// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#define EIGEN_DEBUG_ASSIGN
#include "main.h"
#include <typeinfo>

std::string demangle_traversal(int t)
{
  if(t==DefaultTraversal) return "DefaultTraversal";
  if(t==LinearTraversal) return "LinearTraversal";
  if(t==InnerVectorizedTraversal) return "InnerVectorizedTraversal";
  if(t==LinearVectorizedTraversal) return "LinearVectorizedTraversal";
  if(t==SliceVectorizedTraversal) return "SliceVectorizedTraversal";
  return "?";
}
std::string demangle_unrolling(int t)
{
  if(t==NoUnrolling) return "NoUnrolling";
  if(t==InnerUnrolling) return "InnerUnrolling";
  if(t==CompleteUnrolling) return "CompleteUnrolling";
  return "?";
}

template<typename Dst, typename Src>
bool test_assign(const Dst&, const Src&, int traversal, int unrolling)
{
  internal::assign_traits<Dst,Src>::debug();
  bool res = internal::assign_traits<Dst,Src>::Traversal==traversal
          && internal::assign_traits<Dst,Src>::Unrolling==unrolling;
  if(!res)
  {
    std::cerr << " Expected Traversal == " << demangle_traversal(traversal)
              << " got " << demangle_traversal(internal::assign_traits<Dst,Src>::Traversal) << "\n";
    std::cerr << " Expected Unrolling == " << demangle_unrolling(unrolling)
              << " got " << demangle_unrolling(internal::assign_traits<Dst,Src>::Unrolling) << "\n";
  }
  return res;
}

template<typename Dst, typename Src>
bool test_assign(int traversal, int unrolling)
{
  internal::assign_traits<Dst,Src>::debug();
  bool res = internal::assign_traits<Dst,Src>::Traversal==traversal
          && internal::assign_traits<Dst,Src>::Unrolling==unrolling;
  if(!res)
  {
    std::cerr << " Expected Traversal == " << demangle_traversal(traversal)
              << " got " << demangle_traversal(internal::assign_traits<Dst,Src>::Traversal) << "\n";
    std::cerr << " Expected Unrolling == " << demangle_unrolling(unrolling)
              << " got " << demangle_unrolling(internal::assign_traits<Dst,Src>::Unrolling) << "\n";
  }
  return res;
}

template<typename Xpr>
bool test_redux(const Xpr&, int traversal, int unrolling)
{
  typedef internal::redux_traits<internal::scalar_sum_op<typename Xpr::Scalar>,Xpr> traits;
  bool res = traits::Traversal==traversal && traits::Unrolling==unrolling;
  if(!res)
  {
    std::cerr << " Expected Traversal == " << demangle_traversal(traversal)
              << " got " << demangle_traversal(traits::Traversal) << "\n";
    std::cerr << " Expected Unrolling == " << demangle_unrolling(unrolling)
              << " got " << demangle_unrolling(traits::Unrolling) << "\n";
  }
  return res;
}

template<typename Scalar, bool Enable = internal::packet_traits<Scalar>::Vectorizable> struct vectorization_logic
{
  enum {
    PacketSize = internal::packet_traits<Scalar>::size
  };
  static void run()
  {
    
    typedef Matrix<Scalar,PacketSize,1> Vector1;
    typedef Matrix<Scalar,Dynamic,1> VectorX;
    typedef Matrix<Scalar,Dynamic,Dynamic> MatrixXX;
    typedef Matrix<Scalar,PacketSize,PacketSize> Matrix11;
    typedef Matrix<Scalar,2*PacketSize,2*PacketSize> Matrix22;
    typedef Matrix<Scalar,(Matrix11::Flags&RowMajorBit)?16:4*PacketSize,(Matrix11::Flags&RowMajorBit)?4*PacketSize:16> Matrix44;
    typedef Matrix<Scalar,(Matrix11::Flags&RowMajorBit)?16:4*PacketSize,(Matrix11::Flags&RowMajorBit)?4*PacketSize:16,DontAlign|EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION> Matrix44u;
    typedef Matrix<Scalar,4*PacketSize,16,ColMajor> Matrix44c;
    typedef Matrix<Scalar,4*PacketSize,16,RowMajor> Matrix44r;

