/* ****************************************************************************** * Copyright (C) 1999-2013, International Business Machines Corporation and * others. All Rights Reserved. ****************************************************************************** * Date Name Description * 10/22/99 alan Creation. ********************************************************************** */ #include "uvector.h" #include "cmemory.h" #include "uarrsort.h" #include "uelement.h" U_NAMESPACE_BEGIN #define DEFAULT_CAPACITY 8 /* * Constants for hinting whether a key is an integer * or a pointer. If a hint bit is zero, then the associated * token is assumed to be an integer. This is needed for iSeries */ #define HINT_KEY_POINTER (1) #define HINT_KEY_INTEGER (0) UOBJECT_DEFINE_RTTI_IMPLEMENTATION(UVector) UVector::UVector(UErrorCode &status) : count(0), capacity(0), elements(0), deleter(0), comparer(0) { _init(DEFAULT_CAPACITY, status); } UVector::UVector(int32_t initialCapacity, UErrorCode &status) : count(0), capacity(0), elements(0), deleter(0), comparer(0) { _init(initialCapacity, status); } UVector::UVector(UObjectDeleter *d, UElementsAreEqual *c, UErrorCode &status) : count(0), capacity(0), elements(0), deleter(d), comparer(c) { _init(DEFAULT_CAPACITY, status); } UVector::UVector(UObjectDeleter *d, UElementsAreEqual *c, int32_t initialCapacity, UErrorCode &status) : count(0), capacity(0), elements(0), deleter(d), comparer(c) { _init(initialCapacity, status); } void UVector::_init(int32_t initialCapacity, UErrorCode &status) { if (U_FAILURE(status)) { return; } // Fix bogus initialCapacity values; avoid malloc(0) and integer overflow if ((initialCapacity < 1) || (initialCapacity > (int32_t)(INT32_MAX / sizeof(UElement)))) { initialCapacity = DEFAULT_CAPACITY; } elements = (UElement *)uprv_malloc(sizeof(UElement)*initialCapacity); if (elements == 0) { status = U_MEMORY_ALLOCATION_ERROR; } else { capacity = initialCapacity; } } UVector::~UVector() { removeAllElements(); uprv_free(elements); elements = 0; } /** * Assign this object to another (make this a copy of 'other'). * Use the 'assign' function to assign each element. */ void UVector::assign(const UVector& other, UElementAssigner *assign, UErrorCode &ec) { if (ensureCapacity(other.count, ec)) { setSize(other.count, ec); if (U_SUCCESS(ec)) { for (int32_t i=0; i<other.count; ++i) { if (elements[i].pointer != 0 && deleter != 0) { (*deleter)(elements[i].pointer); } (*assign)(&elements[i], &other.elements[i]); } } } } // This only does something sensible if this object has a non-null comparer UBool UVector::operator==(const UVector& other) { int32_t i; if (count != other.count) return FALSE; if (comparer != NULL) { // Compare using this object's comparer for (i=0; i<count; ++i) { if (!(*comparer)(elements[i], other.elements[i])) { return FALSE; } } } return TRUE; } void UVector::addElement(void* obj, UErrorCode &status) { if (ensureCapacity(count + 1, status)) { elements[count++].pointer = obj; } } void UVector::addElement(int32_t elem, UErrorCode &status) { if (ensureCapacity(count + 1, status)) { elements[count].pointer = NULL; // Pointers may be bigger than ints. elements[count].integer = elem; count++; } } void UVector::setElementAt(void* obj, int32_t index) { if (0 <= index && index < count) { if (elements[index].pointer != 0 && deleter != 0) { (*deleter)(elements[index].pointer); } elements[index].pointer = obj; } /* else index out of range */ } void UVector::setElementAt(int32_t elem, int32_t index) { if (0 <= index && index < count) { if (elements[index].pointer != 0 && deleter != 0) { // TODO: this should be an error. mixing up ints and pointers. (*deleter)(elements[index].pointer); } elements[index].pointer = NULL; elements[index].integer = elem; } /* else index out of range */ } void UVector::insertElementAt(void* obj, int32_t index, UErrorCode &status) { // must have 0 <= index <= count if (0 <= index && index <= count && ensureCapacity(count + 1, status)) { for (int32_t i=count; i>index; --i) { elements[i] = elements[i-1]; } elements[index].pointer = obj; ++count; } /* else index out of range */ } void UVector::insertElementAt(int32_t elem, int32_t index, UErrorCode &status) { // must have 0 <= index <= count if (0 <= index && index <= count && ensureCapacity(count + 1, status)) { for (int32_t i=count; i>index; --i) { elements[i] = elements[i-1]; } elements[index].pointer = NULL; elements[index].integer = elem; ++count; } /* else index out of range */ } void* UVector::elementAt(int32_t index) const { return (0 <= index && index < count) ? elements[index].pointer : 0; } int32_t UVector::elementAti(int32_t