/******************************************************************** * COPYRIGHT: * Copyright (c) 2005-2012, International Business Machines Corporation and * others. All Rights Reserved. ********************************************************************/ /************************************************************************ * Tests for the UText and UTextIterator text abstraction classses * ************************************************************************/ #include <string.h> #include <stdio.h> #include <stdlib.h> #include "unicode/utypes.h" #include "unicode/utext.h" #include "unicode/utf8.h" #include "unicode/ustring.h" #include "unicode/uchriter.h" #include "utxttest.h" static UBool gFailed = FALSE; static int gTestNum = 0; // Forward decl UText *openFragmentedUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status); #define TEST_ASSERT(x) \ { if ((x)==FALSE) {errln("Test #%d failure in file %s at line %d\n", gTestNum, __FILE__, __LINE__);\ gFailed = TRUE;\ }} #define TEST_SUCCESS(status) \ { if (U_FAILURE(status)) {errln("Test #%d failure in file %s at line %d. Error = \"%s\"\n", \ gTestNum, __FILE__, __LINE__, u_errorName(status)); \ gFailed = TRUE;\ }} UTextTest::UTextTest() { } UTextTest::~UTextTest() { } void UTextTest::runIndexedTest(int32_t index, UBool exec, const char* &name, char* /*par*/) { switch (index) { case 0: name = "TextTest"; if (exec) TextTest(); break; case 1: name = "ErrorTest"; if (exec) ErrorTest(); break; case 2: name = "FreezeTest"; if (exec) FreezeTest(); break; case 3: name = "Ticket5560"; if (exec) Ticket5560(); break; case 4: name = "Ticket6847"; if (exec) Ticket6847(); break; default: name = ""; break; } } // // Quick and dirty random number generator. // (don't use library so that results are portable. static uint32_t m_seed = 1; static uint32_t m_rand() { m_seed = m_seed * 1103515245 + 12345; return (uint32_t)(m_seed/65536) % 32768; } // // TextTest() // // Top Level function for UText testing. // Specifies the strings to be tested, with the acutal testing itself // being carried out in another function, TestString(). // void UTextTest::TextTest() { int32_t i, j; TestString("abcd\\U00010001xyz"); TestString(""); // Supplementary chars at start or end TestString("\\U00010001"); TestString("abc\\U00010001"); TestString("\\U00010001abc"); // Test simple strings of lengths 1 to 60, looking for glitches at buffer boundaries UnicodeString s; for (i=1; i<60; i++) { s.truncate(0); for (j=0; j<i; j++) { if (j+0x30 == 0x5c) { // backslash. Needs to be escaped s.append((UChar)0x5c); } s.append(UChar(j+0x30)); } TestString(s); } // Test strings with odd-aligned supplementary chars, // looking for glitches at buffer boundaries for (i=1; i<60; i++) { s.truncate(0); s.append((UChar)0x41); for (j=0; j<i; j++) { s.append(UChar32(j+0x11000)); } TestString(s); } // String of chars of randomly varying size in utf-8 representation. // Exercise the mapping, and the varying sized buffer. // s.truncate(0); UChar32 c1 = 0; UChar32 c2 = 0x100; UChar32 c3 = 0xa000; UChar32 c4 = 0x11000; for (i=0; i<1000; i++) { int len8 = m_rand()%4 + 1; switch (len8) { case 1: c1 = (c1+1)%0x80; // don't put 0 into string (0 terminated strings for some tests) // don't put '\', will cause unescape() to fail. if (c1==0x5c || c1==0) { c1++; } s.append(c1); break; case 2: s.append(c2++); break; case 3: s.append(c3++); break; case 4: s.append(c4++); break; } } TestString(s); } // // TestString() Run a suite of UText tests on a string. // The test string is unescaped before use. // void UTextTest::TestString(const UnicodeString &s) { int32_t i; int32_t j; UChar32 c; int32_t cpCount = 0; UErrorCode status = U_ZERO_ERROR; UText *ut = NULL; int32_t saLen; UnicodeString sa = s.unescape(); saLen = sa.length(); // // Build up a mapping between code points and UTF-16 code unit indexes. // m *cpMap = new m[sa.length() + 1]; j = 0; for (i=0; i<sa.length(); i=sa.moveIndex32(i, 1)) { c = sa.char32At(i); cpMap[j].nativeIdx = i; cpMap[j].cp = c; j++; cpCount++; } cpMap[j].nativeIdx = i; // position following the last char in utf-16 string. // UChar * test, null terminated status = U_ZERO_ERROR; UChar *buf = new UChar[saLen+1]; sa.extract(buf, saLen+1, status); TEST_SUCCESS(status); ut = utext_openUChars(NULL, buf, -1, &status); TEST_SUCCESS(status); TestAccess(sa, ut, cpCount, cpMap); utext_close(ut); delete [] buf; // UChar * test, with length status = U_ZERO_ERROR; buf = new UChar[saLen+1]; sa.extract(buf, saLen+1, status); TEST_SUCCESS(status); ut = utext_openUChars(NULL, buf, saLen, &status); TEST_SUCCESS(status); TestAccess(sa, ut, cpCount, cpMap); utext_close(ut); delete [] buf; // UnicodeString test status = U_ZERO_ERROR; ut = utext_openUnicodeString(NULL, &sa, &status); TEST_SUCCESS(status); TestAccess(sa, ut, cpCount, cpMap); TestCMR(sa, ut, cpCount, cpMap, cpMap); utext_close(ut); // Const