    typedef Matrix<Scalar,
        (PacketSize==8 ? 4 : PacketSize==4 ? 2 : PacketSize==2 ? 1 : /*PacketSize==1 ?*/ 1),
        (PacketSize==8 ? 2 : PacketSize==4 ? 2 : PacketSize==2 ? 2 : /*PacketSize==1 ?*/ 1)
      > Matrix1;

    typedef Matrix<Scalar,
        (PacketSize==8 ? 4 : PacketSize==4 ? 2 : PacketSize==2 ? 1 : /*PacketSize==1 ?*/ 1),
        (PacketSize==8 ? 2 : PacketSize==4 ? 2 : PacketSize==2 ? 2 : /*PacketSize==1 ?*/ 1),
      DontAlign|((Matrix1::Flags&RowMajorBit)?RowMajor:ColMajor)> Matrix1u;

    // this type is made such that it can only be vectorized when viewed as a linear 1D vector
    typedef Matrix<Scalar,
        (PacketSize==8 ? 4 : PacketSize==4 ? 6 : PacketSize==2 ? ((Matrix11::Flags&RowMajorBit)?2:3) : /*PacketSize==1 ?*/ 1),
        (PacketSize==8 ? 6 : PacketSize==4 ? 2 : PacketSize==2 ? ((Matrix11::Flags&RowMajorBit)?3:2) : /*PacketSize==1 ?*/ 3)
      > Matrix3;
    
    #if !EIGEN_GCC_AND_ARCH_DOESNT_WANT_STACK_ALIGNMENT
    VERIFY(test_assign(Vector1(),Vector1(),
      InnerVectorizedTraversal,CompleteUnrolling));
    VERIFY(test_assign(Vector1(),Vector1()+Vector1(),
      InnerVectorizedTraversal,CompleteUnrolling));
    VERIFY(test_assign(Vector1(),Vector1().cwiseProduct(Vector1()),
      InnerVectorizedTraversal,CompleteUnrolling));
    VERIFY(test_assign(Vector1(),Vector1().template cast<Scalar>(),
      InnerVectorizedTraversal,CompleteUnrolling));


    VERIFY(test_assign(Vector1(),Vector1(),
      InnerVectorizedTraversal,CompleteUnrolling));
    VERIFY(test_assign(Vector1(),Vector1()+Vector1(),
      InnerVectorizedTraversal,CompleteUnrolling));
    VERIFY(test_assign(Vector1(),Vector1().cwiseProduct(Vector1()),
      InnerVectorizedTraversal,CompleteUnrolling));

    VERIFY(test_assign(Matrix44(),Matrix44()+Matrix44(),
      InnerVectorizedTraversal,InnerUnrolling));

    VERIFY(test_assign(Matrix44u(),Matrix44()+Matrix44(),
      LinearTraversal,NoUnrolling));

    VERIFY(test_assign(Matrix1u(),Matrix1()+Matrix1(),
      LinearTraversal,CompleteUnrolling));

    VERIFY(test_assign(Matrix44c().col(1),Matrix44c().col(2)+Matrix44c().col(3),
      InnerVectorizedTraversal,CompleteUnrolling));
    
    VERIFY(test_assign(Matrix44r().row(2),Matrix44r().row(1)+Matrix44r().row(1),
      InnerVectorizedTraversal,CompleteUnrolling));
        
    if(PacketSize>1)
    {
      typedef Matrix<Scalar,3,3,ColMajor> Matrix33c;
      VERIFY(test_assign(Matrix33c().row(2),Matrix33c().row(1)+Matrix33c().row(1),
        LinearTraversal,CompleteUnrolling));
      VERIFY(test_assign(Matrix33c().col(0),Matrix33c().col(1)+Matrix33c().col(1),
        LinearTraversal,CompleteUnrolling));
      