index) const { return (0 <= index && index < count) ? elements[index].integer : 0; } UBool UVector::containsAll(const UVector& other) const { for (int32_t i=0; i<other.size(); ++i) { if (indexOf(other.elements[i]) < 0) { return FALSE; } } return TRUE; } UBool UVector::containsNone(const UVector& other) const { for (int32_t i=0; i<other.size(); ++i) { if (indexOf(other.elements[i]) >= 0) { return FALSE; } } return TRUE; } UBool UVector::removeAll(const UVector& other) { UBool changed = FALSE; for (int32_t i=0; i<other.size(); ++i) { int32_t j = indexOf(other.elements[i]); if (j >= 0) { removeElementAt(j); changed = TRUE; } } return changed; } UBool UVector::retainAll(const UVector& other) { UBool changed = FALSE; for (int32_t j=size()-1; j>=0; --j) { int32_t i = other.indexOf(elements[j]); if (i < 0) { removeElementAt(j); changed = TRUE; } } return changed; } void UVector::removeElementAt(int32_t index) { void* e = orphanElementAt(index); if (e != 0 && deleter != 0) { (*deleter)(e); } } UBool UVector::removeElement(void* obj) { int32_t i = indexOf(obj); if (i >= 0) { removeElementAt(i); return TRUE; } return FALSE; } void UVector::removeAllElements(void) { if (deleter != 0) { for (int32_t i=0; i<count; ++i) { if (elements[i].pointer != 0) { (*deleter)(elements[i].pointer); } } } count = 0; } UBool UVector::equals(const UVector &other) const { int i; if (this->count != other.count) { return FALSE; } if (comparer == 0) { for (i=0; i<count; i++) { if (elements[i].pointer != other.elements[i].pointer) { return FALSE; } } } else { UElement key; for (i=0; i<count; i++) { key.pointer = &other.elements[i]; if (!(*comparer)(key, elements[i])) { return FALSE; } } } return TRUE; } int32_t UVector::indexOf(void* obj, int32_t startIndex) const { UElement key; key.pointer = obj; return indexOf(key, startIndex, HINT_KEY_POINTER); } int32_t UVector::indexOf(int32_t obj, int32_t startIndex) const { UElement key; key.integer = obj; return indexOf(key, startIndex, HINT_KEY_INTEGER); } // This only works if this object has a non-null comparer int32_t UVector::indexOf(UElement key, int32_t startIndex, int8_t hint) const { int32_t i; if (comparer != 0) { for (i=startIndex; i<count; ++i) { if ((*comparer)(key, elements[i])) { return i; } } } else { for (i=startIndex; i<count; ++i) { /* Pointers are not always the same size as ints so to perform * a valid comparision we need to know whether we are being * provided an int or a pointer. */ if (hint & HINT_KEY_POINTER) { if (key.pointer == elements[i].pointer) { return i; } } else { if (key.integer == elements[i].integer) { return i; } } } } return -1; } UBool UVector::ensureCapacity(int32_t minimumCapacity, UErrorCode &status) { if (minimumCapacity < 0) { status = U_ILLEGAL_ARGUMENT_ERROR; return FALSE; } if (capacity < minimumCapacity) { if (capacity > (INT32_MAX - 1) / 2) { // integer overflow check status = U_ILLEGAL_ARGUMENT_ERROR; return FALSE; } int32_t newCap = capacity * 2; if (newCap < minimumCapacity) { newCap = minimumCapacity; } if (newCap > (int32_t)(INT32_MAX / sizeof(UElement))) { // integer overflow check // We keep the original memory contents on bad minimumCapacity. status = U_ILLEGAL_ARGUMENT_ERROR; return FALSE; } UElement* newElems = (UElement *)uprv_realloc(elements, sizeof(UElement)*newCap); if (newElems == NULL) { // We keep the original contents on the memory failure on realloc or bad minimumCapacity. status = U_MEMORY_ALLOCATION_ERROR; return FALSE; } elements = newElems; capacity = newCap; } return TRUE; } /** * Change the size of this vector as follows: If newSize is smaller, * then truncate the array, possibly deleting held elements for i >= * newSize. If newSize is larger, grow the array, filling in new * slots with NULL. */ void UVector::setSize(int32_t newSize, UErrorCode &status) { int32_t i; if (newSize < 0) { return; } if (newSize > count) { if (!ensureCapacity(newSize, status)) { return; } UElement empty; empty.pointer = NULL; empty.integer = 0; for (i=count; i<newSize; ++i) { elements[i] = empty; } } else { /* Most efficient to count down */ for (i=count-1; i>=newSize; --i) { removeElementAt(i); } } count = newSize; } /** * Fill in the given array with all elements of this vector. */ void** UVector::toArray(void** result) const { void** a = result; for (int i=0; i<count; ++i) { *a++ = elements[i].pointer; } return result; } UObjectDeleter *UVector::setDeleter(UObjectDeleter *d) { UObjectDeleter *old = deleter; deleter = d; return old; } UElementsAreEqual *UVector::setComparer(UElementsAreEqual *d) { UElementsAreEqual *old = comparer; comparer = d; return old; } /** * Removes