UnicodeString test status = U_ZERO_ERROR; ut = utext_openConstUnicodeString(NULL, &sa, &status); TEST_SUCCESS(status); TestAccess(sa, ut, cpCount, cpMap); utext_close(ut); // Replaceable test. (UnicodeString inherits Replaceable) status = U_ZERO_ERROR; ut = utext_openReplaceable(NULL, &sa, &status); TEST_SUCCESS(status); TestAccess(sa, ut, cpCount, cpMap); TestCMR(sa, ut, cpCount, cpMap, cpMap); utext_close(ut); // Character Iterator Tests status = U_ZERO_ERROR; const UChar *cbuf = sa.getBuffer(); CharacterIterator *ci = new UCharCharacterIterator(cbuf, saLen, status); TEST_SUCCESS(status); ut = utext_openCharacterIterator(NULL, ci, &status); TEST_SUCCESS(status); TestAccess(sa, ut, cpCount, cpMap); utext_close(ut); delete ci; // Fragmented UnicodeString (Chunk size of one) // status = U_ZERO_ERROR; ut = openFragmentedUnicodeString(NULL, &sa, &status); TEST_SUCCESS(status); TestAccess(sa, ut, cpCount, cpMap); utext_close(ut); // // UTF-8 test // // Convert the test string from UnicodeString to (char *) in utf-8 format int32_t u8Len = sa.extract(0, sa.length(), NULL, 0, "utf-8"); char *u8String = new char[u8Len + 1]; sa.extract(0, sa.length(), u8String, u8Len+1, "utf-8"); // Build up the map of code point indices in the utf-8 string m * u8Map = new m[sa.length() + 1]; i = 0; // native utf-8 index for (j=0; j<cpCount ; j++) { // code point number u8Map[j].nativeIdx = i; U8_NEXT(u8String, i, u8Len, c) u8Map[j].cp = c; } u8Map[cpCount].nativeIdx = u8Len; // position following the last char in utf-8 string. // Do the test itself status = U_ZERO_ERROR; ut = utext_openUTF8(NULL, u8String, -1, &status); TEST_SUCCESS(status); TestAccess(sa, ut, cpCount, u8Map); utext_close(ut); delete []cpMap; delete []u8Map; delete []u8String; } // TestCMR test Copy, Move and Replace operations. // us UnicodeString containing the test text. // ut UText containing the same test text. // cpCount number of code points in the test text. // nativeMap Mapping from code points to native indexes for the UText. // u16Map Mapping from code points to UTF-16 indexes, for use with the UnicodeString. // // This function runs a whole series of opertions on each incoming UText. // The UText is deep-cloned prior to each operation, so that the original UText remains unchanged. // void UTextTest::TestCMR(const UnicodeString &us, UText *ut, int cpCount, m *nativeMap, m *u16Map) { TEST_ASSERT(utext_isWritable(ut) == TRUE); int srcLengthType; // Loop variables for selecting the postion and length int srcPosType; // of the block to operate on within the source text. int destPosType; int srcIndex = 0; // Code Point indexes of the block to operate on for int srcLength = 0; // a specific test. int destIndex = 0; // Code point index of the destination for a copy/move test. int32_t nativeStart = 0; // Native unit indexes for a test. int32_t nativeLimit = 0; int32_t nativeDest = 0; int32_t u16Start = 0; // UTF-16 indexes for a test. int32_t u16Limit = 0; // used when performing the same operation in a Unicode String int32_t u16Dest = 0; // Iterate over a whole series of source index, length and a target indexes. // This is done with code point indexes; these will be later translated to native // indexes using the cpMap. for (srcLengthType=1; srcLengthType<=3; srcLengthType++) { switch (srcLengthType) { case 1: srcLength = 1; break; case 2: srcLength = 5; break; case 3: srcLength = cpCount / 3; } for (srcPosType=1; srcPosType<=5; srcPosType++) { switch (srcPosType) { case 1: srcIndex = 0; break; case 2: srcIndex = 1; break; case 3: srcIndex = cpCount - srcLength; break; case 4: srcIndex = cpCount - srcLength - 1; break; case 5: srcIndex = cpCount / 2; break; } if (srcIndex < 0 || srcIndex + srcLength > cpCount) { // filter out bogus test cases - // those with a source range that falls of an edge of the string. continue; } // // Copy and move tests. // iterate over a variety of destination positions. // for (destPosType=1; destPosType<=4; destPosType++) { switch (destPosType) { case 1: destIndex = 0; break; case 2: destIndex = 1; break; case 3: destIndex = srcIndex - 1; break; case 4: destIndex = srcIndex + srcLength + 1; break; case 5: destIndex = cpCount-1; break; case 6: destIndex = cpCount; break; } if (destIndex<0 || destIndex>cpCount) { // filter out bogus test cases. continue; } nativeStart = nativeMap[srcIndex].nativeIdx; nativeLimit = nativeMap[srcIndex+srcLength].nativeIdx; nativeDest = nativeMap[destIndex].nativeIdx; u16Start = u16Map[srcIndex].nativeIdx; u16Limit = u16Map[srcIndex+srcLength].nativeIdx; u16Dest = u16Map[destIndex].nativeIdx; gFailed = FALSE; TestCopyMove(us, ut, FALSE, nativeStart, nativeLimit, nativeDest, u16Start, u16Limit, u16Dest); TestCopyMove(us, ut, TRUE, nativeStart, nativeLimit, nativeDest, u16Start, u16Limit, u16Dest); if (gFailed) { return; } } // // Replace