/* * Copyright (c) 2003-2009 jMonkeyEngine * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * * Neither the name of 'jMonkeyEngine' nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ package jme3tools.converters.model.strip; import java.util.Arrays; /** * To use, call generateStrips method, passing your triangle index list and * then construct geometry/render resulting PrimitiveGroup objects. * Features: * <ul> * <li>generates strips from arbitrary geometry. * <li>flexibly optimizes for post TnL vertex caches (16 on GeForce1/2, 24 on GeForce3). * <li>can stitch together strips using degenerate triangles, or not. * <li>can output lists instead of strips. * <li>can optionally throw excessively small strips into a list instead. * <li>can remap indices to improve spatial locality in your vertex buffers. * </ul> * On cache sizes: Note that it's better to UNDERESTIMATE the cache size * instead of OVERESTIMATING. So, if you're targetting GeForce1, 2, and 3, be * conservative and use the GeForce1_2 cache size, NOT the GeForce3 cache size. * This will make sure you don't "blow" the cache of the GeForce1 and 2. Also * note that the cache size you specify is the "actual" cache size, not the * "effective" cache size you may have heard about. This is 16 for GeForce1 and 2, * and 24 for GeForce3. * * Credit goes to Curtis Beeson and Joe Demers for the basis for this * stripifier and to Jason Regier and Jon Stone at Blizzard for providing a * much cleaner version of CreateStrips(). * * Ported to java by Artur Biesiadowski <abies@pg.gda.pl> */ public class TriStrip { public static final int CACHESIZE_GEFORCE1_2 = 16; public static final int CACHESIZE_GEFORCE3 = 24; int cacheSize = CACHESIZE_GEFORCE1_2; boolean bStitchStrips = true; int minStripSize = 0; boolean bListsOnly = false; /** * */ public TriStrip() { super(); } /** * If set to true, will return an optimized list, with no strips at all. * Default value: false */ public void setListsOnly(boolean _bListsOnly) { bListsOnly = _bListsOnly; } /** * Sets the cache size which the stripfier uses to optimize the data. * Controls the length of the generated individual strips. This is the * "actual" cache size, so 24 for GeForce3 and 16 for GeForce1/2 You may * want to play around with this number to tweak performance. Default * value: 16 */ public void setCacheSize(int _cacheSize) { cacheSize = _cacheSize; } /** * bool to indicate whether to stitch together strips into one huge strip * or not. If set to true, you'll get back one huge strip stitched together * using degenerate triangles. If set to false, you'll get back a large * number of separate strips. Default value: true */ public void setStitchStrips(boolean _bStitchStrips) { bStitchStrips = _bStitchStrips; } /** * Sets the minimum acceptable size for a strip, in triangles. All strips * generated which are shorter than this will be thrown into one big, * separate list. Default value: 0 */ public void setMinStripSize(int _minStripSize) { minStripSize = _minStripSize; } /** * @param in_indices * input index list, the indices you would use to render * @return array of optimized/stripified PrimitiveGroups */ public PrimitiveGroup[] generateStrips(int[] in_indices) { int numGroups = 0; PrimitiveGroup[] primGroups; //put data in format that the stripifier likes IntVec tempIndices = new IntVec(); int maxIndex = 0; for (int i = 0; i < in_indices.length; i++) { tempIndices.add(in_indices[i]); if (in_indices[i] > maxIndex) maxIndex = in_indices[i]; } StripInfoVec tempStrips = new StripInfoVec(); FaceInfoVec tempFaces = new FaceInfoVec(); Stripifier stripifier = new Stripifier(); //do actual stripification stripifier.stripify(tempIndices, cacheSize, minStripSize, maxIndex, tempStrips, tempFaces); //stitch strips together IntVec stripIndices = new IntVec(); int numSeparateStrips = 0; if (bListsOnly) { //if we're outputting only lists, we're done numGroups = 1; primGroups = new PrimitiveGroup[numGroups]; primGroups[0] = new PrimitiveGroup(); PrimitiveGroup[] primGroupArray = primGroups; //count the total number of indices int numIndices = 0; for (int i = 0; i < tempStrips.size(); i++) { numIndices += tempStrips.at(i).m_faces.size() * 3; } //add in the list numIndices += tempFaces.size() * 3; primGroupArray[0].type = PrimitiveGroup.PT_LIST; primGroupArray[0].indices = new int[numIndices]; primGroupArray[0].numIndices = numIndices; //do