the element at the given index from this vector and * transfer ownership of it to the caller. After this call, the * caller owns the result and must delete it and the vector entry * at 'index' is removed, shifting all subsequent entries back by * one index and shortening the size of the vector by one. If the * index is out of range or if there is no item at the given index * then 0 is returned and the vector is unchanged. */ void* UVector::orphanElementAt(int32_t index) { void* e = 0; if (0 <= index && index < count) { e = elements[index].pointer; for (int32_t i=index; i<count-1; ++i) { elements[i] = elements[i+1]; } --count; } /* else index out of range */ return e; } /** * Insert the given object into this vector at its sorted position * as defined by 'compare'. The current elements are assumed to * be sorted already. */ void UVector::sortedInsert(void* obj, UElementComparator *compare, UErrorCode& ec) { UElement e; e.pointer = obj; sortedInsert(e, compare, ec); } /** * Insert the given integer into this vector at its sorted position * as defined by 'compare'. The current elements are assumed to * be sorted already. */ void UVector::sortedInsert(int32_t obj, UElementComparator *compare, UErrorCode& ec) { UElement e; e.integer = obj; sortedInsert(e, compare, ec); } // ASSUME elements[] IS CURRENTLY SORTED void UVector::sortedInsert(UElement e, UElementComparator *compare, UErrorCode& ec) { // Perform a binary search for the location to insert tok at. Tok // will be inserted between two elements a and b such that a <= // tok && tok < b, where there is a 'virtual' elements[-1] always // less than tok and a 'virtual' elements[count] always greater // than tok. int32_t min = 0, max = count; while (min != max) { int32_t probe = (min + max) / 2; int8_t c = (*compare)(elements[probe], e); if (c > 0) { max = probe; } else { // assert(c <= 0); min = probe + 1; } } if (ensureCapacity(count + 1, ec)) { for (int32_t i=count; i>min; --i) { elements[i] = elements[i-1]; } elements[min] = e; ++count; } } /** * Array sort comparator function. * Used from UVector::sort() * Conforms to function signature required for uprv_sortArray(). * This function is essentially just a wrapper, to make a * UVector style comparator function usable with uprv_sortArray(). * * The context pointer to this function is a pointer back * (with some extra indirection) to the user supplied comparator. * */ static int32_t U_CALLCONV sortComparator(const void *context, const void *left, const void *right) { UElementComparator *compare = *static_cast<UElementComparator * const *>(context); UElement e1 = *static_cast<const UElement *>(left); UElement e2 = *static_cast<const UElement *>(right); int32_t result = (*compare)(e1, e2); return result; } /** * Array sort comparison function for use from UVector::sorti() * Compares int32_t vector elements. */ static int32_t U_CALLCONV sortiComparator(const void * /*context */, const void *left, const void *right) { const UElement *e1 = static_cast<const UElement *>(left); const UElement *e2 = static_cast<const UElement *>(right); int32_t result = e1->integer < e2->integer? -1 : e1->integer == e2->integer? 0 : 1; return result; } /** * Sort the vector, assuming it constains ints. * (A more general sort would take a comparison function, but it's * not clear whether UVector's UElementComparator or * UComparator from uprv_sortAray would be more appropriate.) */ void UVector::sorti(UErrorCode &ec) { if (U_SUCCESS(ec)) { uprv_sortArray(elements, count, sizeof(UElement), sortiComparator, NULL, FALSE, &ec); } } /** * Sort with a user supplied comparator. * * The comparator function handling is confusing because the function type * for UVector (as defined for sortedInsert()) is different from the signature * required by uprv_sortArray(). This is handled by passing the * the UVector sort function pointer via the context pointer to a * sortArray() comparator function, which can then call back to * the original user functtion. * * An additional twist is that it's not safe to pass a pointer-to-function * as a (void *) data pointer, so instead we pass a (data) pointer to a * pointer-to-function variable. */ void UVector::sort(UElementComparator *compare, UErrorCode &ec) { if (U_SUCCESS(ec)) { uprv_sortArray(elements, count, sizeof(UElement), sortComparator, &compare, FALSE, &ec); } } /** * Stable sort with a user supplied comparator of type UComparator. */ void UVector::sortWithUComparator(UComparator *compare, const void *context, UErrorCode &ec) { if (U_SUCCESS(ec)) { uprv_sortArray(elements, count, sizeof(UElement), compare, context, TRUE, &ec); } } U_NAMESPACE_END