tests. // UnicodeString fullRepString("This is an arbitrary string that will be used as replacement text"); for (int32_t replStrLen=0; replStrLen<20; replStrLen++) { UnicodeString repStr(fullRepString, 0, replStrLen); TestReplace(us, ut, nativeStart, nativeLimit, u16Start, u16Limit, repStr); if (gFailed) { return; } } } } } // // TestCopyMove run a single test case for utext_copy. // Test cases are created in TestCMR and dispatched here for execution. // void UTextTest::TestCopyMove(const UnicodeString &us, UText *ut, UBool move, int32_t nativeStart, int32_t nativeLimit, int32_t nativeDest, int32_t u16Start, int32_t u16Limit, int32_t u16Dest) { UErrorCode status = U_ZERO_ERROR; UText *targetUT = NULL; gTestNum++; gFailed = FALSE; // // clone the UText. The test will be run in the cloned copy // so that we don't alter the original. // targetUT = utext_clone(NULL, ut, TRUE, FALSE, &status); TEST_SUCCESS(status); UnicodeString targetUS(us); // And copy the reference string. // do the test operation first in the reference targetUS.copy(u16Start, u16Limit, u16Dest); if (move) { // delete out the source range. if (u16Limit < u16Dest) { targetUS.removeBetween(u16Start, u16Limit); } else { int32_t amtCopied = u16Limit - u16Start; targetUS.removeBetween(u16Start+amtCopied, u16Limit+amtCopied); } } // Do the same operation in the UText under test utext_copy(targetUT, nativeStart, nativeLimit, nativeDest, move, &status); if (nativeDest > nativeStart && nativeDest < nativeLimit) { TEST_ASSERT(status == U_INDEX_OUTOFBOUNDS_ERROR); } else { TEST_SUCCESS(status); // Compare the results of the two parallel tests int32_t usi = 0; // UnicodeString postion, utf-16 index. int64_t uti = 0; // UText position, native index. int32_t cpi; // char32 position (code point index) UChar32 usc; // code point from Unicode String UChar32 utc; // code point from UText utext_setNativeIndex(targetUT, 0); for (cpi=0; ; cpi++) { usc = targetUS.char32At(usi); utc = utext_next32(targetUT); if (utc < 0) { break; } TEST_ASSERT(uti == usi); TEST_ASSERT(utc == usc); usi = targetUS.moveIndex32(usi, 1); uti = utext_getNativeIndex(targetUT); if (gFailed) { goto cleanupAndReturn; } } int64_t expectedNativeLength = utext_nativeLength(ut); if (move == FALSE) { expectedNativeLength += nativeLimit - nativeStart; } uti = utext_getNativeIndex(targetUT); TEST_ASSERT(uti == expectedNativeLength); } cleanupAndReturn: utext_close(targetUT); } // // TestReplace Test a single Replace operation. // void UTextTest::TestReplace( const UnicodeString &us, // reference UnicodeString in which to do the replace UText *ut, // UnicodeText object under test. int32_t nativeStart, // Range to be replaced, in UText native units. int32_t nativeLimit, int32_t u16Start, // Range to be replaced, in UTF-16 units int32_t u16Limit, // for use in the reference UnicodeString. const UnicodeString &repStr) // The replacement string { UErrorCode status = U_ZERO_ERROR; UText *targetUT = NULL; gTestNum++; gFailed = FALSE; // // clone the target UText. The test will be run in the cloned copy // so that we don't alter the original. // targetUT = utext_clone(NULL, ut, TRUE, FALSE, &status); TEST_SUCCESS(status); UnicodeString targetUS(us); // And copy the reference string. // // Do the replace operation in the Unicode String, to // produce a reference result. // targetUS.replace(u16Start, u16Limit-u16Start, repStr); // // Do the replace on the UText under test // const UChar *rs = repStr.getBuffer(); int32_t rsLen = repStr.length(); int32_t actualDelta = utext_replace(targetUT, nativeStart, nativeLimit, rs, rsLen, &status); int32_t expectedDelta = repStr.length() - (nativeLimit - nativeStart); TEST_ASSERT(actualDelta == expectedDelta); // // Compare the results // int32_t usi = 0; // UnicodeString postion, utf-16 index. int64_t uti = 0; // UText position, native index. int32_t cpi; // char32 position (code point index) UChar32 usc; // code point from Unicode String UChar32 utc; // code point from UText int64_t expectedNativeLength = 0; utext_setNativeIndex(targetUT, 0); for (cpi=0; ; cpi++) { usc = targetUS.char32At(usi); utc = utext_next32(targetUT); if (utc < 0) { break; } TEST_ASSERT(uti == usi); TEST_ASSERT(utc == usc); usi = targetUS.moveIndex32(usi, 1); uti = utext_getNativeIndex(targetUT); if (gFailed) { goto cleanupAndReturn; } } expectedNativeLength = utext_nativeLength(ut) + expectedDelta; uti = utext_getNativeIndex(targetUT); TEST_ASSERT(uti == expectedNativeLength); cleanupAndReturn: utext_close(targetUT); } // // TestAccess Test the read only access functions on a UText, including cloning. // The text is accessed in a variety of ways, and compared with // the reference UnicodeString. // void UTextTest::TestAccess(const UnicodeString &us, UText *ut, int cpCount, m *cpMap) { // Run the standard tests on the caller-supplied UText. TestAccessNoClone(us, ut, cpCount, cpMap); // Re-run