// RUN: %clang_cc1 -std=c++11 -fsyntax-only -verify %s template<typename S> struct A { typedef S B; template<typename T> using C = typename T::B; template<typename T> struct D { template<typename U> using E = typename A<U>::template C<A<T>>; template<typename U> using F = A<E<U>>; template<typename U> using G = C<F<U>>; G<T> g; }; typedef decltype(D<B>().g) H; D<H> h; template<typename T> using I = A<decltype(h.g)>; template<typename T> using J = typename A<decltype(h.g)>::template C<I<T>>; }; A<int> a; A<char>::D<double> b; template<typename T> T make(); namespace X { template<typename T> struct traits { typedef T thing; typedef decltype(val(make<thing>())) inner_ptr; template<typename U> using rebind_thing = typename thing::template rebind<U>; template<typename U> using rebind = traits<rebind_thing<U>>; inner_ptr &&alloc(); void free(inner_ptr&&); }; template<typename T> struct ptr_traits { typedef T *type; }; template<typename T> using ptr = typename ptr_traits<T>::type; template<typename T> struct thing { typedef T inner; typedef ptr<inner> inner_ptr; typedef traits<thing<inner>> traits_type; template<typename U> using rebind = thing<U>; thing(traits_type &traits) : traits(traits), val(traits.alloc()) {} ~thing() { traits.free(static_cast<inner_ptr&&>(val)); } traits_type &traits; inner_ptr val; friend inner_ptr val(const thing &t) { return t.val; } }; template<> struct ptr_traits<bool> { typedef bool &type; }; template<> bool &traits<thing<bool>>::alloc() { static bool b; return b; } template<> void traits<thing<bool>>::free(bool&) {} } typedef X::traits<X::thing<int>> itt; itt::thing::traits_type itr; itt::thing ith(itr); itt::rebind<bool> btr; itt::rebind_thing<bool> btt(btr); namespace PR11848 { template<typename T> using U = int; template<typename T, typename ...Ts> void f1(U<T> i, U<Ts> ...is) { // expected-note 2{{couldn't infer template argument 'T'}} return i + f1<Ts...>(is...); } // FIXME: This note is technically correct, but could be better. We // should really say that we couldn't infer template argument 'Ts'. template<typename ...Ts> void f2(U<Ts> ...is) { } // expected-note {{requires 0 arguments, but 1 was provided}} template<typename...> struct type_tuple {}; template<typename ...Ts> void f3(type_tuple<Ts...>, U<Ts> ...is) {} // expected-note {{requires 4 arguments, but 3 were provided}} void g() { f1(U<void>()); // expected-error {{no match}} f1(1, 2, 3, 4, 5); // expected-error {{no match}} f2(); // ok f2(1); // expected-error {{no match}} f3(type_tuple<>()); f3(type_tuple<void, void, void>(), 1, 2); // expected-error {{no match}} f3(type_tuple<void, void, void>(), 1, 2, 3); } template<typename ...Ts> struct S { S(U<Ts>...ts); }; template<typename T> struct Hidden1 { template<typename ...Ts> Hidden1(typename T::template U<Ts> ...ts); }; template<typename T, typename ...Ts> struct Hidden2 { Hidden2(typename T::template U<Ts> ...ts); }; struct Hide { template<typename T> using U = int; }; Hidden1<Hide> h1; Hidden2<Hide, double, char> h2(1, 2); } namespace Core22036 { struct X {}; void h(...); template<typename T> using Y = X; template<typename T, typename ...Ts> struct S { // An expression can contain an unexpanded pack without being type or // value dependent. This is true even if the expression's type is a pack // expansion type. void f1(Y<T> a) { h(g(a)); } // expected-error {{undeclared identifier 'g'}} void f2(Y<Ts>...as) { h(g(as)...); } // expected-error {{undeclared identifier 'g'}} void f3(Y<Ts>...as) { g(as...); } // ok void f4(Ts ...ts) { h(g(sizeof(ts))...); } // expected-error {{undeclared identifier 'g'}} // FIXME: We can reject this, since it has no valid instantiations because // 'g' never has any associated namespaces. void f5(Ts ...ts) { g(sizeof(ts)...); } // ok }; } namespace PR13243 { template<typename A> struct X {}; template<int I> struct C {}; template<int I> using Ci = C<I>; template<typename A, int I> void f(X<A>, Ci<I>) {} template void f(X<int>, C<0>); } namespace PR13136 { template <typename T, T... Numbers> struct NumberTuple { }; template <unsigned int... Numbers> using MyNumberTuple = NumberTuple<unsigned int, Numbers...>; template <typename U, unsigned int... Numbers> void foo(U&&, MyNumberTuple<Numbers...>); template <typename U, unsigned int... Numbers> void bar(U&&, NumberTuple<unsigned int, Numbers...>); int main() { foo(1, NumberTuple<unsigned int, 0, 1>()); bar(1, NumberTuple<unsigned int, 0, 1>()); return 0; } } namespace PR16646 { namespace test1 { template <typename T> struct DefaultValue { const T value=0;}; template <typename ... Args> struct tuple {}; template <typename ... Args> using Zero = tuple<DefaultValue<Args> ...>; template <typename ... Args> void f(const Zero<Args ...> &t); void f() { f(Zero<int,double,double>()); } } namespace test2 { template<int x> struct X {}; template <template<int x> class temp> struct DefaultValue { const temp<0> value; }; template <typename ... Args> struct tuple {}; template <template<int x> class... Args> using Zero = tuple<DefaultValue<Args> ...>; template <template<int x> class... Args> void f(const Zero<Args ...> &t); void f() { f(Zero<X,X,X>()); } } }