// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include <Eigen/LU> #include <algorithm> template<typename T> std::string type_name() { return "other"; } template<> std::string type_name<float>() { return "float"; } template<> std::string type_name<double>() { return "double"; } template<> std::string type_name<int>() { return "int"; } template<> std::string type_name<std::complex<float> >() { return "complex<float>"; } template<> std::string type_name<std::complex<double> >() { return "complex<double>"; } template<> std::string type_name<std::complex<int> >() { return "complex<int>"; } #define EIGEN_DEBUG_VAR(x) std::cerr << #x << " = " << x << std::endl; template<typename T> inline typename NumTraits<T>::Real epsilon() { return std::numeric_limits<typename NumTraits<T>::Real>::epsilon(); } template<typename MatrixType> void inverse_permutation_4x4() { typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; Vector4i indices(0,1,2,3); for(int i = 0; i < 24; ++i) { MatrixType m = MatrixType::Zero(); m(indices(0),0) = 1; m(indices(1),1) = 1; m(indices(2),2) = 1; m(indices(3),3) = 1; MatrixType inv = m.inverse(); double error = double( (m*inv-MatrixType::Identity()).norm() / epsilon<Scalar>() ); VERIFY(error == 0.0); std::next_permutation(indices.data(),indices.data()+4); } } template<typename MatrixType> void inverse_general_4x4(int repeat) { typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; double error_sum = 0., error_max = 0.; for(int i = 0; i < repeat; ++i) { MatrixType m; RealScalar absdet; do { m = MatrixType::Random(); absdet = ei_abs(m.determinant()); } while(absdet < 10 * epsilon<Scalar>()); MatrixType inv = m.inverse(); double error = double( (m*inv-MatrixType::Identity()).norm() * absdet / epsilon<Scalar>() ); error_sum += error; error_max = std::max(error_max, error); } std::cerr << "inverse_general_4x4, Scalar = " << type_name<Scalar>() << std::endl; double error_avg = error_sum / repeat; EIGEN_DEBUG_VAR(error_avg); EIGEN_DEBUG_VAR(error_max); VERIFY(error_avg < (NumTraits<Scalar>::IsComplex ? 8.0 : 1.25)); VERIFY(error_max < (NumTraits<Scalar>::IsComplex ? 64.0 : 20.0)); } void test_eigen2_prec_inverse_4x4() { CALL_SUBTEST_1((inverse_permutation_4x4<Matrix4f>())); CALL_SUBTEST_1(( inverse_general_4x4<Matrix4f>(200000 * g_repeat) )); CALL_SUBTEST_2((inverse_permutation_4x4<Matrix<double,4,4,RowMajor> >())); CALL_SUBTEST_2(( inverse_general_4x4<Matrix<double,4,4,RowMajor> >(200000 * g_repeat) )); CALL_SUBTEST_3((inverse_permutation_4x4<Matrix4cf>())); CALL_SUBTEST_3((inverse_general_4x4<Matrix4cf>(50000 * g_repeat))); }