// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" template<typename MatrixType> void triangular(const MatrixType& m) { typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; RealScalar largerEps = 10*test_precision<RealScalar>(); int rows = m.rows(); int cols = m.cols(); MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols), m4(rows, cols), r1(rows, cols), r2(rows, cols), mzero = MatrixType::Zero(rows, cols), mones = MatrixType::Ones(rows, cols), identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> ::Identity(rows, rows), square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> ::Random(rows, rows); VectorType v1 = VectorType::Random(rows), v2 = VectorType::Random(rows), vzero = VectorType::Zero(rows); MatrixType m1up = m1.template part<Eigen::UpperTriangular>(); MatrixType m2up = m2.template part<Eigen::UpperTriangular>(); if (rows*cols>1) { VERIFY(m1up.isUpperTriangular()); VERIFY(m2up.transpose().isLowerTriangular()); VERIFY(!m2.isLowerTriangular()); } // VERIFY_IS_APPROX(m1up.transpose() * m2, m1.upper().transpose().lower() * m2); // test overloaded operator+= r1.setZero(); r2.setZero(); r1.template part<Eigen::UpperTriangular>() += m1; r2 += m1up; VERIFY_IS_APPROX(r1,r2); // test overloaded operator= m1.setZero(); m1.template part<Eigen::UpperTriangular>() = (m2.transpose() * m2).lazy(); m3 = m2.transpose() * m2; VERIFY_IS_APPROX(m3.template part<Eigen::LowerTriangular>().transpose(), m1); // test overloaded operator= m1.setZero(); m1.template part<Eigen::LowerTriangular>() = (m2.transpose() * m2).lazy(); VERIFY_IS_APPROX(m3.template part<Eigen::LowerTriangular>(), m1); VERIFY_IS_APPROX(m3.template part<Diagonal>(), m3.diagonal().asDiagonal()); m1 = MatrixType::Random(rows, cols); for (int i=0; i<rows; ++i) while (ei_abs2(m1(i,i))<1e-3) m1(i,i) = ei_random<Scalar>(); Transpose<MatrixType> trm4(m4); // test back and forward subsitution m3 = m1.template part<Eigen::LowerTriangular>(); VERIFY(m3.template marked<Eigen::LowerTriangular>().solveTriangular(m3).cwise().abs().isIdentity(test_precision<RealScalar>())); VERIFY(m3.transpose().template marked<Eigen::UpperTriangular>() .solveTriangular(m3.transpose()).cwise().abs().isIdentity(test_precision<RealScalar>())); // check M * inv(L) using in place API m4 = m3; m3.transpose().template marked<Eigen::UpperTriangular>().solveTriangularInPlace(trm4); VERIFY(m4.cwise().abs().isIdentity(test_precision<RealScalar>())); m3 = m1.template part<Eigen::UpperTriangular>(); VERIFY(m3.template marked<Eigen::UpperTriangular>().solveTriangular(m3).cwise().abs().isIdentity(test_precision<RealScalar>())); VERIFY(m3.transpose().template marked<Eigen::LowerTriangular>() .solveTriangular(m3.transpose()).cwise().abs().isIdentity(test_precision<RealScalar>())); // check M * inv(U) using in place API m4 = m3; m3.transpose().template marked<Eigen::LowerTriangular>().solveTriangularInPlace(trm4); VERIFY(m4.cwise().abs().isIdentity(test_precision<RealScalar>())); m3 = m1.template part<Eigen::UpperTriangular>(); VERIFY(m2.isApprox(m3 * (m3.template marked<Eigen::UpperTriangular>().solveTriangular(m2)), largerEps)); m3 = m1.template part<Eigen::LowerTriangular>(); VERIFY(m2.isApprox(m3 * (m3.template marked<Eigen::LowerTriangular>().solveTriangular(m2)), largerEps)); VERIFY((m1.template part<Eigen::UpperTriangular>() * m2.template part<Eigen::UpperTriangular>()).isUpperTriangular()); // test swap m1.setOnes(); m2.setZero(); m2.template part<Eigen::UpperTriangular>().swap(m1); m3.setZero(); m3.template part<Eigen::UpperTriangular>().setOnes(); VERIFY_IS_APPROX(m2,m3); } void selfadjoint() { Matrix2i m; m << 1, 2, 3, 4; Matrix2i m1 = Matrix2i::Zero(); m1.part<SelfAdjoint>() = m; Matrix2i ref1; ref1 << 1, 2, 2, 4; VERIFY(m1 == ref1); Matrix2i m2 = Matrix2i::Zero(); m2.part<SelfAdjoint>() = m.part<UpperTriangular>(); Matrix2i ref2; ref2 << 1, 2, 2, 4; VERIFY(m2 == ref2); Matrix2i m3 = Matrix2i::Zero(); m3.part<SelfAdjoint>() = m.part<LowerTriangular>(); Matrix2i ref3; ref3 << 1, 0, 0, 4; VERIFY(m3 == ref3); // example inspired from bug 159 int array[] = {1, 2, 3, 4}; Matrix2i::Map(array).part<SelfAdjoint>() = Matrix2i::Random().part<LowerTriangular>(); std::cout << "hello\n" << array << std::endl; } void test_eigen2_triangular() { CALL_SUBTEST_8( selfadjoint() ); for(int i = 0; i < g_repeat ; i++) { CALL_SUBTEST_1( triangular(Matrix<float, 1, 1>()) ); CALL_SUBTEST_2( triangular(Matrix<float, 2, 2>()) ); CALL_SUBTEST_3( triangular(Matrix3d()) ); CALL_SUBTEST_4( triangular(MatrixXcf(4, 4)) ); CALL_SUBTEST_5( triangular(Matrix<std::complex<float>,8, 8>()) ); CALL_SUBTEST_6( triangular(MatrixXd(17,17)) ); CALL_SUBTEST_7( triangular(Matrix<float,Dynamic,Dynamic,RowMajor>(5, 5)) ); } }