tests on a shallow clone. utext_setNativeIndex(ut, 0); UErrorCode status = U_ZERO_ERROR; UText *shallowClone = utext_clone(NULL, ut, FALSE /*deep*/, FALSE /*readOnly*/, &status); TEST_SUCCESS(status); TestAccessNoClone(us, shallowClone, cpCount, cpMap); // // Rerun again on a deep clone. // Note that text providers are not required to provide deep cloning, // so unsupported errors are ignored. // status = U_ZERO_ERROR; utext_setNativeIndex(shallowClone, 0); UText *deepClone = utext_clone(NULL, shallowClone, TRUE, FALSE, &status); utext_close(shallowClone); if (status != U_UNSUPPORTED_ERROR) { TEST_SUCCESS(status); TestAccessNoClone(us, deepClone, cpCount, cpMap); } utext_close(deepClone); } // // TestAccessNoClone() Test the read only access functions on a UText. // The text is accessed in a variety of ways, and compared with // the reference UnicodeString. // void UTextTest::TestAccessNoClone(const UnicodeString &us, UText *ut, int cpCount, m *cpMap) { UErrorCode status = U_ZERO_ERROR; gTestNum++; // // Check the length from the UText // int64_t expectedLen = cpMap[cpCount].nativeIdx; int64_t utlen = utext_nativeLength(ut); TEST_ASSERT(expectedLen == utlen); // // Iterate forwards, verify that we get the correct code points // at the correct native offsets. // int i = 0; int64_t index; int64_t expectedIndex = 0; int64_t foundIndex = 0; UChar32 expectedC; UChar32 foundC; int64_t len; for (i=0; i<cpCount; i++) { expectedIndex = cpMap[i].nativeIdx; foundIndex = utext_getNativeIndex(ut); TEST_ASSERT(expectedIndex == foundIndex); expectedC = cpMap[i].cp; foundC = utext_next32(ut); TEST_ASSERT(expectedC == foundC); foundIndex = utext_getPreviousNativeIndex(ut); TEST_ASSERT(expectedIndex == foundIndex); if (gFailed) { return; } } foundC = utext_next32(ut); TEST_ASSERT(foundC == U_SENTINEL); // Repeat above, using macros utext_setNativeIndex(ut, 0); for (i=0; i<cpCount; i++) { expectedIndex = cpMap[i].nativeIdx; foundIndex = UTEXT_GETNATIVEINDEX(ut); TEST_ASSERT(expectedIndex == foundIndex); expectedC = cpMap[i].cp; foundC = UTEXT_NEXT32(ut); TEST_ASSERT(expectedC == foundC); if (gFailed) { return; } } foundC = UTEXT_NEXT32(ut); TEST_ASSERT(foundC == U_SENTINEL); // // Forward iteration (above) should have left index at the // end of the input, which should == length(). // len = utext_nativeLength(ut); foundIndex = utext_getNativeIndex(ut); TEST_ASSERT(len == foundIndex); // // Iterate backwards over entire test string // len = utext_getNativeIndex(ut); utext_setNativeIndex(ut, len); for (i=cpCount-1; i>=0; i--) { expectedC = cpMap[i].cp; expectedIndex = cpMap[i].nativeIdx; int64_t prevIndex = utext_getPreviousNativeIndex(ut); foundC = utext_previous32(ut); foundIndex = utext_getNativeIndex(ut); TEST_ASSERT(expectedIndex == foundIndex); TEST_ASSERT(expectedC == foundC); TEST_ASSERT(prevIndex == foundIndex); if (gFailed) { return; } } // // Backwards iteration, above, should have left our iterator // position at zero, and continued backwards iterationshould fail. // foundIndex = utext_getNativeIndex(ut); TEST_ASSERT(foundIndex == 0); foundIndex = utext_getPreviousNativeIndex(ut); TEST_ASSERT(foundIndex == 0); foundC = utext_previous32(ut); TEST_ASSERT(foundC == U_SENTINEL); foundIndex = utext_getNativeIndex(ut); TEST_ASSERT(foundIndex == 0); foundIndex = utext_getPreviousNativeIndex(ut); TEST_ASSERT(foundIndex == 0); // And again, with the macros utext_setNativeIndex(ut, len); for (i=cpCount-1; i>=0; i--) { expectedC = cpMap[i].cp; expectedIndex = cpMap[i].nativeIdx; foundC = UTEXT_PREVIOUS32(ut); foundIndex = UTEXT_GETNATIVEINDEX(ut); TEST_ASSERT(expectedIndex == foundIndex); TEST_ASSERT(expectedC == foundC); if (gFailed) { return; } } // // Backwards iteration, above, should have left our iterator // position at zero, and continued backwards iterationshould fail. // foundIndex = UTEXT_GETNATIVEINDEX(ut); TEST_ASSERT(foundIndex == 0); foundC = UTEXT_PREVIOUS32(ut); TEST_ASSERT(foundC == U_SENTINEL); foundIndex = UTEXT_GETNATIVEINDEX(ut); TEST_ASSERT(foundIndex == 0); if (gFailed) { return; } // // next32From(), prevous32From(), Iterate in a somewhat random order. // int cpIndex = 0; for (i=0; i<cpCount; i++) { cpIndex = (cpIndex + 9973) % cpCount; index = cpMap[cpIndex].nativeIdx; expectedC = cpMap[cpIndex].cp; foundC = utext_next32From(ut, index); TEST_ASSERT(expectedC == foundC); if (gFailed) { return; } } cpIndex = 0; for (i=0; i<cpCount; i++) { cpIndex = (cpIndex + 9973) % cpCount; index = cpMap[cpIndex+1].nativeIdx; expectedC = cpMap[cpIndex].cp; foundC = utext_previous32From(ut, index); TEST_ASSERT(expectedC == foundC); if (gFailed) { return; } } // // moveIndex(int32_t delta); // // Walk through frontwards, incrementing by one utext_setNativeIndex(ut, 0); for (i=1; i<=cpCount; i++) { utext_moveIndex32(ut, 1); index = utext_getNativeIndex(ut); expectedIndex = cpMap[i].nativeIdx; TEST_ASSERT(expectedIndex == index); index = UTEXT_GETNATIVEINDEX(ut); TEST_ASSERT(expectedIndex == index); } // Walk through frontwards, incrementing by two utext_setNativeIndex(ut, 0); for (i=2; i<cpCount; i+=2) { utext_moveIndex32(ut, 2); index = utext_getNativeIndex(ut); expectedIndex = cpMap[i].nativeIdx; TEST_ASSERT(expectedIndex == index); index = UTEXT_GETNATIVEINDEX(ut); TEST_ASSERT(expectedIndex == index); } // walk through the string backwards, decrementing by one. i = cpMap[cpCount].nativeIdx; utext_setNativeIndex(ut, i); for (i=cpCount; i>=0; i--) { expectedIndex = cpMap[i].nativeIdx; index = utext_getNativeIndex(ut); TEST_ASSERT(expectedIndex == index); index = UTEXT_GETNATIVEINDEX(ut); TEST_ASSERT(expectedIndex == index); utext_moveIndex32(ut, -1); } // walk through backwards, decrementing by three i = cpMap[cpCount].nativeIdx; utext_setNativeIndex(ut, i); for (i=cpCount; i>=0; i-=3) { expectedIndex = cpMap[i].nativeIdx; index = utext_getNativeIndex(ut); TEST_ASSERT(expectedIndex == index); index = UTEXT_GETNATIVEINDEX(ut); TEST_ASSERT(expectedIndex == index); utext_moveIndex32(ut, -3); } // // Extract // int bufSize = us.length() + 10; UChar *buf = new UChar[bufSize]; status = U_ZERO_ERROR; expectedLen = us.length(); len = utext_extract(ut, 0, utlen, buf, bufSize, &status); TEST_SUCCESS(status); TEST_ASSERT(len == expectedLen); int compareResult = us.compare(buf, -1); TEST_ASSERT(compareResult == 0); status = U_ZERO_ERROR; len = utext_extract(ut, 0, utlen, NULL, 0, &status); if (utlen == 0) { TEST_ASSERT(status == U_STRING_NOT_TERMINATED_WARNING); } else { TEST_ASSERT(status == U_BUFFER_OVERFLOW_ERROR); } TEST_ASSERT(len == expectedLen); status = U_ZERO_ERROR; u_memset(buf, 0x5555, bufSize); len = utext_extract(ut, 0, utlen, buf, 1, &status); if (us.length() == 0) { TEST_SUCCESS(status); TEST_ASSERT(buf[0] == 0); } else { // Buf len == 1, extracting a single 16 bit value. // If the data char is supplementary, it doesn't matter whether the buffer remains unchanged, // or whether the lead surrogate of the pair is extracted. // It's a buffer overflow error in either case. TEST_ASSERT(buf[0] == us.charAt(0) || (buf[0] == 0x5555 && U_IS_SUPPLEMENTARY(us.char32At(0)))); TEST_ASSERT(buf[1] == 0x5555); if (us.length() == 1) { TEST_ASSERT(status == U_STRING_NOT_TERMINATED_WARNING); } else { TEST_ASSERT(status == U_BUFFER_OVERFLOW_ERROR); } } delete []buf; } // // ErrorTest() Check various error and edge cases. // void UTextTest::ErrorTest() { // Close of an unitialized UText. Shouldn't blow up. { UText ut; memset(&ut, 0, sizeof(UText)); utext_close(&ut); utext_close(NULL); } // Double-close of a UText. Shouldn't blow up. UText should still be usable. { UErrorCode status = U_ZERO_ERROR; UText ut = UTEXT_INITIALIZER; UnicodeString s("Hello, World"); UText *ut2 = utext_openUnicodeString(&ut, &s, &status); TEST_SUCCESS(status); TEST_ASSERT(ut2 == &ut); UText *ut3 = utext_close(&ut); TEST_ASSERT(ut3 == &ut); UText *ut4 = utext_close(&ut); TEST_ASSERT(ut4 == &ut); utext_openUnicodeString(&ut, &s, &status); TEST_SUCCESS(status); utext_close(&ut); } // Re-use of a UText, chaining through each of the types of UText // (If it doesn't blow up, and doesn't leak, it's probably working fine) { UErrorCode status = U_ZERO_ERROR; UText ut = UTEXT_INITIALIZER; UText *utp; UnicodeString s1("Hello, World"); UChar s2[] = {(UChar)0x41, (UChar)0x42, (UChar)0}; const char *s3 = "\x66\x67\x68"; utp = utext_openUnicodeString(&ut, &s1, &status); TEST_SUCCESS(status); TEST_ASSERT(utp == &ut); utp = utext_openConstUnicodeString(&ut, &s1, &status); TEST_SUCCESS(status); TEST_ASSERT(utp == &ut); utp = utext_openUTF8(&ut, s3, -1, &status); TEST_SUCCESS(status); TEST_ASSERT(utp == &ut); utp = utext_openUChars(&ut, s2, -1, &status); TEST_SUCCESS(status); TEST_ASSERT(utp == &ut); utp = utext_close(&ut); TEST_ASSERT(utp == &ut); utp = utext_openUnicodeString(&ut, &s1, &status); TEST_SUCCESS(status); TEST_ASSERT(utp == &ut); } // Invalid parameters on open // { UErrorCode status = U_ZERO_ERROR; UText ut = UTEXT_INITIALIZER; utext_openUChars(&ut, NULL, 5, &status); TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR); status = U_ZERO_ERROR; utext_openUChars(&ut, NULL, -1, &status); TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR); status = U_ZERO_ERROR; utext_openUTF8(&ut, NULL, 4, &status); TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR); status = U_ZERO_ERROR; utext_openUTF8(&ut, NULL, -1, &status); TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR); } // // UTF-8 with malformed sequences. // These should come through as the Unicode replacement char, \ufffd // { UErrorCode status = U_ZERO_ERROR; UText *ut = NULL; const char *badUTF8 = "\x41\x81\x42\xf0\x81\x81\x43"; UChar32 c; ut = utext_openUTF8(NULL, badUTF8, -1, &status); TEST_SUCCESS(status); c = utext_char32At(ut, 1); TEST_ASSERT(c == 0xfffd); c = utext_char32At(ut, 3); TEST_ASSERT(c == 0xfffd); c = utext_char32At(ut, 5); TEST_ASSERT(c == 0xfffd); c = utext_char32At(ut, 6); TEST_ASSERT(c == 0x43); UChar buf[10]; int n = utext_extract(ut, 0, 9, buf, 10, &status); TEST_SUCCESS(status); TEST_ASSERT(n==5); TEST_ASSERT(buf[1] == 0xfffd); TEST_ASSERT(buf[3] == 0xfffd); TEST_ASSERT(buf[2] == 0x42); utext_close(ut); } // // isLengthExpensive - does it make the exptected transitions after // getting the length of a nul terminated string? // { UErrorCode status = U_ZERO_ERROR; UnicodeString sa("Hello, this is a string"); UBool isExpensive; UChar sb[100]; memset(sb, 0x20, sizeof(sb)); sb[99] = 0; UText *uta = utext_openUnicodeString(NULL, &sa, &status); TEST_SUCCESS(status); isExpensive = utext_isLengthExpensive(uta); TEST_ASSERT(isExpensive == FALSE); utext_close(uta); UText *utb = utext_openUChars(NULL, sb, -1, &status); TEST_SUCCESS(status); isExpensive = utext_isLengthExpensive(utb); TEST_ASSERT(isExpensive == TRUE); int64_t len = utext_nativeLength(utb); TEST_ASSERT(len == 99); isExpensive = utext_isLengthExpensive(utb); TEST_ASSERT(isExpensive == FALSE); utext_close(utb); } // // Index to positions not on code point boundaries. // { const char *u8str = "\xc8\x81\xe1\x82\x83\xf1\x84\x85\x86"; int32_t startMap[] = { 0, 0, 2, 2, 2, 5, 5, 5, 5, 9, 9}; int32_t nextMap[] = { 2, 2, 5, 5, 5, 9, 9, 9, 9, 9, 9}; int32_t prevMap[] = { 0, 0, 0, 0, 0, 2, 2, 2, 2, 5, 5}; UChar32 c32Map[] = {0x201, 0x201, 0x1083, 0x1083, 0x1083, 0x044146, 0x044146, 0x044146, 0x044146, -1, -1}; UChar32 pr32Map[] = { -1, -1, 0x201, 0x201, 0x201, 0x1083, 0x1083, 0x1083, 0x1083, 0x044146, 0x044146}; // extractLen is the size, in UChars, of what will be extracted between index and index+1. // is zero when both index positions lie within the same code point. int32_t exLen[] = { 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0}; UErrorCode status = U_ZERO_ERROR; UText *ut = utext_openUTF8(NULL, u8str, -1, &status); TEST_SUCCESS(status); // Check setIndex int32_t i; int32_t startMapLimit = sizeof(startMap) / sizeof(int32_t); for (i=0; i<startMapLimit; i++) { utext_setNativeIndex(ut, i); int64_t cpIndex = utext_getNativeIndex(ut); TEST_ASSERT(cpIndex == startMap[i]); cpIndex = UTEXT_GETNATIVEINDEX(ut); TEST_ASSERT(cpIndex == startMap[i]); } // Check char32At for (i=0; i<startMapLimit; i++) { UChar32 c32 = utext_char32At(ut, i); TEST_ASSERT(c32 == c32Map[i]); int64_t cpIndex = utext_getNativeIndex(ut); TEST_ASSERT(cpIndex == startMap[i]); } // Check utext_next32From for (i=0; i<startMapLimit; i++) { UChar32 c32 = utext_next32From(ut, i); TEST_ASSERT(c32 == c32Map[i]); int64_t cpIndex = utext_getNativeIndex(ut); TEST_ASSERT(cpIndex == nextMap[i]); } // check utext_previous32From for (i=0; i<startMapLimit; i++) { gTestNum++; UChar32 c32 = utext_previous32From(ut, i); TEST_ASSERT(c32 == pr32Map[i]); int64_t cpIndex = utext_getNativeIndex(ut); TEST_ASSERT(cpIndex == prevMap[i]); } // check Extract // Extract from i to i+1, which may be zero or one code points, // depending on whether the indices straddle a cp boundary. for (i=0; i<startMapLimit; i++) { UChar buf[3]; status = U_ZERO_ERROR; int32_t extractedLen = utext_extract(ut, i, i+1, buf, 3, &status); TEST_SUCCESS(status); TEST_ASSERT(extractedLen == exLen[i]); if (extractedLen > 0) { UChar32 c32; /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */ U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32); TEST_ASSERT(c32 == c32Map[i]); } } utext_close(ut); } { // Similar test, with utf16 instead of utf8 // TODO: merge the common parts of these tests. UnicodeString u16str("\\u1000\\U00011000\\u2000\\U00022000", -1, US_INV); int32_t startMap[] ={ 0, 1, 1, 3, 4, 4, 6, 6}; int32_t nextMap[] = { 1, 3, 3, 4, 6, 6, 6, 6}; int32_t prevMap[] = { 0, 0, 0, 1, 3, 3, 4, 4}; UChar32 c32Map[] = {0x1000, 0x11000, 0x11000, 0x2000, 0x22000, 0x22000, -1, -1}; UChar32 pr32Map[] = { -1, 0x1000, 0x1000, 0x11000, 0x2000, 0x2000, 0x22000, 0x22000}; int32_t exLen[] = { 1, 0, 2, 1, 0, 2, 0, 0,}; u16str = u16str.unescape(); UErrorCode status = U_ZERO_ERROR; UText *ut = utext_openUnicodeString(NULL, &u16str, &status); TEST_SUCCESS(status); int32_t startMapLimit = sizeof(startMap) / sizeof(int32_t); int i; for (i=0; i<startMapLimit; i++) { utext_setNativeIndex(ut, i); int64_t cpIndex = utext_getNativeIndex(ut); TEST_ASSERT(cpIndex == startMap[i]); } // Check char32At for (i=0; i<startMapLimit; i++) { UChar32 c32 = utext_char32At(ut, i); TEST_ASSERT(c32 == c32Map[i]); int64_t cpIndex = utext_getNativeIndex(ut); TEST_ASSERT(cpIndex == startMap[i]); } // Check utext_next32From for (i=0; i<startMapLimit; i++) { UChar32 c32 = utext_next32From(ut, i); TEST_ASSERT(c32 == c32Map[i]); int64_t cpIndex = utext_getNativeIndex(ut); TEST_ASSERT(cpIndex == nextMap[i]); } // check