strips int indexCtr = 0; for (int i = 0; i < tempStrips.size(); i++) { for (int j = 0; j < tempStrips.at(i).m_faces.size(); j++) { //degenerates are of no use with lists if (!Stripifier.isDegenerate(tempStrips.at(i).m_faces.at(j))) { primGroupArray[0].indices[indexCtr++] = tempStrips.at(i).m_faces.at(j).m_v0; primGroupArray[0].indices[indexCtr++] = tempStrips.at(i).m_faces.at(j).m_v1; primGroupArray[0].indices[indexCtr++] = tempStrips.at(i).m_faces.at(j).m_v2; } else { //we've removed a tri, reduce the number of indices primGroupArray[0].numIndices -= 3; } } } //do lists for (int i = 0; i < tempFaces.size(); i++) { primGroupArray[0].indices[indexCtr++] = tempFaces.at(i).m_v0; primGroupArray[0].indices[indexCtr++] = tempFaces.at(i).m_v1; primGroupArray[0].indices[indexCtr++] = tempFaces.at(i).m_v2; } } else { numSeparateStrips = stripifier.createStrips(tempStrips, stripIndices, bStitchStrips); //if we're stitching strips together, we better get back only one // strip from CreateStrips() //convert to output format numGroups = numSeparateStrips; //for the strips if (tempFaces.size() != 0) numGroups++; //we've got a list as well, increment primGroups = new PrimitiveGroup[numGroups]; for (int i = 0; i < primGroups.length; i++) { primGroups[i] = new PrimitiveGroup(); } PrimitiveGroup[] primGroupArray = primGroups; //first, the strips int startingLoc = 0; for (int stripCtr = 0; stripCtr < numSeparateStrips; stripCtr++) { int stripLength = 0; if (!bStitchStrips) { int i; //if we've got multiple strips, we need to figure out the // correct length for (i = startingLoc; i < stripIndices.size(); i++) { if (stripIndices.get(i) == -1) break; } stripLength = i - startingLoc; } else stripLength = stripIndices.size(); primGroupArray[stripCtr].type = PrimitiveGroup.PT_STRIP; primGroupArray[stripCtr].indices = new int[stripLength]; primGroupArray[stripCtr].numIndices = stripLength; int indexCtr = 0; for (int i = startingLoc; i < stripLength + startingLoc; i++) primGroupArray[stripCtr].indices[indexCtr++] = stripIndices.get(i); //we add 1 to account for the -1 separating strips //this doesn't break the stitched case since we'll exit the // loop startingLoc += stripLength + 1; } //next, the list if (tempFaces.size() != 0) { int faceGroupLoc = numGroups - 1; //the face group is the last // one primGroupArray[faceGroupLoc].type = PrimitiveGroup.PT_LIST; primGroupArray[faceGroupLoc].indices = new int[tempFaces.size() * 3]; primGroupArray[faceGroupLoc].numIndices = tempFaces.size() * 3; int indexCtr = 0; for (int i = 0; i < tempFaces.size(); i++) { primGroupArray[faceGroupLoc].indices[indexCtr++] = tempFaces.at(i).m_v0; primGroupArray[faceGroupLoc].indices[indexCtr++] = tempFaces.at(i).m_v1; primGroupArray[faceGroupLoc].indices[indexCtr++] = tempFaces.at(i).m_v2; } } } return primGroups; } /** * Function to remap your indices to improve spatial locality in your * vertex buffer. * * in_primGroups: array of PrimitiveGroups you want remapped numGroups: * number of entries in in_primGroups numVerts: number of vertices in your * vertex buffer, also can be thought of as the range of acceptable values * for indices in your primitive groups. remappedGroups: array of remapped * PrimitiveGroups * * Note that, according to the remapping handed back to you, you must * reorder your vertex buffer. * */ public static int[] remapIndices(int[] indices, int numVerts) { int[] indexCache = new int[numVerts]; Arrays.fill(indexCache, -1); int numIndices = indices.length; int[] remappedIndices = new int[numIndices]; int indexCtr = 0; for (int j = 0; j < numIndices; j++) { int cachedIndex = indexCache[indices[j]]; if (cachedIndex == -1) //we haven't seen this index before { //point to "last" vertex in VB remappedIndices[j] = indexCtr; //add to index cache, increment indexCache[indices[j]] = indexCtr++; } else { //we've seen this index before remappedIndices[j] = cachedIndex; } } return remappedIndices; } public static void remapArrays(float[] vertexBuffer, int vertexSize, int[] indices) { int[] remapped = remapIndices(indices, vertexBuffer.length / vertexSize); float[] bufferCopy = vertexBuffer.clone(); for (int i = 0; i < remapped.length; i++) { int from = indices[i] * vertexSize; int to = remapped[i] * vertexSize; for (int j = 0; j < vertexSize; j++) { vertexBuffer[to + j] = bufferCopy[from + j]; } } System.arraycopy(remapped, 0, indices, 0, indices.length); } }