/* ****************************************************************************** * Copyright (C) 1999-2010, International Business Machines Corporation and * * others. All Rights Reserved. * ****************************************************************************** * Date Name Description * 10/22/99 alan Creation. ********************************************************************** */ #include "uvectr32.h" #include "cmemory.h" #include "putilimp.h" U_NAMESPACE_BEGIN #define DEFAULT_CAPACITY 8 /* * Constants for hinting whether a key is an integer * or a pointer. If a hint bit is zero, then the associated * token is assumed to be an integer. This is needed for iSeries */ UOBJECT_DEFINE_RTTI_IMPLEMENTATION(UVector32) UVector32::UVector32(UErrorCode &status) : count(0), capacity(0), maxCapacity(0), elements(NULL) { _init(DEFAULT_CAPACITY, status); } UVector32::UVector32(int32_t initialCapacity, UErrorCode &status) : count(0), capacity(0), maxCapacity(0), elements(0) { _init(initialCapacity, status); } void UVector32::_init(int32_t initialCapacity, UErrorCode &status) { // Fix bogus initialCapacity values; avoid malloc(0) if (initialCapacity < 1) { initialCapacity = DEFAULT_CAPACITY; } if (maxCapacity>0 && maxCapacity<initialCapacity) { initialCapacity = maxCapacity; } if (initialCapacity > (int32_t)(INT32_MAX / sizeof(int32_t))) { initialCapacity = uprv_min(DEFAULT_CAPACITY, maxCapacity); } elements = (int32_t *)uprv_malloc(sizeof(int32_t)*initialCapacity); if (elements == 0) { status = U_MEMORY_ALLOCATION_ERROR; } else { capacity = initialCapacity; } } UVector32::~UVector32() { uprv_free(elements); elements = 0; } /** * Assign this object to another (make this a copy of 'other'). */ void UVector32::assign(const UVector32& other, UErrorCode &ec) { if (ensureCapacity(other.count, ec)) { setSize(other.count); for (int32_t i=0; i<other.count; ++i) { elements[i] = other.elements[i]; } } } UBool UVector32::operator==(const UVector32& other) { int32_t i; if (count != other.count) return FALSE; for (i=0; i<count; ++i) { if (elements[i] != other.elements[i]) { return FALSE; } } return TRUE; } void UVector32::setElementAt(int32_t elem, int32_t index) { if (0 <= index && index < count) { elements[index] = elem; } /* else index out of range */ } void UVector32::insertElementAt(int32_t elem, int32_t index, UErrorCode &status) { // must have 0 <= index <= count if (0 <= index && index <= count && ensureCapacity(count + 1, status)) { for (int32_t i=count; i>index; --i) { elements[i] = elements[i-1]; } elements[index] = elem; ++count; } /* else index out of range */ } UBool UVector32::containsAll(const UVector32& other) const { for (int32_t i=0; i<other.size(); ++i) { if (indexOf(other.elements[i]) < 0) { return FALSE; } } return TRUE; } UBool UVector32::containsNone(const UVector32& other) const { for (int32_t i=0; i<other.size(); ++i) { if (indexOf(other.elements[i]) >= 0) { return FALSE; } } return TRUE; } UBool UVector32::removeAll(const UVector32& other) { UBool changed = FALSE; for (int32_t i=0; i<other.size(); ++i) { int32_t j = indexOf(other.elements[i]); if (j >= 0) { removeElementAt(j); changed = TRUE; } } return changed; } UBool UVector32::retainAll(const UVector32& other) { UBool changed = FALSE; for (int32_t j=size()-1; j>=0; --j) { int32_t i = other.indexOf(elements[j]); if (i < 0) { removeElementAt(j); changed = TRUE; } } return changed; } void UVector32::removeElementAt(int32_t index) { if (index >= 0) { for (int32_t i=index; i<count-1; ++i) { elements[i] = elements[i+1]; } --count; } } void UVector32::removeAllElements(void) { count = 0; } UBool