utext_previous32From for (i=0; i<startMapLimit; i++) { UChar32 c32 = utext_previous32From(ut, i); TEST_ASSERT(c32 == pr32Map[i]); int64_t cpIndex = utext_getNativeIndex(ut); TEST_ASSERT(cpIndex == prevMap[i]); } // check Extract // Extract from i to i+1, which may be zero or one code points, // depending on whether the indices straddle a cp boundary. for (i=0; i<startMapLimit; i++) { UChar buf[3]; status = U_ZERO_ERROR; int32_t extractedLen = utext_extract(ut, i, i+1, buf, 3, &status); TEST_SUCCESS(status); TEST_ASSERT(extractedLen == exLen[i]); if (extractedLen > 0) { UChar32 c32; /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */ U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32); TEST_ASSERT(c32 == c32Map[i]); } } utext_close(ut); } { // Similar test, with UText over Replaceable // TODO: merge the common parts of these tests. UnicodeString u16str("\\u1000\\U00011000\\u2000\\U00022000", -1, US_INV); int32_t startMap[] ={ 0, 1, 1, 3, 4, 4, 6, 6}; int32_t nextMap[] = { 1, 3, 3, 4, 6, 6, 6, 6}; int32_t prevMap[] = { 0, 0, 0, 1, 3, 3, 4, 4}; UChar32 c32Map[] = {0x1000, 0x11000, 0x11000, 0x2000, 0x22000, 0x22000, -1, -1}; UChar32 pr32Map[] = { -1, 0x1000, 0x1000, 0x11000, 0x2000, 0x2000, 0x22000, 0x22000}; int32_t exLen[] = { 1, 0, 2, 1, 0, 2, 0, 0,}; u16str = u16str.unescape(); UErrorCode status = U_ZERO_ERROR; UText *ut = utext_openReplaceable(NULL, &u16str, &status); TEST_SUCCESS(status); int32_t startMapLimit = sizeof(startMap) / sizeof(int32_t); int i; for (i=0; i<startMapLimit; i++) { utext_setNativeIndex(ut, i); int64_t cpIndex = utext_getNativeIndex(ut); TEST_ASSERT(cpIndex == startMap[i]); } // Check char32At for (i=0; i<startMapLimit; i++) { UChar32 c32 = utext_char32At(ut, i); TEST_ASSERT(c32 == c32Map[i]); int64_t cpIndex = utext_getNativeIndex(ut); TEST_ASSERT(cpIndex == startMap[i]); } // Check utext_next32From for (i=0; i<startMapLimit; i++) { UChar32 c32 = utext_next32From(ut, i); TEST_ASSERT(c32 == c32Map[i]); int64_t cpIndex = utext_getNativeIndex(ut); TEST_ASSERT(cpIndex == nextMap[i]); } // check utext_previous32From for (i=0; i<startMapLimit; i++) { UChar32 c32 = utext_previous32From(ut, i); TEST_ASSERT(c32 == pr32Map[i]); int64_t cpIndex = utext_getNativeIndex(ut); TEST_ASSERT(cpIndex == prevMap[i]); } // check Extract // Extract from i to i+1, which may be zero or one code points, // depending on whether the indices straddle a cp boundary. for (i=0; i<startMapLimit; i++) { UChar buf[3]; status = U_ZERO_ERROR; int32_t extractedLen = utext_extract(ut, i, i+1, buf, 3, &status); TEST_SUCCESS(status); TEST_ASSERT(extractedLen == exLen[i]); if (extractedLen > 0) { UChar32 c32; /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */ U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32); TEST_ASSERT(c32 == c32Map[i]); } } utext_close(ut); } } void UTextTest::FreezeTest() { // Check isWritable() and freeze() behavior. // UnicodeString ustr("Hello, World."); const char u8str[] = {char(0x31), (char)0x32, (char)0x33, 0}; const UChar u16str[] = {(UChar)0x31, (UChar)0x32, (UChar)0x44, 0}; UErrorCode status = U_ZERO_ERROR; UText *ut = NULL; UText *ut2 = NULL; ut = utext_openUTF8(ut, u8str, -1, &status); TEST_SUCCESS(status); UBool writable = utext_isWritable(ut); TEST_ASSERT(writable == FALSE); utext_copy(ut, 1, 2, 0, TRUE, &status); TEST_ASSERT(status == U_NO_WRITE_PERMISSION); status = U_ZERO_ERROR; ut = utext_openUChars(ut, u16str, -1, &status); TEST_SUCCESS(status); writable = utext_isWritable(ut); TEST_ASSERT(writable == FALSE); utext_copy(ut, 1, 2, 0, TRUE, &status); TEST_ASSERT(status == U_NO_WRITE_PERMISSION); status = U_ZERO_ERROR; ut = utext_openUnicodeString(ut, &ustr, &status); TEST_SUCCESS(status); writable = utext_isWritable(ut); TEST_ASSERT(writable == TRUE); utext_freeze(ut); writable = utext_isWritable(ut); TEST_ASSERT(writable == FALSE); utext_copy(ut, 1, 2, 0, TRUE, &status); TEST_ASSERT(status == U_NO_WRITE_PERMISSION); status = U_ZERO_ERROR; ut = utext_openUnicodeString(ut, &ustr, &status); TEST_SUCCESS(status); ut2 = utext_clone(ut2, ut, FALSE, FALSE, &status); // clone with readonly = false TEST_SUCCESS(status); writable = utext_isWritable(ut2); TEST_ASSERT(writable == TRUE); ut2 = utext_clone(ut2, ut, FALSE, TRUE, &status); // clone with readonly = true TEST_SUCCESS(status); writable = utext_isWritable(ut2); TEST_ASSERT(writable == FALSE); utext_copy(ut2, 1, 2, 0, TRUE, &status); TEST_ASSERT(status == U_NO_WRITE_PERMISSION); status = U_ZERO_ERROR; ut = utext_openConstUnicodeString(ut, (const UnicodeString *)&ustr, &status); TEST_SUCCESS(status); writable = utext_isWritable(ut); TEST_ASSERT(writable == FALSE); utext_copy(ut, 1, 2, 0, TRUE, &status); TEST_ASSERT(status == U_NO_WRITE_PERMISSION); // Deep Clone of a frozen UText should re-enable writing in the copy. status = U_ZERO_ERROR; ut = utext_openUnicodeString(ut, &ustr, &status); TEST_SUCCESS(status); utext_freeze(ut); ut2 = utext_clone(ut2, ut, TRUE, FALSE, &status); // deep clone TEST_SUCCESS(status); writable = utext_isWritable(ut2); TEST_ASSERT(writable == TRUE); // Deep clone of a frozen UText, where the base type is intrinsically non-writable, // should NOT enable writing in the copy. status = U_ZERO_ERROR; ut = utext_openUChars(ut, u16str, -1, &status); TEST_SUCCESS(status); utext_freeze(ut); ut2 = utext_clone(ut2, ut, TRUE, FALSE, &status); // deep clone TEST_SUCCESS(status); writable = utext_isWritable(ut2); TEST_ASSERT(writable == FALSE); // cleanup utext_close(ut); utext_close(ut2); } // // Fragmented UText // A UText type that works with a chunk size of 1. // Intended to test for edge cases. // Input comes from a UnicodeString. // // ut.b the character. Put into both halves. // U_CDECL_BEGIN static UBool U_CALLCONV fragTextAccess(UText *ut, int64_t index, UBool forward) { const UnicodeString *us = (const UnicodeString *)ut->context; UChar c; int32_t length = us->length(); if (forward && index>=0 && index<length) { c = us->charAt((int32_t)index); ut->b = c | c<<16; ut->chunkOffset = 0; ut->chunkLength = 1; ut->chunkNativeStart = index; ut->chunkNativeLimit = index+1; return true; } if (!forward && index>0 && index <=length) { c = us->charAt((int32_t)index-1); ut->b = c | c<<16; ut->chunkOffset = 1; ut->chunkLength = 1; ut->chunkNativeStart = index-1; ut->chunkNativeLimit = index; return true; } ut->b = 0; ut->chunkOffset = 0; ut->chunkLength = 0; if (index <= 0) { ut->chunkNativeStart = 0; ut->chunkNativeLimit = 0; } else { ut->chunkNativeStart = length; ut->chunkNativeLimit = length; } return false; } // Function table to be used with this fragmented text provider. // Initialized in the open function. static UTextFuncs fragmentFuncs; // Clone function for fragmented text provider. // Didn't really want to provide this, but it's easier to provide it than to keep it // out of the tests. // UText * cloneFragmentedUnicodeString(UText *dest, const UText *src, UBool deep, UErrorCode *status) { if (U_FAILURE(*status)) { return NULL; } if (deep) { *status = U_UNSUPPORTED_ERROR; return NULL; } dest = utext_openUnicodeString(dest, (UnicodeString *)src->context, status); utext_setNativeIndex(dest, utext_getNativeIndex(src)); return dest; } U_CDECL_END // Open function for the fragmented text provider. UText * openFragmentedUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status) { ut = utext_openUnicodeString(ut, s, status); if (U_FAILURE(*status)) { return ut; } // Copy of the function table from the stock UnicodeString UText, // and replace the entry for the access function. memcpy(&fragmentFuncs, ut->pFuncs, sizeof(fragmentFuncs)); fragmentFuncs.access = fragTextAccess; fragmentFuncs.clone = cloneFragmentedUnicodeString; ut->pFuncs = &fragmentFuncs; ut->chunkContents = (UChar *)&ut->b; ut->pFuncs->access(ut, 0, TRUE); return ut; } // Regression test for Ticket 5560 // Clone fails to update chunkContentPointer in the cloned copy. // This is only an issue for UText types that work in a local buffer, // (UTF-8 wrapper, for example) // // The test: // 1. Create an inital UText // 2. Deep clone it. Contents should match original. // 3. Reset original to something different. // 4. Check that clone contents did not change. // void UTextTest::Ticket5560() { /* The following two strings are in UTF-8 even on EBCDIC platforms. */ static const char s1[] = {0x41,0x42,0x43,0x44,0x45,0x46,0}; /* "ABCDEF" */ static const char s2[] = {0x31,0x32,0x33,0x34,0x35,0x36,0}; /* "123456" */ UErrorCode status = U_ZERO_ERROR; UText ut1 = UTEXT_INITIALIZER; UText ut2 = UTEXT_INITIALIZER; utext_openUTF8(&ut1, s1, -1, &status); UChar c = utext_next32(&ut1); TEST_ASSERT(c == 0x41); // c == 'A' utext_clone(&ut2, &ut1, TRUE, FALSE, &status); TEST_SUCCESS(status); c = utext_next32(&ut2); TEST_ASSERT(c == 0x42); // c == 'B' c = utext_next32(&ut1); TEST_ASSERT(c == 0x42); // c == 'B' utext_openUTF8(&ut1, s2, -1, &status); c = utext_next32(&ut1); TEST_ASSERT(c == 0x31); // c == '1' c = utext_next32(&ut2); TEST_ASSERT(c == 0x43); // c == 'C' utext_close(&ut1); utext_close(&ut2); } // Test for Ticket 6847 // void UTextTest::Ticket6847() { const int STRLEN = 90; UChar s[STRLEN+1]; u_memset(s, 0x41, STRLEN); s[STRLEN] = 0; UErrorCode status = U_ZERO_ERROR; UText *ut = utext_openUChars(NULL, s, -1, &status); utext_setNativeIndex(ut, 0); int32_t count = 0; UChar32 c = 0; int64_t nativeIndex = UTEXT_GETNATIVEINDEX(ut); TEST_ASSERT(nativeIndex == 0); while ((c = utext_next32(ut)) != U_SENTINEL) { TEST_ASSERT(c == 0x41); TEST_ASSERT(count < STRLEN); if (count >= STRLEN) { break; } count++; nativeIndex = UTEXT_GETNATIVEINDEX(ut); TEST_ASSERT(nativeIndex == count); } TEST_ASSERT(count == STRLEN); nativeIndex = UTEXT_GETNATIVEINDEX(ut); TEST_ASSERT(nativeIndex == STRLEN); utext_close(ut); }