - 1) >> kNumAlignBits, 30 - kNumAlignBits); RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, kAlignMask); } static SRes CheckErrors(CLzmaEnc *p) { if (p->result != SZ_OK) return p->result; if (p->rc.res != SZ_OK) p->result = SZ_ERROR_WRITE; if (p->matchFinderBase.result != SZ_OK) p->result = SZ_ERROR_READ; if (p->result != SZ_OK) p->finished = True; return p->result; } static SRes Flush(CLzmaEnc *p, UInt32 nowPos) { /* ReleaseMFStream(); */ p->finished = True; if (p->writeEndMark) WriteEndMarker(p, nowPos & p->pbMask); RangeEnc_FlushData(&p->rc); RangeEnc_FlushStream(&p->rc); return CheckErrors(p); } static void FillAlignPrices(CLzmaEnc *p) { UInt32 i; for (i = 0; i < kAlignTableSize; i++) p->alignPrices[i] = RcTree_ReverseGetPrice(p->posAlignEncoder, kNumAlignBits, i, p->ProbPrices); p->alignPriceCount = 0; } static void FillDistancesPrices(CLzmaEnc *p) { UInt32 tempPrices[kNumFullDistances]; UInt32 i, lenToPosState; for (i = kStartPosModelIndex; i < kNumFullDistances; i++) { UInt32 posSlot = GetPosSlot1(i); UInt32 footerBits = ((posSlot >> 1) - 1); UInt32 base = ((2 | (posSlot & 1)) << footerBits); tempPrices[i] = RcTree_ReverseGetPrice(p->posEncoders + base - posSlot - 1, footerBits, i - base, p->ProbPrices); } for (lenToPosState = 0; lenToPosState < kNumLenToPosStates; lenToPosState++) { UInt32 posSlot; const CLzmaProb *encoder = p->posSlotEncoder[lenToPosState]; UInt32 *posSlotPrices = p->posSlotPrices[lenToPosState]; for (posSlot = 0; posSlot < p->distTableSize; posSlot++) posSlotPrices[posSlot] = RcTree_GetPrice(encoder, kNumPosSlotBits, posSlot, p->ProbPrices); for (posSlot = kEndPosModelIndex; posSlot < p->distTableSize; posSlot++) posSlotPrices[posSlot] += ((((posSlot >> 1) - 1) - kNumAlignBits) << kNumBitPriceShiftBits); { UInt32 *distancesPrices = p->distancesPrices[lenToPosState]; UInt32 i; for (i = 0; i < kStartPosModelIndex; i++) distancesPrices[i] = posSlotPrices[i]; for (; i < kNumFullDistances; i++) distancesPrices[i] = posSlotPrices[GetPosSlot1(i)] + tempPrices[i]; } } p->matchPriceCount = 0; } void LzmaEnc_Construct(CLzmaEnc *p) { RangeEnc_Construct(&p->rc); MatchFinder_Construct(&p->matchFinderBase); #ifndef _7ZIP_ST MatchFinderMt_Construct(&p->matchFinderMt); p->matchFinderMt.MatchFinder = &p->matchFinderBase; #endif { CLzmaEncProps props; LzmaEncProps_Init(&props); LzmaEnc_SetProps(p, &props); } #ifndef LZMA_LOG_BSR LzmaEnc_FastPosInit(p->g_FastPos); #endif LzmaEnc_InitPriceTables(p->ProbPrices); p->litProbs = 0; p->saveState.litProbs = 0; } CLzmaEncHandle LzmaEnc_Create(ISzAlloc *alloc) { void *p; p = alloc->Alloc(alloc, sizeof(CLzmaEnc)); if (p != 0) LzmaEnc_Construct((CLzmaEnc *)p); return p; } void LzmaEnc_FreeLits(CLzmaEnc *p, ISzAlloc *alloc) { alloc->Free(alloc, p->litProbs); alloc->Free(alloc, p->saveState.litProbs); p->litProbs = 0; p->saveState.litProbs = 0; } void LzmaEnc_Destruct(CLzmaEnc *p, ISzAlloc *alloc, ISzAlloc *allocBig) { #ifndef _7ZIP_ST MatchFinderMt_Destruct(&p->matchFinderMt, allocBig); #endif MatchFinder_Free(&p->matchFinderBase, allocBig); LzmaEnc_FreeLits(p, alloc); RangeEnc_Free(&p->rc, alloc); } void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAlloc *alloc, ISzAlloc *allocBig) { LzmaEnc_Destruct((CLzmaEnc *)p, alloc, allocBig); alloc->Free(alloc, p); } static SRes LzmaEnc_CodeOneBlock(CLzmaEnc *p, Bool useLimits, UInt32 maxPackSize, UInt32 maxUnpackSize) { UInt32 nowPos32, startPos32; if (p->needInit) { p->matchFinder.Init(p->matchFinderObj); p->needInit = 0; } if (p->finished) return p->result; RINOK(CheckErrors(p)); nowPos32 = (UInt32)p->nowPos64; startPos32 = nowPos32; if (p->nowPos64 == 0) { UInt32 numPairs; Byte curByte; if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0) return Flush(p, nowPos32); ReadMatchDistances(p, &numPairs); RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][0], 0); p->state = kLiteralNextStates[p->state]; curByte = p->matchFinder.GetIndexByte(p->matchFinderObj, 0 - p->additionalOffset); LitEnc_Encode(&p->rc, p->litProbs, curByte); p->additionalOffset--; nowPos32++; } if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) != 0) for (;;) { UInt32 pos, len, posState; if (p->fastMode) len = GetOptimumFast(p, &pos); else len = GetOptimum(p, nowPos32, &pos); #ifdef SHOW_STAT2 printf("\n pos = %4X, len = %d pos = %d", nowPos32, len, pos); #endif posState = nowPos32 & p->pbMask; if (len == 1 && pos == (UInt32)-1) { Byte curByte; CLzmaProb *probs; const Byte *data; RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 0); data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset; curByte = *data; probs = LIT_PROBS(nowPos32, *(data - 1)); if (IsCharState(p->state)) LitEnc_Encode(&p->rc, probs, curByte); else LitEnc_EncodeMatched(&p->rc, probs, curByte, *(data - p->reps[0] - 1)); p->state = kLiteralNextStates[p->state]; } else { RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1); if (pos < LZMA_NUM_REPS) { RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 1); if (pos == 0) { RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 0); RangeEnc_EncodeBit(&p->rc, &p->isRep0Long[p->state][posState], ((len == 1) ? 0 : 1)); } else { UInt32 distance = p->reps[pos]; RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 1); if (pos == 1) RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 0); else { RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 1); RangeEnc_EncodeBit(&p->rc, &p->isRepG2[p->state], pos - 2); if (pos == 3) p->reps[3] = p->reps[2]; p->reps[2] = p->reps[1]; } p->reps[1] = p->reps[0]; p->reps[0] = distance; } if (len == 1) p->state = kShortRepNextStates[p->state]; else { LenEnc_Encode2(&p->repLenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices); p->state = kRepNextStates[p->state]; } } else { UInt32 posSlot; RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0); p->state = kMatchNextStates[p->state]; LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices); pos -= LZMA_NUM_REPS; GetPosSlot(pos, posSlot); RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, posSlot); if (posSlot >= kStartPosModelIndex) { UInt32 footerBits = ((posSlot >> 1) - 1); UInt32 base = ((2 | (posSlot & 1)) << footerBits); UInt32 posReduced = pos - base; if (posSlot < kEndPosModelIndex) RcTree_ReverseEncode(&p->rc, p->posEncoders + base - posSlot - 1, footerBits, posReduced); else { RangeEnc_EncodeDirectBits(&p->rc, posReduced >> kNumAlignBits, footerBits - kNumAlignBits); RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, posReduced & kAlignMask); p->alignPriceCount++; } } p->reps[3] = p->reps[2]; p->reps[2] = p->reps[1]; p->reps[1] = p->reps[0]; p->reps[0] = pos; p->matchPriceCount++; } } p->additionalOffset -= len; nowPos32 += len; if (p->additionalOffset == 0) { UInt32 processed; if (!p->fastMode) { if (p->matchPriceCount >= (1 << 7)) FillDistancesPrices(p); if (p->alignPriceCount >= kAlignTableSize) FillAlignPrices(p); } if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0) break; processed = nowPos32 - startPos32; if (useLimits) { if (processed + kNumOpts + 300 >= maxUnpackSize || RangeEnc_GetProcessed(&p->rc) + kNumOpts * 2 >= maxPackSize) break; } else if (processed >= (1 << 15)) { p->nowPos64 += nowPos32 - startPos32; return CheckErrors(p); } } } p->nowPos64 += nowPos32 - startPos32; return Flush(p, nowPos32); } #define kBigHashDicLimit ((UInt32)1 << 24) static SRes LzmaEnc_Alloc(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig) { UInt32 beforeSize = kNumOpts; Bool btMode; if (!RangeEnc_Alloc(&p->rc, alloc)) return SZ_ERROR_MEM; btMode = (p->matchFinderBase.btMode != 0); #ifndef _7ZIP_ST p->mtMode = (p->multiThread && !p->fastMode && btMode); #endif { unsigned lclp = p->lc + p->lp; if (p->litProbs == 0 || p->saveState.litProbs == 0 || p->lclp != lclp) { LzmaEnc_FreeLits(p, alloc); p->litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb)); p->saveState.litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb)); if (p->litProbs == 0 || p->saveState.litProbs == 0) { LzmaEnc_FreeLits(p, alloc); return SZ_ERROR_MEM; } p->lclp = lclp; } } p->matchFinderBase.bigHash = (p->dictSize > kBigHashDicLimit); if (beforeSize + p->dictSize < keepWindowSize) beforeSize = keepWindowSize - p->dictSize; #ifndef _7ZIP_ST if (p->mtMode) { RINOK(MatchFinderMt_Create(&p->matchFinderMt, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig)); p->matchFinderObj = &p->matchFinderMt; MatchFinderMt_CreateVTable(&p->matchFinderMt, &p->matchFinder); } else #endif { if (!MatchFinder_Create(&p->matchFinderBase, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig)) return SZ_ERROR_MEM; p->matchFinderObj = &p->matchFinderBase; MatchFinder_CreateVTable(&p->matchFinderBase, &p->matchFinder); } return SZ_OK; } void LzmaEnc_Init(CLzmaEnc *p) { UInt32 i; p->state = 0; for (i = 0 ; i < LZMA_NUM_REPS; i++) p->reps[i] = 0; RangeEnc_Init(&p->rc); for (i = 0; i < kNumStates; i++) { UInt32 j; for (j = 0; j < LZMA_NUM_PB_STATES_MAX; j++) { p->isMatch[i][j] = kProbInitValue; p->isRep0Long[i][j] = kProbInitValue; } p->isRep[i] = kProbInitValue; p->isRepG0[i] = kProbInitValue; p->isRepG1[i] = kProbInitValue; p->isRepG2[i] = kProbInitValue; } { UInt32 num = 0x300 << (p->lp + p->lc); for (i = 0; i < num; i++) p->litProbs[i] = kProbInitValue; } { for (i = 0; i < kNumLenToPosStates; i++) { CLzmaProb *probs = p->posSlotEncoder[i]; UInt32 j; for (j = 0; j < (1 << kNumPosSlotBits); j++) probs[j] = kProbInitValue; } } { for (i = 0; i < kNumFullDistances - kEndPosModelIndex; i++) p->posEncoders[i] = kProbInitValue; } LenEnc_Init(&p->lenEnc.p); LenEnc_Init(&p->repLenEnc.p); for (i = 0; i < (1 << kNumAlignBits); i++) p->posAlignEncoder[i] = kProbInitValue; p->optimumEndIndex = 0; p->optimumCurrentIndex = 0; p->additionalOffset = 0; p->pbMask = (1 << p->pb) - 1; p->lpMask = (1 << p->lp) - 1; } void LzmaEnc_InitPrices(CLzmaEnc *p) { if (!p->fastMode) { FillDistancesPrices(p); FillAlignPrices(p); } p->lenEnc.tableSize = p->repLenEnc.tableSize = p->numFastBytes + 1 - LZMA_MATCH_LEN_MIN; LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, p->ProbPrices); LenPriceEnc_UpdateTables(&p->repLenEnc, 1 << p->pb, p->ProbPrices); } static SRes LzmaEnc_AllocAndInit(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig) { UInt32 i; for (i = 0; i < (UInt32)kDicLogSizeMaxCompress; i++) if (p->dictSize <= ((UInt32)1 << i)) break; p->distTableSize = i * 2; p->finished = False; p->result = SZ_OK; RINOK(LzmaEnc_Alloc(p, keepWindowSize, alloc, allocBig)); LzmaEnc_Init(p); LzmaEnc_InitPrices(p); p->nowPos64 = 0; return SZ_OK; } static SRes LzmaEnc_Prepare(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream, ISzAlloc *alloc, ISzAlloc *allocBig) { CLzmaEnc *p = (CLzmaEnc *)pp; p->matchFinderBase.stream = inStream; p->needInit = 1; p->rc.outStream = outStream; return LzmaEnc_AllocAndInit(p, 0, alloc, allocBig); } SRes LzmaEnc_PrepareForLzma2(CLzmaEncHandle pp, ISeqInStream *inStream, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig) { CLzmaEnc *p = (CLzmaEnc *)pp; p->matchFinderBase.stream = inStream; p->needInit = 1; return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig); } static void LzmaEnc_SetInputBuf(CLzmaEnc *p, const Byte *src, SizeT srcLen) { p->matchFinderBase.directInput = 1; p->matchFinderBase.bufferBase = (Byte *)src; p->matchFinderBase.directInputRem = srcLen; } SRes LzmaEnc_MemPrepare(CLzmaEncHandle pp, const Byte *src, SizeT srcLen, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig) { CLzmaEnc *p = (CLzmaEnc *)pp; LzmaEnc_SetInputBuf(p, src, srcLen); p->needInit = 1; return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig); } void LzmaEnc_Finish(CLzmaEncHandle pp) { #ifndef _7ZIP_ST CLzmaEnc *p = (CLzmaEnc *)pp; if (p->mtMode) MatchFinderMt_ReleaseStream(&p->matchFinderMt); #else pp = pp; #endif } typedef struct { ISeqOutStream funcTable; Byte *data; SizeT rem; Bool overflow; } CSeqOutStreamBuf; static size_t MyWrite(void *pp, const void *data, size_t size) { CSeqOutStreamBuf *p = (CSeqOutStreamBuf *)pp; if (p->rem < size) { size = p->rem; p->overflow = True; } memcpy(p->data, data, size); p->rem -= size; p->data += size; return size; } UInt32 LzmaEnc_GetNumAvailableBytes(CLzmaEncHandle pp) { const CLzmaEnc *p = (CLzmaEnc *)pp; return p->matchFinder.GetNumAvailableBytes(p->matchFinderObj); } const Byte *LzmaEnc_GetCurBuf(CLzmaEncHandle pp) { const CLzmaEnc *p = (CLzmaEnc *)pp; return p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset; } SRes LzmaEnc_CodeOneMemBlock(CLzmaEncHandle pp, Bool reInit, Byte *dest, size_t *destLen, UInt32 desiredPackSize, UInt32 *unpackSize) { CLzmaEnc *p = (CLzmaEnc *)pp; UInt64 nowPos64; SRes res; CSeqOutStreamBuf outStream; outStream.funcTable.Write = MyWrite; outStream.data = dest; outStream.rem = *destLen; outStream.overflow = False; p->writeEndMark = False; p->finished = False; p->result = SZ_OK; if (reInit) LzmaEnc_Init(p); LzmaEnc_InitPrices(p); nowPos64 = p->nowPos64; RangeEnc_Init(&p->rc); p->rc.outStream = &outStream.funcTable; res = LzmaEnc_CodeOneBlock(p, True, desiredPackSize, *unpackSize); *unpackSize = (UInt32)(p->nowPos64 - nowPos64); *destLen -= outStream.rem; if (outStream.overflow) return SZ_ERROR_OUTPUT_EOF; return res; } static SRes LzmaEnc_Encode2(CLzmaEnc *p, ICompressProgress *progress) { SRes res = SZ_OK; #ifndef _7ZIP_ST Byte allocaDummy[0x300]; int i = 0; for (i = 0; i < 16; i++) allocaDummy[i] = (Byte)i; #endif for (;;) { res = LzmaEnc_CodeOneBlock(p, False, 0, 0); if (res != SZ_OK || p->finished != 0) break; if (progress != 0) { res = progress->Progress(progress, p->nowPos64, RangeEnc_GetProcessed(&p->rc)); if (res != SZ_OK) { res = SZ_ERROR_PROGRESS; break; } } } LzmaEnc_Finish(p); return res; } SRes LzmaEnc_Encode(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream, ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig) { RINOK(LzmaEnc_Prepare(pp, outStream, inStream, alloc, allocBig)); return LzmaEnc_Encode2((CLzmaEnc *)pp, progress); } SRes LzmaEnc_WriteProperties(CLzmaEncHandle pp, Byte *props, SizeT *size) { CLzmaEnc *p = (CLzmaEnc *)pp; int i; UInt32 dictSize = p->dictSize; if (*size < LZMA_PROPS_SIZE) return SZ_ERROR_PARAM; *size = LZMA_PROPS_SIZE; props[0] = (Byte)((p->pb * 5 + p->lp) * 9 + p->lc); for (i = 11; i <= 30; i++) { if (dictSize <= ((UInt32)2 << i)) { dictSize = (2 << i); break; } if (dictSize <= ((UInt32)3 << i)) { dictSize = (3 << i); break; } } for (i = 0; i < 4; i++) props[1 + i] = (Byte)(dictSize >> (8 * i)); return SZ_OK; } SRes LzmaEnc_MemEncode(CLzmaEncHandle pp, Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen, int writeEndMark, ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig) { SRes res; CLzmaEnc *p = (CLzmaEnc *)pp; CSeqOutStreamBuf outStream; LzmaEnc_SetInputBuf(p, src, srcLen); outStream.funcTable.Write = MyWrite; outStream.data = dest; outStream.rem = *destLen; outStream.overflow = False; p->writeEndMark = writeEndMark; p->rc.outStream = &outStream.funcTable; res = LzmaEnc_MemPrepare(pp, src, srcLen, 0, alloc, allocBig); if (res == SZ_OK) res = LzmaEnc_Encode2(p, progress); *destLen -= outStream.rem; if (outStream.overflow) return SZ_ERROR_OUTPUT_EOF; return res; } SRes LzmaEncode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen, const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark, ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig) { CLzmaEnc *p = (CLzmaEnc *)LzmaEnc_Create(alloc); SRes res; if (p == 0) return SZ_ERROR_MEM; res = LzmaEnc_SetProps(p, props); if (res == SZ_OK) { res = LzmaEnc_WriteProperties(p, propsEncoded, propsSize); if (res == SZ_OK) res = LzmaEnc_MemEncode(p, dest, destLen, src, srcLen, writeEndMark, progress, alloc, allocBig); } LzmaEnc_Destroy(p, alloc, allocBig); return res; }