/* ****************************************************************************** * * Copyright (C) 1999-2012, International Business Machines * Corporation and others. All Rights Reserved. * ****************************************************************************** * file name: utf_impl.c * encoding: US-ASCII * tab size: 8 (not used) * indentation:4 * * created on: 1999sep13 * created by: Markus W. Scherer * * This file provides implementation functions for macros in the utfXX.h * that would otherwise be too long as macros. */ /* set import/export definitions */ #ifndef U_UTF8_IMPL # define U_UTF8_IMPL #endif #include "unicode/utypes.h" #include "unicode/utf.h" #include "unicode/utf8.h" #include "unicode/utf_old.h" #include "uassert.h" /* * This table could be replaced on many machines by * a few lines of assembler code using an * "index of first 0-bit from msb" instruction and * one or two more integer instructions. * * For example, on an i386, do something like * - MOV AL, leadByte * - NOT AL (8-bit, leave b15..b8==0..0, reverse only b7..b0) * - MOV AH, 0 * - BSR BX, AX (16-bit) * - MOV AX, 6 (result) * - JZ finish (ZF==1 if leadByte==0xff) * - SUB AX, BX (result) * -finish: * (BSR: Bit Scan Reverse, scans for a 1-bit, starting from the MSB) * * In Unicode, all UTF-8 byte sequences with more than 4 bytes are illegal; * lead bytes above 0xf4 are illegal. * We keep them in this table for skipping long ISO 10646-UTF-8 sequences. */ U_EXPORT const uint8_t utf8_countTrailBytes[256]={ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, /* illegal in Unicode */ 4, 4, 4, 4, /* illegal in Unicode */ 5, 5, /* illegal in Unicode */ 0, 0 /* illegal bytes 0xfe and 0xff */ }; static const UChar32 utf8_minLegal[4]={ 0, 0x80, 0x800, 0x10000 }; static const UChar32 utf8_errorValue[6]={ UTF8_ERROR_VALUE_1, UTF8_ERROR_VALUE_2, UTF_ERROR_VALUE, 0x10ffff, 0x3ffffff, 0x7fffffff }; static UChar32 errorValue(int32_t count, int8_t strict) { if(strict>=0) { return utf8_errorValue[count]; } else if(strict==-3) { return 0xfffd; } else { return U_SENTINEL; } } /* * Handle the non-inline part of the U8_NEXT() and U8_NEXT_FFFD() macros * and their obsolete sibling UTF8_NEXT_CHAR_SAFE(). * * U8_NEXT() supports NUL-terminated strings indicated via length<0. * * The "strict" parameter controls the error behavior: * <0 "Safe" behavior of U8_NEXT(): * -1: All illegal byte sequences yield U_SENTINEL=-1. * -2: Same as -1, except for lenient treatment of surrogate code points as legal. * Some implementations use this for roundtripping of * Unicode 16-bit strings that are not well-formed UTF-16, that is, they * contain unpaired surrogates. * -3: All illegal byte sequences yield U+FFFD. * 0 Obsolete "safe" behavior of UTF8_NEXT_CHAR_SAFE(..., FALSE): * All illegal byte sequences yield a positive code point such that this * result code point would be encoded with the same number of bytes as * the illegal sequence. * >0 Obsolete "strict" behavior of UTF8_NEXT_CHAR_SAFE(..., TRUE): * Same as the obsolete "safe" behavior, but non-characters are also treated * like illegal sequences. * * Note that a UBool is the same as an int8_t. */ U_CAPI UChar32 U_EXPORT2 utf8_nextCharSafeBody(const uint8_t *s, int32_t *pi, int32_t length, UChar32 c, UBool strict) { int32_t i=*pi; uint8_t count=U8_COUNT_TRAIL_BYTES(c); U_ASSERT(count <= 5); /* U8_COUNT_TRAIL_BYTES returns value 0...5 */ if(i+count<=length || length<0) { uint8_t trail; U8_MASK_LEAD_BYTE(c, count); /* support NUL-terminated strings: do not read beyond the first non-trail byte */ switch(count) { /* each branch falls through to the next one */ case 0: /* count==0 for illegally leading trail bytes and the illegal bytes 0xfe and 0xff */ case 5: case 4: /* count>=4 is always illegal: no more than 3 trail bytes in Unicode's UTF-8 */ break; case 3: trail=s[i++]-0x80; c=(c<<6)|trail; /* c>=0x110 would result in code point>0x10ffff, outside Unicode */ if(c>=0x110 || trail>0x3f) { break; } case 2: trail=s[i++]-0x80; c=(c<<6)|trail; /* * test for a surrogate d800..dfff unless we are lenient: * before the last (c<<6), a surrogate is c=360..37f */ if(((c&0xffe0)==0x360 && strict!