UVector32::equals(const UVector32 &other) const { int i; if (this->count != other.count) { return FALSE; } for (i=0; i<count; i++) { if (elements[i] != other.elements[i]) { return FALSE; } } return TRUE; } int32_t UVector32::indexOf(int32_t key, int32_t startIndex) const { int32_t i; for (i=startIndex; i<count; ++i) { if (key == elements[i]) { return i; } } return -1; } UBool UVector32::expandCapacity(int32_t minimumCapacity, UErrorCode &status) { if (minimumCapacity < 0) { status = U_ILLEGAL_ARGUMENT_ERROR; return FALSE; } if (capacity >= minimumCapacity) { return TRUE; } if (maxCapacity>0 && minimumCapacity>maxCapacity) { status = U_BUFFER_OVERFLOW_ERROR; return FALSE; } if (capacity > (INT32_MAX - 1) / 2) { // integer overflow check status = U_ILLEGAL_ARGUMENT_ERROR; return FALSE; } int32_t newCap = capacity * 2; if (newCap < minimumCapacity) { newCap = minimumCapacity; } if (maxCapacity > 0 && newCap > maxCapacity) { newCap = maxCapacity; } if (newCap > (int32_t)(INT32_MAX / sizeof(int32_t))) { // integer overflow check // We keep the original memory contents on bad minimumCapacity/maxCapacity. status = U_ILLEGAL_ARGUMENT_ERROR; return FALSE; } int32_t* newElems = (int32_t *)uprv_realloc(elements, sizeof(int32_t)*newCap); if (newElems == NULL) { // We keep the original contents on the memory failure on realloc. status = U_MEMORY_ALLOCATION_ERROR; return FALSE; } elements = newElems; capacity = newCap; return TRUE; } void UVector32::setMaxCapacity(int32_t limit) { U_ASSERT(limit >= 0); if (limit < 0) { limit = 0; } if (limit > (int32_t)(INT32_MAX / sizeof(int32_t))) { // integer overflow check for realloc // Something is very wrong, don't realloc, leave capacity and maxCapacity unchanged return; } maxCapacity = limit; if (capacity <= maxCapacity || maxCapacity == 0) { // Current capacity is within the new limit. return; } // New maximum capacity is smaller than the current size. // Realloc the storage to the new, smaller size. int32_t* newElems = (int32_t *)uprv_realloc(elements, sizeof(int32_t)*maxCapacity); if (newElems == NULL) { // Realloc to smaller failed. // Just keep what we had. No need to call it a failure. return; } elements = newElems; capacity = maxCapacity; if (count > capacity) { count = capacity; } } /** * Change the size of this vector as follows: If newSize is smaller, * then truncate the array, possibly deleting held elements for i >= * newSize. If newSize is larger, grow the array, filling in new * slots with NULL. */ void UVector32::setSize(int32_t newSize) { int32_t i; if (newSize < 0) { return; } if (newSize > count) { UErrorCode ec = U_ZERO_ERROR; if (!ensureCapacity(newSize, ec)) { return; } for (i=count; i<newSize; ++i) { elements[i] = 0; } } count = newSize; } /** * Insert the given integer into this vector at its sorted position * as defined by 'compare'. The current elements are assumed to * be sorted already. */ void UVector32::sortedInsert(int32_t tok, UErrorCode& ec) { // Perform a binary search for the location to insert tok at. Tok // will be inserted between two elements a and b such that a <= // tok && tok < b, where there is a 'virtual' elements[-1] always // less than tok and a 'virtual' elements[count] always greater // than tok. int32_t min = 0, max = count; while (min != max) { int32_t probe = (min + max) / 2; //int8_t c = (*compare)(elements[probe], tok); //if (c > 0) { if (elements[probe] > tok) { max = probe; } else { // assert(c <= 0); min = probe + 1; } } if (ensureCapacity(count + 1, ec)) { for (int32_t i=count; i>min; --i) { elements[i] = elements[i-1]; } elements[min] = tok; ++count; } } U_NAMESPACE_END