      VERIFY(test_assign(Matrix3(),Matrix3().cwiseQuotient(Matrix3()),
        LinearVectorizedTraversal,CompleteUnrolling));

      VERIFY(test_assign(Matrix<Scalar,17,17>(),Matrix<Scalar,17,17>()+Matrix<Scalar,17,17>(),
        LinearTraversal,NoUnrolling));

      VERIFY(test_assign(Matrix11(),Matrix<Scalar,17,17>().template block<PacketSize,PacketSize>(2,3)+Matrix<Scalar,17,17>().template block<PacketSize,PacketSize>(10,4),
      DefaultTraversal,CompleteUnrolling));
    }
    
    VERIFY(test_redux(Matrix3(),
      LinearVectorizedTraversal,CompleteUnrolling));

    VERIFY(test_redux(Matrix44(),
      LinearVectorizedTraversal,NoUnrolling));

    VERIFY(test_redux(Matrix44().template block<(Matrix1::Flags&RowMajorBit)?4:PacketSize,(Matrix1::Flags&RowMajorBit)?PacketSize:4>(1,2),
      DefaultTraversal,CompleteUnrolling));

    VERIFY(test_redux(Matrix44c().template block<2*PacketSize,1>(1,2),
      LinearVectorizedTraversal,CompleteUnrolling));

    VERIFY(test_redux(Matrix44r().template block<1,2*PacketSize>(2,1),
      LinearVectorizedTraversal,CompleteUnrolling));
    
    VERIFY((test_assign<
            Map<Matrix22, Aligned, OuterStride<3*PacketSize> >,
            Matrix22
            >(InnerVectorizedTraversal,CompleteUnrolling)));

    VERIFY((test_assign<
            Map<Matrix22, Aligned, InnerStride<3*PacketSize> >,
            Matrix22
            >(DefaultTraversal,CompleteUnrolling)));

    VERIFY((test_assign(Matrix11(), Matrix11()*Matrix11(), InnerVectorizedTraversal, CompleteUnrolling)));
    #endif

    VERIFY(test_assign(MatrixXX(10,10),MatrixXX(20,20).block(10,10,2,3),
      SliceVectorizedTraversal,NoUnrolling));

    VERIFY(test_redux(VectorX(10),
      LinearVectorizedTraversal,NoUnrolling));

    
  }
};

template<typename Scalar> struct vectorization_logic<Scalar,false>
{
  static void run() {}
};

void test_vectorization_logic()
{

#ifdef EIGEN_VECTORIZE

  CALL_SUBTEST( vectorization_logic<float>::run() );
  CALL_SUBTEST( vectorization_logic<double>::run() );
  CALL_SUBTEST( vectorization_logic<std::complex<float> >::run() );
  CALL_SUBTEST( vectorization_logic<std::complex<double> >::run() );
  
  if(internal::packet_traits<float>::Vectorizable)
  {
    VERIFY(test_assign(Matrix<float,3,3>(),Matrix<float,3,3>()+Matrix<float,3,3>(),
      LinearTraversal,CompleteUnrolling));
      
    VERIFY(test_redux(Matrix<float,5,2>(),
      DefaultTraversal,CompleteUnrolling));
  }
  
  if(internal::packet_traits<double>::Vectorizable)
  {
    VERIFY(test_assign(Matrix<double,3,3>(),Matrix<double,3,3>()+Matrix<double,3,3>(),
      LinearTraversal,CompleteUnrolling));
    
    VERIFY(test_redux(Matrix<double,7,3>(),
      DefaultTraversal,CompleteUnrolling));
  }
#endif // EIGEN_VECTORIZE

}