=-2) || trail>0x3f) { break; } case 1: trail=s[i++]-0x80; c=(c<<6)|trail; if(trail>0x3f) { break; } /* correct sequence - all trail bytes have (b7..b6)==(10) */ if(c>=utf8_minLegal[count] && /* strict: forbid non-characters like U+fffe */ (strict<=0 || !U_IS_UNICODE_NONCHAR(c))) { *pi=i; return c; } /* no default branch to optimize switch() - all values are covered */ } } else { /* too few bytes left */ count=length-i; } /* error handling */ i=*pi; while(count>0 && U8_IS_TRAIL(s[i])) { ++i; --count; } c=errorValue(i-*pi, strict); *pi=i; return c; } U_CAPI int32_t U_EXPORT2 utf8_appendCharSafeBody(uint8_t *s, int32_t i, int32_t length, UChar32 c, UBool *pIsError) { if((uint32_t)(c)<=0x7ff) { if((i)+1<(length)) { (s)[(i)++]=(uint8_t)(((c)>>6)|0xc0); (s)[(i)++]=(uint8_t)(((c)&0x3f)|0x80); return i; } } else if((uint32_t)(c)<=0xffff) { /* Starting with Unicode 3.2, surrogate code points must not be encoded in UTF-8. */ if((i)+2<(length) && !U_IS_SURROGATE(c)) { (s)[(i)++]=(uint8_t)(((c)>>12)|0xe0); (s)[(i)++]=(uint8_t)((((c)>>6)&0x3f)|0x80); (s)[(i)++]=(uint8_t)(((c)&0x3f)|0x80); return i; } } else if((uint32_t)(c)<=0x10ffff) { if((i)+3<(length)) { (s)[(i)++]=(uint8_t)(((c)>>18)|0xf0); (s)[(i)++]=(uint8_t)((((c)>>12)&0x3f)|0x80); (s)[(i)++]=(uint8_t)((((c)>>6)&0x3f)|0x80); (s)[(i)++]=(uint8_t)(((c)&0x3f)|0x80); return i; } } /* c>0x10ffff or not enough space, write an error value */ if(pIsError!=NULL) { *pIsError=TRUE; } else { length-=i; if(length>0) { int32_t offset; if(length>3) { length=3; } s+=i; offset=0; c=utf8_errorValue[length-1]; UTF8_APPEND_CHAR_UNSAFE(s, offset, c); i=i+offset; } } return i; } U_CAPI UChar32 U_EXPORT2 utf8_prevCharSafeBody(const uint8_t *s, int32_t start, int32_t *pi, UChar32 c, UBool strict) { int32_t i=*pi; uint8_t b, count=1, shift=6; if(!U8_IS_TRAIL(c)) { return errorValue(0, strict); } /* extract value bits from the last trail byte */ c&=0x3f; for(;;) { if(i<=start) { /* no lead byte at all */ return errorValue(0, strict); } /* read another previous byte */ b=s[--i]; if((uint8_t)(b-0x80)<0x7e) { /* 0x80<=b<0xfe */ if(b&0x40) { /* lead byte, this will always end the loop */ uint8_t shouldCount=U8_COUNT_TRAIL_BYTES(b); if(count==shouldCount) { /* set the new position */ *pi=i; U8_MASK_LEAD_BYTE(b, count); c|=(UChar32)b<<shift; if(count>=4 || c>0x10ffff || c<utf8_minLegal[count] || (U_IS_SURROGATE(c) && strict!=-2) || (strict>0 && U_IS_UNICODE_NONCHAR(c))) { /* illegal sequence or (strict and non-character) */ if(count>=4) { count=3; } c=errorValue(count, strict); } else { /* exit with correct c */ } } else { /* the lead byte does not match the number of trail bytes */ /* only set the position to the lead byte if it would include the trail byte that we started with */ if(count<shouldCount) { *pi=i; c=errorValue(count, strict); } else { c=errorValue(0, strict); } } break; } else if(count<5) { /* trail byte */ c|=(UChar32)(b&0x3f)<<shift; ++count; shift+=6; } else { /* more than 5 trail bytes is illegal */ c=errorValue(0, strict); break; } } else { /* single-byte character precedes trailing bytes */ c=errorValue(0, strict); break; } } return c; } U_CAPI int32_t U_EXPORT2 utf8_back1SafeBody(const uint8_t *s, int32_t start, int32_t i) { /* i had been decremented once before the function call */ int32_t I=i, Z; uint8_t b; /* read at most the 6 bytes s[Z] to s[i], inclusively */ if(I-5>start) { Z=I-5; } else { Z=start; } /* return I if the sequence starting there is long enough to include i */ do { b=s[I]; if((uint8_t)(b-0x80)>=0x7e) { /* not 0x80<=b<0xfe */ break; } else if(b>=0xc0) { if(U8_COUNT_TRAIL_BYTES(b)>=(i-I)) { return I; } else { break; } } } while(Z<=--I); /* return i itself to be consistent with the FWD_1 macro */ return i; }